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Abstract 

      In this paper, the operating characteristics of an 1//GM X  queueing 
system with unreliable server and single vacation are analyzed.  The server 
is subjected to fail, while it is on, and the arrival rate depends on the up and 
down states of the server.  The time to failure is exponentially distributed 
and the repair times follow general distribution.  Server is assigned to a 
secondary job (vacation) when the system becomes empty. The model is 
studied by the embedded Markov chain technique and level crossing 
analysis. The probability generating function of the steady state system size 
at an arbitrary time is obtained. An expression for the expected number of 
customers in the system, expected length of busy period and idle period is 
also derived. The application of the proposed model for a manufacturing 
system is discussed.  A cost model for the queueing systems is discussed with 
a numerical illustration. 
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1     Introduction 

The objective of this paper is to analyze an 1//GM X  queueing system under single 
vacation policy and unreliable server, that exists in a manufacturing industry, 
assembly systems, etc., In a Globe Valve manufacturing industry, after turning 
operation the components arrive from job shop in batches to CNC turning center for 
facing and  turning processes.  The operator of CNC turning center starts the 
processes immediately.  After processing these components, if no components arrive, 
the  operator  will  begin  doing  other work  ( vacation state )  such as  arranging the  
tooling, writing the coding, removing the chips, changing the coolant, etc.  When the 
operator returns from other work and finds one or more components waiting for 
service in the queue, he immediately begins to serve them until the system becomes 
empty.  On the other hand, if the operator finds an empty system again at the end of 
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the vacation, he remains idle until a component arrives.  The service of components 
may be interrupted when operator encounters unpredicted breakdowns such             
as accident event, blunt tool, troubles in coolant, etc.  Arumuganathan and 
Jeyakumar [1] proposed a cost model for a practical situation in Globe Valve 
manufacturing industry with reliable server. 
 
When service interruptions occur (breakdowns), it is emergently recovered with a 
random time.  As soon as the broken server is repaired, the server immediately 
returns to provide his services until the system is empty, and the service time is 
cumulative.   The above process can be modeled as an 1//GM X  queueing system 
with unreliable server and single vacation. 
 
Concerning queueing models with server vacations, an excellent survey of queueing 
systems with server vacations was found in Doshi [3] and Takagi [10]. Lee and 
Srinivasan [7] and Kella [6] studied queueing systems with the threshold policy     
(N Policy) and multiple vacations, including some applications.  They respectively 
dealt with the batch arrival M/G/1 and the single unit arrival  M/G/1 queueing 
systems, examined the system performances, and obtained the optimal policy under a 
stationary cost function, in which the arrival occurs in bulk and single respectively.  
 
Queueing models with server breakdowns are more realistic representation of the 
systems.  Wang [12] proposed an N Policy M/M/1 queueing system with server 
breakdowns.  He developed an analytic closed – form solutions and provided a 
sensitivity analysis, but  service followed an exponential distribution without any 
interruptions for a single arrival.  Wang [13] and Wang et al. [14] extended Wang’s 
model to the N policy M/E k /1 and M/H 2 /1 queueing system cases, respectively.  
They focused on single arrival Erlangian service time queueing model with a reliable 
server.  J.C. Ke [4] studied a modified T vacation policy for an M/G/1 queueing 
system where an unreliable server may take at most J vacations repeatedly until at 
least one customer appears in the queue upon returning from a vacation, and the 
server needs a startup time before starting each of his service periods, also derived 
various system performances, but arrival occurs one at a time.   Wang et al [11] 
performed a comparative analysis between the exact results and the maximum 
entropy results, also demonstrated through the maximum entropy results that the 
maximum entropy principle approach is accurate enough for practical purposes.  
 
Choudhury [2] successfully modeled a batch arrival queueing system with a single 
vacation policy which extends the results of Levy and Yechiali [8] and Doshi [3].    
J.C. Ke [5] discussed some operating characteristics analysis on the 1//GM X  
system with a variant vacation policy and balking, but both considered the service 
without any breakdown concepts.  This paper generalizes the above said models by 
considering bulk arrival general service queueing system in which the server avails 
vacation and is subject to fail. 
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This paper deals with an 1//GM X  queueing system under single vacation policy 
and unreliable server.  Customers arrive according to the compound Poisson process 
with random arrival size.  Arrival rate varies according to the server’s status: busy or 
broken down.  When he returns from a vacation, if there are one or more customers 
waiting, he serves until the system becomes empty; otherwise, he stays in the system 
waiting for the first one to arrive.  The service is interrupted if break down occurs, 
and the server is immediately repaired.  When the repair is completed, the server 
immediately returns for service.  Breakdown times are exponentially distributed and 
the repair times follow general distribution. The model is studied by the embedded 
Markov chain technique and level crossing analysis.   
 
The paper is organized in the following scenario: 
 

• In the first part of the paper, system size distribution at busy period initiation 
epoch, at departure epoch and at an arbitrary epoch are discussed. 

 

• In the second part of the paper, various performance measures such as expected 
number of customers in the system, expected length of idle period and expected 
length of busy period are obtained .   

 

• In the final part, numerical illustration is provided with a cost model.  
 

Important contribution is the study of cost model for a practical situation and how 
the results are useful in optimizing the cost. 
 

 
Schematic Representation of the Model         Q - Queue length 

 
2     Notations 

Vacation 
Dormant 
Period  

0=Q

1≥Q  
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λ    arrival rate when the server is up 

0λ   arrival rate when the server is down 
γ       failure rate when the server is busy 
X     arrival size random variable 

kg       Pr(X=k) 
X(z)     probability generating function (PGF) of X 
S      service time random variable 
V     vacation time random variable 

)(⋅G    cumulative distribution function of the repair time 
)(⋅S       cumulative distribution function of the service time 
)(⋅V       cumulative distribution function of the vacation time 

)(
~
θV   Laplace-Stieltjes transform (LST) of  V 

)(
~
θS   Laplace-Stieltjes transform (LST) of  S 

)(
~
θG   Laplace-Stieltjes transform (LST) of  G 

 
3    Queue size distribution at busy period initiation epoch 
 
In this section, the steady state queue size distribution at a busy period initiation 
epoch is developed. nα   ( )1≥n  is defined as the steady state probability that an 
arbitrary (tagged) customer finds n customers in the system at the busy period 
initiation epoch.  If lT  ( l  = 0,1,2,….) is the initiation epochs of the busy period and 

)( lTN  is the number of customers in the system at the time instant lT , then 
 
  1],)([Pr ≥==

∞→
nnTNobLim l

l
nα . 

Conditioning on the number of customers which arrive during the first vacation after 
a busy period , the following state equation is obtained. 

  ,1,
1

0
)( ≥∑ +=

=
ngaga

n

k
n

k
nknα              (3.1) 
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The following probability generating functions X(z) and )(zα are defined as follows. 
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Multiplying (3.1) by appropriate powers of z and then taking summation over all 
possible values of ‘n’, we get 

  ]1)([)())(()(
~~

−+−= zXVzXVz λλλα ,            (3.2) 
)( zα  represents the PGF of the number of customers in the system at the 

completion epoch of the idle period. 
 
Let E( )α and E[ ( 1)]α α −  be the first two factorial moments of the distribution of 
the queue size at busy period initiation epoch, then 
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Thus the variance of the busy period initiation queue size distribution is given by 
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The expression (3.3) represents the expected number of arrivals during an idle period. 
 
4   System size distribution at departure epoch 
 
In this section, the probability generating function of the departure point system size 
distribution is derived.  jπ (j = 0,1,2,3,…..) is defined as the steady-state probability 
that ‘j’ customers are left in the system at a departure epoch of customer.  The 
probability jπ  is obtained by embedded Markov chain technique. 
 
Here { jπ ;  j = 0,1,2,3,…….} forms a Markov chain with transition probability 
matrix, 
 

  P = 
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⎟
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Also jπ , j = 0,1,2,3,……. satisfies the following steady-state equation: 
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where ir  is the probability of  ‘i ‘ customers arrive during the period starting with the 
initiation of a service of a customer and ending with the completion of its service. 
 
Conditioning on the actual service length of this customer and the number of 
breakdowns during this service, we get 
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The PGF of ,.......}3,2,1,0,{ =iri is obtained as  
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The expected number of arrivals during the service period of a customer is given by  

  ∑=
∞

=1
)(

i
irirE     

Using (4.3),  we have, 
  )1()( 1rrE =  
          = [ ])()()( 0 GESEXE γλλ +               (4.4) 
where E(.) is the expectation operator. 
 
Let )(z∏  be the PGF of { jπ , j > 0}, then 
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Now using (4.3) and (3.2) in (4.5) and solving this equation, we get finally 
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Now, since∑
∞

=

=
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1
j

jπ , by taking the limit of  )(z∏  as 1→z  is unity, we get  
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and ρ  < 1 is the condition to be satisfied for the existence of  steady state for the 
model under consideration.  
 
Substituting 0π  in (4.6), the PGF of departure point system size is obtained as  
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5    Expected System Size at a Departure epoch 
 
The expected number of customers in the system at a departure epoch is obtained as 

∑
∞

=

∏==
0

1 )1(
n

nnL π  

Using  L’Hospital’s rule and evaluating 
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where )()()()()()]([)( 2~2222 XEVVEXEVEXEE λλλα ++=   
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6    The Steady State Probability Distribution at an Arbitrary time 
 

Let np  be the probability distribution of ‘n’ customers in the system at an arbitrary 
time epoch.  Let 0

nn qandq  be the steady state probabilities that there are ‘n’ 
customers in the system at an arbitrary epoch when the server is up and down, 
respectively.  Then 0

nnn qqp +=  and P(z) = q(z) + 1),(0 ≤zzq , where P(z), q(z) and 

)(0 zq are the probability generating functions of 0, nnn qandqp , respectively.  
Instead of relating nn top π , we relate 0

nn qandq to nπ .  This is achieved by relating 
the rates of up and down crossings of the process { }0),( ≥ttM  , where M(t) is the 
number customers in the system at time t.  Let λ

)
 be the effective arrival rate in the 

steady state.   
 
The rate of down crossings to level ‘n’ is given by (Shanthikumar and Chandra[9]). 

 ∑
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               (6.1) 

The rates of up crossings over level n are 
 
 01)0( qgru λ= ,    n = 0 
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λλ , 0≥i   is the probability that ‘i’ customers 

arrive during a down time of the server. 
 
Taking the PGF of (6.1) and (6.2) and equating them, we get 
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where   )))(1(()( 0

~
zXGzb −= λ is the PGF of { }ib .  Solving (6.3) for q(z), we get 
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substituting n = 0 in (6.1) and (6.2), and equating them, we get 
λ
πλ 0

0

)

=q           (6.5) 

Alternate equation for rate of up crossings over level n is  
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Taking the PGF of (6.1) and (6.6) and equating them, we get 
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Using equations (6.4) and (6.8), we get 
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The PGF of {p ,n 0,1,2,3,.......}n = is defined as  nP(z) z pnn 0

∞
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Using equations (6.4) and (6.9) in P(z) = q(z) + ),(0 zq after some algebra we get 
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Using 1)(
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z
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Thus, (6.10) and (6.11) give the probability generating function P(z) of the number 
of customers at an arbitrary time. 
 
7     Expected System Size at an Arbitrary Time 
 
The expected number of customers in the system at an arbitrary time epoch is given 
by the following equation: 
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 using  L’Hospital’s rule, we get 
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where  L is given by the equation (5.1), 1V  = )1()()()( 22
0 XGEGEXE ′′+λ and  
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8    Expected length of busy period 
 
Let B be the random variable “busy period”.  We define a random variable U and Sr 
as follows,  
 

0,  if theserver finds no customer in the queue at a service completion epoch
U

1,  if the server finds at least one customer in thequeue at a service completion epoch 
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

 
and rS is the time taken to serve a customer including the repair times if any. 
Hence [ ]( ) ( ) 1 ( )rE S E S E Gγ= +  
Now, 
 E(B)  = E(B/U=0)P(U=0) + E(B/U=1)P(U=1) 
           = E( rS )P(U=0) + [E( rS ) + E(B)] P(U=1) 
           = E( rS ) 0π  + [E( rS ) + E(B) ] (1- 0π )             (8.1) 
solving for E(B), we get 

        E(B) = [ ]
ρ
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9    Expected length of idle period 
 
Let I be the random variable “Idle Period”.  To find the expected length of idle 
period E(I), a random variable J is defined as, J = 0, if the server finds at least one 
customer in the queue at the end of a vacation and J = 1,  if the server finds no 
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customer at the end of the vacation.  Let D be the random variable “Dormant Period” 
and  E(D) be the expected length of dormant period. 
 
Now, 
 E(I)  = E(I/J=0)P(J=0) + E(I/J=1)P(J=1) 
         = E(V) P(J=0)+[E(V)+E(D)] P(J=1) 

         = E(V) + )(
~1 λ

λ
V                (9.1) 

10   Special cases 
 
Case 1:  In particular, if γ  = 0 i.e. no server breakdowns, then (4.7) becomes 
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which agree with the result obtained by Choudhury [2]. 
 
Case 2:  If Pr[V = 0] = 1 and 0=γ , our model can be reduced to the ordinary  

[ ] 1// GM x  queueing system.   

Therefore (5.1) becomes 
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where  )()( XESEλρ = .  In this case,  the result coincides with those of Takagi’s                  
system [10]. 
 
11    Cost Model 
 

In this section, we find the average cost with the following assumptions: 
 

 =sC Start up cost   =hC Holding cost per customer  
 =oC Operating cost per unit time =rC Reward cost per unit time due to 
       vacation 
 
Since the length of the cycle is the sum of the idle and busy periods from the 
equations (8.2) and (9.1), the expected length of cycle, )( cTE is obtained as 
 )( cTE  = )(IE  + )(BE  
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Now, the total average cost (TAC)  per unit time is obtained as 

Total Cost = 
)(
)()(

)(
1

BE
IECCNEC

TE
C roh

c
s −++ ρ  , 

The significance of the cost model will be discussed with practical example in the 
next section. 
 
12    Illustrative  Example 
 
 

A numerical example is presented in this section to illustrate how the management of 
Globe valve manufacturing industry can use the above results to take decision 
effectively. 
 
In the valve manufacturing industry, the arrival of valves occur in bulk from turning 
center to CNC turning center follows Poisson process with arrival rate λ  when the 
server is up and the arrival rate 0λ  when the server is down.  The operator takes a 
vacation when he finds no valves available.  The operator utilizes this time for doing 
some other work viz., checking coolant, removing chips, etc. When the operator 
returns from other work and if any valves are available, he immediately starts his 
service.  Otherwise he waits for a new arrival.  During service time if the operator 
faces any failures i.e., unpredicted interruptions in service, immediately it is 
recovered with a random time. 
The above system can be modeled as 1//GM X  queueing system under single 
vacation policy and server failures with the following assumptions. 
 
Service time distribution is exponential and batch size distribution of the arrivals is 
geometric with mean E(X) = 2.  Repair times are also exponential. 
 
Start up cost      = Rs. 4.00    
Operating cost per unit time    = Rs. 5.00 
Holding cost per customer   = Rs. 0.50     
Reward cost per unit time due to vacation  = Rs. 2.00 
Repair rate         α  = 10  
Failure rate            γ  = 0.3  
Arrival rate when the server is down    0λ  = 0.6  
Vacation time                    t  = 0.2    

L, E(N), E(I) and E(B) are mean system size at departure epochs, mean system size 
at an arbitrary time, expected length of  idle period and expected length of busy 
period respectively. 
 
Numerical results are tabulated in tables 1 to 9.  In tables 1- 5, for service rates 1.5, 
2.0, 2.5, 3.0 & 3.5, the mean system size at departure epoch, at an arbitrary epoch, 
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mean length of idle period and mean length of busy period  are compared with 
varying values of the arrival rates.  It is observed that, if the arrival rate increases, the 
system size at departure epoch, at an arbitrary epoch and length of the busy period 
increase whereas length of the idle period  decreases.  Moreover, if the service rate 
increases, the system size at departure epoch, at an arbitrary epoch and length of the 
busy period  decrease. 
 
Also from the tables 1-5, it is clear that, if we allot the server to some other 
secondary job, the idle time is properly utilized and hence the total average cost is 
minimized.  
 
In figure 1, for various service rates, the total average cost with effective utilization 
of the idle time is presented for different arrival rates.  In figure 2, for various service 
rates, the total average cost without utilization of idle time is discussed for different 
arrival rate.  From the figures 1 & 2, it is clear that the total average cost is optimized 
(minimized), if we allot the server to some other secondary job. 
 
In tables 6 – 9, for different arrival rates and varying values of service rates, the 
mean system size at departure epoch and at an arbitrary epoch are compared with 
different values of failure rates.  It is observed that, the mean system size at 
departure epoch and at an arbitrary epoch are increased if the failure rate is increased.  
Also, if the arrival rate and service rate are increased,   the mean system size at 
departure epoch and at an arbitrary epoch are increased for different failure rates. 
 
In figure 3 and 4, for various failure rates and for different service rates, the expected 
number of customers in the system at departure epoch and at an arbitrary epoch are 
presented for different arrival rates.   

 

 

Table 1:  Service rate=1.5 

λ ρ L E(N) E(I) E(B) 

TAC when 
server is 

assigned for 
secondary 

job 

TAC when 
server is not 
assigned for 
secondary 

job 
0.2 
0.3 
0.4 
0.5 
0.6 

0.2907 
0.4240 
0.5573 
0.6907 
0.8240 

1.7914 
2.4391 
3.4767 
5.4072 
10.2579 

1.7131 
2.3942 
3.4517 
5.3962 
10.2579 

5.0039 
3.3392 
2.5078 
2.0097 
1.6782

1.9376 
2.3885 
3.1121 
4.4611 
7.8570

1.4447 
2.8495 
4.3316 
6.1484 
9.3166 

2.8859 
4.0150 
5.2232 
6.7678 
9.6641 
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Table 2:  Service rate=2.0 

λ ρ L E(N) E(I) E(B) 

TAC when 
server is 

assigned for 
secondary 

job 

TAC when 
server is not 
assigned for 
secondary 

job 
0.2 
0.3 
0.4 
0.5 
0.6 

0.2180 
0.3180 
0.4180 
0.5180 
0.6180 

1.5389 
1.9129 
2.4160 
3.1265 
4.2084 

1.4651 
1.8714 
2.3928 
3.1166 
4.2084 

5.0039 
3.3392 
2.5078 
2.0097 
1.6782

1.3182 
1.5129 
1.7753 
2.1473 
2.7150

0.8724 
1.9737 
3.0494 
4.1439 
5.3406 

2.4550 
3.3498 
4.2200 
5.1103 
6.1038 

 

 

 

 

 

Table 3:  Service rate=2.5 

λ ρ L E(N) E(I) E(B) 

TAC when 
server is 

assigned for 
secondary 

job 

TAC when 
server is not 
assigned for 
secondary 

job 
0.2 
0.3 
0.4 
0.5 
0.6 

0.1744 
0.2544 
0.3344 
0.4144 
0.4944 

1.4087 
1.6690 
1.9921 
2.4036 
2.9449 

1.3376 
1.6295 
1.9707 
2.3944 
2.9449 

5.0039 
3.3392 
2.5078 
2.0097 
1.6782

0.9989 
1.1071 
1.2418 
1.4139 
1.6410

0.5400 
1.4844 
2.3878 
3.2636 
4.1385 

2.2069 
2.9862 
3.7243 
4.4383 
5.1507 

 

 

 

 

Table 4:  Service rate=3.0 

λ ρ L E(N) E(I) E(B) 

TAC when 
server is 

assigned for 
secondary 

job 

TAC when 
server is not 
assigned for 
secondary 

job 
0.2 
0.3 
0.4 
0.5 
0.6 

0.1453 
0.2120 
0.2787 
0.3453 
0.4120 

1.3293 
1.5283 
1.7644 
2.0488 
2.3977 

1.2600 
1.4901 
1.7438 
2.0401 
2.3977 

5.0039 
3.3392 
2.5078 
2.0097 
1.6782

0.8041 
0.8729 
0.9549 
1.0540 
1.1759

0.3221 
1.1691 
1.9722 
2.7402 
3.4845 

2.0450 
2.7546 
3.4211 
4.0535 
4.6630 
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Table 5:  Service rate=3.5 

λ ρ L E(N) E(I) E(B) 

TAC when 
server is 

assigned for 
secondary 

job 

TAC when 
server is not 
assigned for 
secondary 

job 
0.2 
0.3 
0.4 
0.5 
0.6 

0.1246 
0.1817 
0.2389 
0.2960 
0.3531 

1.2759 
1.4367 
1.6221 
1.8380 
2.0922 

1.2078 
1.3994 
1.6022 
1.8296 
2.0922 

5.0039 
3.3392 
2.5078 
2.0097 
1.6782

0.6729 
0.7205 
0.7757 
0.8401 
0.9162

0.1687 
0.9484 
1.6864 
2.3880 
3.0598 

1.9313 
2.5935 
3.2144 
3.8003 
4.3569 
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Fig : 1 
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Table 6:  Arrival rate=0.2 & Service rate=1.5 
γ  ρ L E(N) 

0.4 
0.5 
0.6 
0.7 
0.8 

0.2987 
0.3067 
0.3147 
0.3227 
0.3307 

1.8132 
1.8354 
1.8583 
1.8816 
1.9055 

1.7122 
1.7132 
1.7160 
1.7204 
1.7263 

 

 

Table 7:  Arrival rate=0.3 & Service rate=2.0 
γ  ρ L E(N) 

0.4 
0.5 
0.6 
0.7 
0.8 

0.3240 
0.3300 
0.3360 
0.3420 
0.3480 

1.9309 
1.9493 
1.9679 
1.9869 
2.0063 

1.8770 
1.8836 
1.8911 
1.8994 
1.9086 
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Table 8:  Arrival rate=0.4 & Service rate=2.5 
γ  Ρ L E(N) 

0.4 
0.5 
0.6 
0.7 
0.8 

0.3392 
0.3440 
0.3488 
0.3536 
0.3584 

2.0074 
2.0230 
2.0387 
2.0547 
2.0709 

1.9795 
1.9888 
1.9986 
2.0089 
2.0197 

 

Table 9:  Arrival rate=0.5 & Service rate=3.0 
γ  ρ L E(N) 

0.4 
0.5 
0.6 
0.7 
0.8 

0.3493 
0.3533 
0.3573 
0.3613 
0.3653 

2.0621 
2.0755 
2.0891 
2.1029 
2.1168 

2.0507 
2.0615 
2.0727 
2.0841 
2.0958 
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13    Conclusion 
 
In this paper, an [ ] 1// GM x  queueing system with unreliable server and single 
vacation policy is analyzed.  A cost model is discussed with numerical illustration.  
An example from manufacturing system is also given for the model.  
 
14    Open Problem 
 
This model can be extended to analyze other related models such as time dependent 
failures, bulk service models, multiple vacation models, optional re-service models, 
etc. 
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