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Abstract

The aim of this paper is to solve the second order neutral delay
differential equations (NDDEs) based on seventh C3-spline collocation
methods with three parameters c1,co,c3 € (0,1). It is shown that the
proposed methods for second order NDDEs possess a convergence rate
of order seven if :

1—cy —co—c3+cica+cic3+ cacs — 2cic9c3 < 0.

Numerical results illustrating the behavior of the methods when
faced with some difficult problems are presented and the numerical re-
sults are compared to those obtained by other methods.

Keywords: Second order neutral delay differential equations, Spline col-
location methods, Error analysis and order of convergence.

1 Introduction

The purpose of this paper is to investigate the existence, uniqueness, error
analysis and order of convergence of C*-spline methods [4], [5] when applied to
the numerical solution of the second order neutral delay differential equations
(NDDEs):

y'(t) = [t yt),y(7(1), ¥ (7(1))), to <t <ty, } (1)
y(t) =9(t), y'{)=¢(), t<t,

where f € C7([tg,t7] x R x R x R) is Lipschitiz continuous with respect to y.
The function 7(¢) <t, t € [ty,t], is usually called the delay function. For
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some t >t it can be seen that ¢ —7(t) <ty an initial function ¢(¢) is needed
for the wellposedness of the problems rather than a simple initial value yy, as
happens for ordinary differential equations (ODEs).

Spline collocation methods for solving second order neutral delay differen-
tial equations are studied in [1], [2]. Quintic C*-spline methods with three
points for solving ordinary initial value problems were studied in [8]. More de-
tailed analysis for both the convergence and absolute stability was also given.
Spline collocation methods with four points for solving first and second order
ordinary differential equations were presented in [4], [5].

2 Description of the methods

Consider the initial value problem (1) for second order NDDEs. The spline
methods use four-collocation points ¢; 1., = t;1 +cjh, j= 1(1)4, in each
subinterval [t;_1,%;], i = 1(1)N, with

O<cg<c<ceg<l (2)

and h = (t; —to)/N is the constant stepsize, where ¢y =1, ty = t;.

Denote by t; = tg+ ih, i = 0(1)N, the grid points of the uniform partition
of [to, t] into subintervals I; = [t;_1,%;], i = 1(1)N.

A seventh C3-spline function S(t) can be represented on each I;, [4] by

S(t) = €(206° + 1082 +4¢ + 1)S), + (106* + 4¢2 + £) S

~—

+ (26% 4 352)52?2)1 + (253)5531]%4 (2067 + 1067 + 4¢' +1)5”

(08 442 4 )5 4 (267 4 €SP — (2650, )
where
_ ([t —tia) b_q
and

7

S& =n3s"(t;),  i=0(1)N.

)

SO —5it), SV = hs(t), S2 = h29"(t), }

Differentiating (3) two times, we have
hS'(t) = &3[(—1406%)8Y) + (—70¢% + 667 + 3¢ + 1)S1Y)
+ (-4 + 362 + )82 + (_6753 - ;8)553)1]
+ €[(1406%)8 + (~708" + 667 + 3¢’ + 1)s™

- <—14§’3+35’2+5’>s§2’+<_67§'3+ié’%sfg)], (5)
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h2S"(t) = €2[(840€° — 4206%) S\, + (4206° — 240¢%) ST,
+(84€% — 57€2 + 26 + 1)SZ), + (7€° — 662 + €)Y
+€2[(340¢" — 4206) 5" — (420¢" — 240¢) SV
+ (84" - 57¢ + 26+ )SP - (167 - 662 + )57 (6)

We formally apply these methods to (1), for S(¢) to be satisfied by the four
collocation conditions:

S"(tic1te;) = ftimrweys S(tior4e;)s S(T(im11¢,)), S (T(tim14¢;))), (1)
j=1(1)4

in each subinterval [t;_1,;]. More precisely, denoting:
ficiro = flticig, S(ticiae), S(T(ticity)), S (T(tim144))),

0<¢<1,and ¢ =1 —¢;, we can write (7) as follows:

c2[(840¢ — 420¢7)S” + (240¢7 — 420%) SV

+(84¢F — 57¢7 + 26, + 1)SP + (=7c + 67 — &) S|

= c?[(420} — 840%) S\ + (240¢3 — 420¢}) S,

—(84¢} — 572 + 2¢; + )8, — (7} — 62 + ¢;)S%) |

0 ficise;,  J=1(1)4. (8)

Substituting S = h2f;, S®, = h2f,_,, into (8) and dividing by cF, we
get the equivalent recurrence formulae:
S;=AS; 1+ thii’
S =p2f i=101)N

(2

(9)
where A = MW, B= MH and

[ 840¢, —420 240 —420¢, 6-7d — L 17

1

M = | 840ch, —420 240 —420¢, 6—7ch— L

2

840c, —420 240 — 420, 6 —Tcy — L

3

420 — 840¢, 240 — 420¢, 6—Tc, —+

C1

W = | 420 — 840c¢; 240 — 420¢s 6 —Tco — -

co ?

420 — 840c5 240 — 420c;3 6 —Tcg — -

c3
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(57 —84c,— 2 - L L0 0 57—84ci—2 — 5 ]
Cc1 Cl clcl 01 C1
H=|57-84c-2-% 0 w0 B57-84c,—2—4 |,
2 272 2 2
| 5T-84e3 -2 -5 0 0 o 57-84c—2-14
3 373 3 3 -

S = (S, SV ST fo = (fiet, Fiovvens fiotvens Jiotvens Ji) T

It is easy to observe that S(7(ti—11¢;)) = ¢(7(ti—14c;)) When 7(ti_14,) < to,
and if 7(t;i_14c;) € [te—1,tk], & = 1(1)N, then S(7(t;_14;)) can be calculated
from (3):

S(T(tici4e;)) = 03-4 [(2063 + 1002- + 40]- + 1)5,20_)1 + (100? + 4C§ + cj)S,gl_)l
+ (26 + —c )Sk L+ (= c?)S,(:’_)l}+cﬂ(QOc;3 +10¢} + 4¢; + 1)s”

1 1
— (10} + 4} + ¢S + (2 + 3e)SE — (S,
j =114

¢,< ( i— 1+cj)) When T(ti—1+0j) S to, and lf

Also S'(7(ti—14e;)) =
, k= 1(1)N, then S'(7(t;_14;)) can be calculated from

(7
T(tic14e;) € [the 1,tk]
(5):
hS'(T(ticite;)) = c;.3[(—140c VS| + (—70¢2 + 62 + 3¢; + 1)SLY,
—7, 1
+ (—14¢) + 3¢ + cj)S,(f_)l (?c + ¢ ])5(3) ]
A[(140¢%) S + (=70} + 67 + 3¢ + 1)}

1
76’3 + =" )5(3)},

— (—14c? 3¢ 1+ ¢)SP + (= ; 54

j=1(1)4.

If 0 < ¢ < <c3 <1, then A is nonsingular, [5] because

1) _ c1—1)(c2—1)(e3—1)
|M ’ 25200(102 c1)2(c3—c13)(c3—62) # 0,

|A| (e1— 1)(02 1) 1 (33 % 0

cicacs

Notice that f. depends on S;,.5;; via (9). One proves in standard way,
that (9) possesses a unique solution S; for arbitrary given S; ; if h € [0, ho|
with hg > 0 depending on ¢y, ¢, c3 and the Lipschitz constant of f.
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3 Error analysis and order of convergence

In this section we consider the convergence of the methods (4) and (7) with
initial function ¢(t). To find a numerical approximation S(t) to the exact
solution y, define S(t) = ¢(t) and S'(t) = ¢'(t) for t < ty. The spline methods
produce function values S(¢;) as approximation to y(¢;). The unknown values
y((1), y'(7(t)) may be replaced by S(r(t)), S'(7(t)) respectively (cf. [7]).
Then the problem is reduced to the numerical solution of an initial value
problem of ordinary differential equations. This case has been studied in [5].
Thus, we consider the case

y'(t) = f{ty(t), y(r(t), y' (7(1))), 7(t) = to.

Theorem 3.1 Let 0 < ¢; < ¢a < ¢3 < 1 then, the methods (4) and (7) are
stable if and only if

1-— C1 — Cy — C3 + C1Cy + C1C3 + C2C3 — 2C1C2€3 < 0 (10)
For the proof of this theorem see [5]. The relation (10) is satisfied for all values
¢, 1 =1,2,3 listed in Table 1.

Table 1: Some intervals, which satisfy (10)

01<¢ 0.7500000 < ¢ < c3 <1
02<¢ 0.6666667 < co < c3 <1
03< 0.6043561 < ¢y < cg <1
04 < 0.5505103 < cs <3 <1
0.5< ¢ 0.5000000 < ¢ < c3 <1

Theorem 3.2 Let f € C"([to,ts] X R X R x R), then the methods (4) and

(7) are consistent and are of order seven.

Proof. Let 7(t;_11.,) € [tx—1, %], then we have the discretization error

y(t:) y(ti-1)
d; = hy/(ti) —A hy/(ti—l)
h3y/// (tz) hSy/// (tifl)

f( i— 17pl(tl ) p (
ficivers Piltioire ), Pe(te—1e)s Pi(th-14c1))
—h*B Jitvens Pilticires)s PE(te—14es)s P (Br14e2)) |
Jictess Pilticires)s P(te—14es)s P (Br—14es)
S, pi(ts), pi(te), P (k)

D (te-1), Dy (tk—1))

it
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i=1(1)N, k <i, where
pit) = €*[(206° + 108 +4€ + Dy(ti1) + (106 + 48 + &)y (ti1)h
+ (28 + ;52)?/'(1%1)712 + (éfg)y”’(til)h?’]
+ €'](20¢°% +1087 + 4¢' + Dy(t:) — (106° + 467 + &)y (t:)h
b+ € (R — (G ]
is the seventh Hermite interpolation polynomial which interpolates y, o/, ", "
att =t; and t = ¢;, i = 1(1)N. And
hpi(t) = & |(—1406")y(t: 1) + (=708 + 66> + 3¢ + 1)y (t;-1)h
b (-1 38+ Oy )+ (G + SN )]
+ (1408 y(t:) + (~T0€% + 667 + 3’ + 1)y (t:)h
— (SR B+ ) I+ (L€ 6 ()]

for each subinterval I; = [t;_1,t;].
Since

Ipi(t) —y(t)| < Lh®,  tel;, n=1(1)N,
it follows that

di:dﬂ’O(hg)» 1= 1(1)N>

where
Yy (tio1)
: y(t:) y(ti-1) Y'(tic14er)
di=| h/(t:) | —A| hy(tic1) | —hB*| y"(tic1se,)
h3ym(ti) h3y”/(ti71) y”(tiflJrCs)
Yy ()

Now using Taylor’s expansion

8
y(t) = q7(t) + gy(g) (tifl)fs + O(h9>, te [tifl, ti], Y € Cg[to, tf]

and observing that the methods are exact for polynomials of degree < 7 (that
means for y = ¢; we have d = d; = 0) we deduce, according to Lemma 8.11
(cf. (8.16)) in [6], that the methods are thus consistent and are of order seven
for all ¢y, ¢9, c3 listed in Table 1.
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Theorem 3.3 Let f € C7([to, t;]x Rx RX R) be Lipschitz continuous. Then
the spline approzimation S(t) given by (4) and (7) converges to the solution
y(t) of (1.1) as h — 0 whenever (10) is fulfilled and

lim A5y = yD k), j=0(1)3 (11)

Furthermore, the convergence order is seven, i.e., we have

(12)
)~ BSOS Ll i=10)N

whenever the initial values (4) satisfy (12) (with i=0). In addition, the follow-
ing global error estimates hold true:

9 (t) = S )< Lp™, G =0(1)6, t€ [to,t]. (13)
Proof. Using Lipschits condition, we have

£t y(t:),y(r (1)), 4/ (7(1:))) = (&, S(ts), S(r(t:)), S'(7(1:)))

L{ly(t:) = S(t:)| + ly(r(t:) = S(r(t:)] + ¢/ (r(:)) = S'(7(t:))|}
< L{Loh™ + Loh" + Loh"™} = L1,

ly" (t:) — S"(t:)]
<

where Ly = 3LL.

EL-Hawary and Mahmoud [4], [5] gave a more detailed analysis for both the
absolute stability properties of the seventh C3-spline methods. They showed
that for 0.888035 < ¢; < ¢g < ¢3 < 1 the methods are absolutely stable (see
Table 2), and increase regions of absolute stability when ¢y, co,c3 — 17,

Table 2: Some absolute stability intervals for the proposed methods

05 < ¢ 0.99999 < ¢y <3 <1

0.6 < 0981118 < ey < ez <1
0.7< 0.956982 < co < c3 <1
0.8< ¢ 0.925398 < co <3 <1
0.879 < ¢ 0.892286 < ¢y <3 <1
0.888 < ¢4 0.888030 < ¢y <3 <1

0.888035 < ¢4 0.888035 < cp <3 <1
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4 Numerical results

In this section we present the results of some numerical experiments on apply-
ing the spline collocation method. Numerical results have been obtained and
compared with other methods. All computations in this section were carried

by MATLAB 7.

Problem 1: Consider the following second order NDDEs (cf. [2])

y'(t) = |t— 3y e-1),  telo1]

y(t)=1, t<0.
The analytical solution is

—st3+ 12+ 1, te[0,1/2],
y(t) =
te[1/2,1].

143 142 1 23
U0 — gt + 1t + 50

In Table 3 we give the absolute error between the analytical solution and
the numerical results by spline collocation methods and comparison between
present method and the spline collocation method given in [2] where s4 €
Sy, 84 € C? and S. € 84,8. € C3.

Table 3: Test results for problem 1, with ¢; = 0.7,
co = 0.96, c3 = 0.998
ti  esq [2] esq [2]  Present method
h=0.1 h=0.1 h=0.1

0.1 1.0E-04 1.4E-04 4.440E-16
0.2 3.1E-05 9.4E-05 1.776E-15
0.3 2.7E-05 29E-04 2.442E-15
0.4 6.8E-05 1.0E-03 2.220E-16
0.5 9.1E-05 2.0E-03 4.662E-15
0.6 1.0E-04 3.3E-03 8.215E-15
0.7 1.4E-04 4.3E-03 1.998E-14
0.8 1.9E-04 5.0E-03 2.930E-14
0.9 25E-04 5.4E-03 4.196E-14

1 3.3E-04 5.5E-03 4.263E-14

Problem 2: Consider the following second order NDDEs

/(1) = —(cos(t) + sin(t)y(t) — (6 + sin(t))y'(¢) + sint — )y(t — %)
+y/(t — §) — bsin(t)exp(cos(t)), t >0,
y(t) = exp(cos(t)), t<0.
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The exact solution of the problem is y(t) = exp(cos(t)).
In Table 4 we give the absolute error between the exact solution and the
numerical results by present method.

Table 4: Maximum absolute error for the solution of
problem 2, with ¢; = 0.7, ¢ = 0.957, ¢3 = 0.96

t; Present method Present method
h=0.2 h=0.1
1 1.159E-09 2.323E-12
2 5.807E-10 5.078E-12
3 4.782E-10 1.241E-12
4 1.763E-09 2.256E-11
5 4.420E-09 7.684E-11
6 1.293E-08 1.976E-10
7 5.370E-09 1.121E-10
8 1.932E-09 6.160E-11
9 2.577E-10 5.444FE-11
10 1.256E-09 9.261E-11

Problem 3: Consider the following second order DDEs (cf. [3])

{ y'(t) = —gy(t) + gyt —m),  te[0,q],
y(t) =1 — sin(t), —m<t<0.

The exact solution is y(t) = 1 — sin(t).
In Table 5 we compared the absolute error of the present method and cubic

spline functions given in [3] at the end point t = 7, h = 555 (1 = 0(1)6).

Table 5: Test results for problem 3, with
C1 = 057 Co = 095, C3 = 0.98
cubic spline [3] Present method

i h=m/(10 % 2¢) h=m/(10 % 2¢)
0 1.84E-02 3.738E-09
1 4.62E-03 5.772E-11
2 1.16E-03 1.032E-12
3 2.89E-04 6.771E-13
4 7.23E-05 2.583E-12
) 1.81E-05 1.038E-11
6 4.52E-06 4.233E-11
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5

Open Problem

It can be easily to introduce the notions of error analysis and order of conver-
gence, Spline collocation methods for solving nth order neutral delay differen-
tial equations.
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