Subordinations For Certain Analytic Functions

Shigeyoshi Owa ${ }^{1}$, Junichi Nishiwaki ${ }^{2}$ and Norio Niwa ${ }^{3}$
${ }^{1,2}$ Department of Mathematics, Kinki University,Japan
e-mail: ${ }^{1}$ owa@math.kindai.ac,jpowa@math.kindai.ac.jp, ${ }^{2}$ jerjun2002@yahoo.co.jp
${ }^{3}$ Department of Mathematics, Osaka Electro-Communication University,Japan e-mail : ${ }^{3}$ norio_niwa@mist.ocn.ne.jp

Abstract

For analytic functions $f(z)$ in the open unit disk \mathbb{U}, two subclasses $\mathcal{S}_{\delta}(\alpha)$ and $\mathcal{T}_{\delta}(\alpha)$ of $f(z)$ are introduced. The object of the present paper is to discuss some sufficient conditions for $f(z)$ to be in the classes $\mathcal{S}_{\delta}(\alpha)$ and $\mathcal{T}_{\delta}(\alpha)$. Furthermore, two examples for our results are considered.

Keywords: analytic function, close-to-convex function, subordination.

1 Introduction

Let \mathcal{A} denote the class of functions $f(z)$ of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk

$$
\mathbb{U}=\{z: z \in \mathbb{C} \quad \text { and } \quad|z|<1\} .
$$

For analytic functions $f(z)$ and $g(z)$ in \mathbb{U}, we say that $f(z)$ is subordinate to $g(z)$, written by $f(z) \prec g(z)$, if there exists an analytic function $w(z)$ with $w(0)=0$ and $|w(z)|<1(z \in \mathbb{U})$, such that $f(z)=g(w(z))$ (see [1]).
In particular, if $g(z)$ is univalent in \mathbb{U}, then the subordination $f(z) \prec g(z)$ is equivalent to $f(0)=g(0)$ and $f(\mathbb{U}) \subset g(\mathbb{U})$.
A function $f(z) \in \mathcal{A}$ is said to be in the class $\mathcal{S}_{\delta}(\alpha)$ if it satisfies

$$
\begin{equation*}
\left(f^{\prime}(z)\right)^{\delta} \prec \frac{\alpha(1-z)}{\alpha-z} \quad(z \in \mathbb{U}) \tag{1.2}
\end{equation*}
$$

for some real $\alpha(\alpha>1)$ and $\delta(\delta>0)$. Also, a function $f(z) \in \mathcal{A}$ is said to be a member of the class $\mathcal{T}_{\delta}(\alpha)$ if it satisfies

$$
\begin{equation*}
\left(\frac{1}{f^{\prime}(z)}\right)^{\delta} \prec \frac{\alpha(1-z)}{\alpha-z} \quad(z \in \mathbb{U}) \tag{1.3}
\end{equation*}
$$

for some real $\alpha(\alpha>1)$ and $\delta(\delta>0)$.
To discuss our problem, we have to recall here the following lemma due to Jack [2] (also, due to Miller and Mocanu [3]).

Lemma 1 Let $w(z)$ be non-constant and analytic in \mathbb{U} with $w(0)=0$. If $|w(z)|$ attains its maximum value on the circle $|z|=r$ at the point $z_{0} \in \mathbb{U}$, then we have

$$
z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right),
$$

where k is real and $k \geqq 1$.

2 The class $\mathcal{S}_{\delta}(\alpha)$

Let us consider the sufficient condition for $f(z) \in \mathcal{A}$ to be in $\mathcal{S}_{\delta}(\alpha)$. Our first result is contained in

Theorem 1 If $f(z) \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)<\frac{\alpha-1}{2 \delta(\alpha+1)} \quad(z \in \mathbb{U}) \tag{2.1}
\end{equation*}
$$

for some $\alpha>1$ and $\delta>0$, then $f(z) \in \mathcal{S}_{\delta}(\alpha)$.
Proof Let us define $w(z)$ by

$$
\begin{equation*}
\left(f^{\prime}(z)\right)^{\delta}=\frac{\alpha(1-w(z))}{\alpha-w(z)} \quad(w(z) \neq \alpha) \tag{2.2}
\end{equation*}
$$

Then $w(z)$ is analytic in \mathbb{U} with $w(0)=0$. It follows that

$$
\begin{equation*}
\delta \operatorname{Re}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=\operatorname{Re}\left(\frac{z w^{\prime}(z)}{\alpha-w(z)}-\frac{z w^{\prime}(z)}{1-w(z)}\right)<\frac{\alpha-1}{2(\alpha+1)} \quad(z \in \mathbb{U}) \tag{2.3}
\end{equation*}
$$

for $\alpha>1$. Now, we suppose that there exists a point $z_{0} \in \mathbb{U}$ such that

$$
\operatorname{Max}_{|z| \leqq\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1
$$

Then, by Lemma 1 , we can write that $w\left(z_{0}\right)=e^{i \theta}$ and $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)=$ $k e^{i \theta}$. Thus we have that

$$
\delta \operatorname{Re}\left(\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right)=\operatorname{Re}\left(\frac{k e^{i \theta}}{\alpha-e^{i \theta}}-\frac{k e^{i \theta}}{1-e^{i \theta}}\right)
$$

$$
\begin{aligned}
= & \operatorname{Re}\left(\frac{k \alpha}{\alpha-e^{i \theta}}-\frac{k}{1-e^{i \theta}}\right) \\
& =\frac{k \alpha(\alpha-\cos \theta)}{\alpha^{2}+1-2 \alpha \cos \theta}-\frac{k}{2} .
\end{aligned}
$$

If $\alpha>1$, then we have that

$$
\delta \operatorname{Re}\left(\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right) \geqq \frac{k(\alpha-1)}{2(\alpha+1)} \geqq \frac{\alpha-1}{2(\alpha+1)}
$$

which contradicts (2.1). Therefore, we say that there is no $z_{0} \in \mathbb{U}$ such that $\left|w\left(z_{0}\right)\right|=1$. This means that $|w(z)|<1$ for all $z \in \mathbb{U}$, that is, that

$$
\left(f^{\prime}(z)\right)^{\delta} \prec \frac{\alpha(1-z)}{\alpha-z} \quad(z \in \mathbb{U})
$$

This completes the proof of the theorem.
Corollary 1 If $f(z) \in \mathcal{A}$ satisfies the condition in Theorem 1, then

$$
\begin{equation*}
\left|\left(f^{\prime}(z)\right)^{\delta}-\frac{\alpha}{\alpha+1}\right|<\frac{\alpha}{\alpha+1} \quad(z \in \mathbb{U}) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left(f^{\prime}(z)\right)\right|<\frac{\pi}{2 \delta} \quad(z \in \mathbb{U}) \tag{2.5}
\end{equation*}
$$

Proof Since $f(z) \in \mathcal{S}_{\delta}(\alpha)$, there exists an analytic function $w(z)$ with $w(0)=0$ and $|w(z)|<1(z \in \mathbb{U})$ such that

$$
\left(f^{\prime}(z)\right)^{\delta}=\frac{\alpha(1-w(z))}{\alpha-w(z)} \quad(z \in \mathbb{U})
$$

Noting that

$$
|w(z)|=\left|\frac{\alpha\left(\left(f^{\prime}(z)\right)^{\delta}-1\right)}{\left(f^{\prime}(z)\right)^{\delta}-\alpha}\right|<1
$$

we obtain (2.4) and (2.5).
Remark 1 If $f(z) \in \mathcal{A}$ satisfies the inequality (2.5) with $\delta \geqq 1$, then we know that $f(z)$ is strongly close-to-convex of order $\frac{1}{\delta}$ in \mathbb{U}.

Example 1 Let us consider a function $f(z) \in \mathcal{A}$ given by

$$
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{\alpha-1}{2 \delta(\alpha+1)}\left(1-\frac{1+z}{1-z}\right)
$$

$$
=\frac{2(1-\alpha) z}{2 \delta(\alpha+1)(1-z)} \quad(z \in \mathbb{U})
$$

Since

$$
\operatorname{Re}\left(\frac{z}{1-z}\right)>-\frac{1}{2} \quad(z \in \mathbb{U})
$$

we see that

$$
\operatorname{Re}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)<\frac{\alpha-1}{2 \delta(\alpha+1)} \quad(z \in \mathbb{U})
$$

Thus the function $f(z)$ satisfies the condition (2.1) of Theorem 1. Noting that

$$
\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{1-\alpha}{\delta(\alpha+1)(1-z)}
$$

we have that

$$
f^{\prime}(z)=(1-z)^{\frac{\alpha-1}{\delta(\alpha+1)}},
$$

that is, that

$$
f(z)=\frac{1}{M+1}\left\{1-(1-z)^{M+1}\right\}
$$

where $M=\frac{\alpha-1}{\delta(\alpha+1)}$. Since

$$
\left(f^{\prime}(z)\right)^{\delta}=(1-z)^{\frac{\alpha-1}{\alpha+1}},
$$

$f(z)$ satisfies

$$
\left(f^{\prime}(z)\right)^{\delta} \prec \frac{\alpha(1-z)}{\alpha-z} \quad(z \in \mathbb{U})
$$

3 The class $\mathcal{T}_{\delta}(\alpha)$

Next, we derive the sufficient condition for $f(z) \in \mathcal{A}$ to be in the class $\mathcal{T}_{\delta}(\alpha)$.
Theorem 2 If $f(z) \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\frac{1-\alpha}{2 \delta(\alpha+1)} \quad(z \in \mathbb{U}) \tag{3.1}
\end{equation*}
$$

for some $\alpha>1$ and $\delta>0$, then $f(z) \in \mathcal{T}_{\delta}(\alpha)$.
Proof Defining the function $w(z)$ by

$$
\left(\frac{1}{f^{\prime}(z)}\right)^{\delta}=\frac{\alpha(1-w(z))}{\alpha-w(z)} \quad(w(z) \neq \alpha)
$$

we see that $w(z)$ is analytic in \mathbb{U} with $w(0)=0$. Therefore, we have that

$$
\begin{equation*}
\delta \operatorname{Re}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=\operatorname{Re}\left(\frac{z w^{\prime}(z)}{1-w(z)}-\frac{z w^{\prime}(z)}{\alpha-w(z)}\right)>\frac{1-\alpha}{2 \delta(\alpha+1)} \quad(z \in \mathbb{U}) \tag{3.2}
\end{equation*}
$$

Let us suppose that there exists a point $z_{0} \in \mathbb{U}$ such that

$$
\operatorname{Max}_{|z| \leqq\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1
$$

Then, we can write $w\left(z_{0}\right)=e^{i \theta}$ and $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)=k e^{i \theta}$. It follows that

$$
\begin{gathered}
\delta \operatorname{Re}\left(\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right)=\operatorname{Re}\left(\frac{k e^{i \theta}}{1-e^{i \theta}}-\frac{k e^{i \theta}}{\alpha-e^{i \theta}}\right) \\
=\frac{k}{2}-\frac{k \alpha(\alpha-\cos \theta)}{\alpha^{2}+1-2 \alpha \cos \theta} .
\end{gathered}
$$

If $\alpha>1$, then we see that

$$
\delta \operatorname{Re}\left(\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right) \leqq \frac{k(1-\alpha)}{2(\alpha+1)} \leqq \frac{1-\alpha}{2(\alpha+1)}
$$

which contradicts (3.1). This implies that there is no $z_{0} \in \mathbb{U}$ such that $\left|w\left(z_{0}\right)\right|=1$. Thus we conclude that $f(z) \in \mathcal{T}_{\delta}(\alpha)$.

Corollary 2 If $f(z) \in \mathcal{A}$ satisfies the condition in Theorem 2, then we have

$$
\begin{equation*}
\left|\left(\frac{1}{f^{\prime}(z)}\right)^{\delta}-\frac{\alpha}{\alpha+1}\right|<\frac{\alpha}{\alpha+1} \quad(z \in \mathbb{U}) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left(f^{\prime}(z)\right)\right|<\frac{\pi}{2 \delta} \quad(z \in \mathbb{U}) \tag{3.4}
\end{equation*}
$$

Remark 2 If $f(z) \in \mathcal{A}$ satisfies the inequality (3.4) with $\delta \geqq 1$, then $f(z)$ is strongly close-to-convex of order $\frac{1}{\delta}$ in \mathbb{U}.

Example 2 Let $f(z) \in \mathcal{A}$ be given by

$$
\begin{aligned}
& \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{1-\alpha}{2 \delta(\alpha+1)}\left(1-\frac{1+z}{1-z}\right) \\
& =\frac{2(\alpha-1) z}{2 \delta(\alpha+1)(1-z)} \quad(z \in \mathbb{U}) .
\end{aligned}
$$

Then $f(z)$ satisfies

$$
\operatorname{Re}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\frac{1-\alpha}{2 \delta(\alpha+1)} \quad(z \in \mathbb{U})
$$

which is the condition (3.1) of Theorem 2. It follows that

$$
\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{\alpha-1}{\delta(\alpha+1)(1-z)}
$$

so that,

$$
f^{\prime}(z)=(1-z)^{\frac{1-\alpha}{\delta(\alpha+1)}} .
$$

Therefore, we have that

$$
f(z)=\frac{1}{N+1}\left\{1-(1-z)^{N+1}\right\}
$$

where $N=\frac{1-\alpha}{\delta(\alpha+1)}$. Thus, we conclude that $f(z)$ satisfies

$$
\left(\frac{1}{f^{\prime}(z)}\right)^{\delta}=(1-z)^{\frac{\alpha-1}{\alpha+1}}
$$

which implies that

$$
\left(\frac{1}{f^{\prime}(z)}\right)^{\delta} \prec \frac{\alpha(1-z)}{\alpha-z} \quad(z \in \mathbb{U}) .
$$

In view of Corollary 1 and Corollary 2, we consider the following open problem.

Open Problem Corollary 1 gives us that $f(z)$ satisfies

$$
\operatorname{Re}\left(f^{\prime}(z)\right)^{\delta}>0 \quad(z \in \mathbb{U})
$$

Please find some conditions such that Theorem 1 to be

$$
\operatorname{Re}\left(f^{\prime}(z)\right)^{\delta}>\beta \quad(z \in \mathbb{U})
$$

where $0 \leqq \beta<1$. Also, by means of Corollary 2 , please find some conditions such that Theorem 2 to be

$$
\operatorname{Re}\left(\frac{1}{f^{\prime}(z)}\right)^{\delta}>\beta \quad(z \in \mathbb{U})
$$

where $0 \leqq \beta<1$.

References

[1] P. L. Duren, Univalent Functions, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
[2] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. 3(1971), 469 - 474.
[3] S. S. Miller and P. T. Mocanu, Second-order differential inequalities in the complex plane, J. Math. Anal. Appl. 65(1978), 289 - 305.

