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Abstract

In this work, we construct sharp upper and lower bounds
for the Euler constant e. For obtaining these bounds, we use
Lobotto and Gauss-Legendre quadrature rules.
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The number e is one of the most indispensable numbers in mathematics. This
number is also referred to as Euler’s number or Napier’s constant. In this work,
we develop sharp upper and lower bounds for this number. We derive these
bounds from the Lobatto and Gauss-Legendre quadrature rules. Classically
the number e is defined as follows:

e
def
= lim

n→∞

(
1 +

1

n

)n

(1)

[see 1–4; 9, and references there in]. Figure 1 presents a graph of the function
1/x. The area under the graph, and between the vertical lines x = n and
x = n+ 1 is given by the integral:

n+1∫
n

1

x
dx

For obtaining upper and lower bounds for the number e, we approximate this
integral by quadrature rules. Lobatto quadrature is used for forming a lower
bound for the number e. While, Gauss-Legendre quadrature is used for forming
a upper bound for the number e. The exact value of this integral is ln(1 + 1/n).
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Figure 1: Graph of f(x) =
1

x
. The shaded area is equal to ln(1 + 1/n).

Let us briefly discuss about the Lobatto quadrature [5–7]. Integral of a function
f(x) between the limits a and b through n points Lobatto quadrature is given
as:

b∫
a

f(x) dx = k
n∑

i=1

ωi f(c+ k xi)− E (2)

Here, ωi, xi and E are weights, abscissa and error of the quadrature, respec-
tively. The error is given as:

E =
n(n− 1)322n−1 [(n− 2)!]4

(2n− 1) [(2n− 2)!]3
f (2n−2)(ξ) (3)

Here, ξ ∈ [a, b]. For the function f(x) = 1/x, the even order derivative f (2n−2)(ξ)
is:

f (2n−2)(ξ) =
(2n− 2)!

ξ2n−1

and which is strictly positive for all ξ > 0. Thus error is positive for a positive
interval of integration. Consequently for positive interval of integration the
equation (2) results in the following inequality:

b∫
a

1

x
dx < k

n∑
i=1

ωi f(c+ k xi) (4)
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The constants k and c are defined from a and b as follows:

c =
a+ b

2
and k =

b− a
2

For our purpose a = n and b = n+ 1 (see figure 1), thus:

c =
2n+ 1

2
and k =

1

2

For Lobatto quadrature, boundary abscissas are fixed. Thus,

x1 = n and xn = n+ 1

The free abscissas xi for i = 2, 3, . . . , n−1 are the roots of P ′n−1(x). Here, Pn(x)
is a Legendre polynomial of degree n [7]. We are using the Maple software
package for finding the free abscissa [7] through the following commands:

1. First we specify the Legendre polynomial Pn(x) of degree n:

Pn := simplify(LegendreP(n,x));

2. Then we find the derivative P ′n(x) of the above polynomial:

dPn := diff(Pn,x);

3. Finally the free abscissas xi are obtained by solving P ′n(x) = 0:

solve(dPn=0,x);

The weights of the free abscissas are given as:

ωi =
2

n (n− 1)P 2
n−1(xi)

while the weights for the fixed abscissas are:

ωi =
2

n (n− 1)

Let us now find a lower bound for the number e. For seven point Lobotto
quadrature rule, the weights and abscissa for the interval of integation (see
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figure 1) are given as follows:

w1 =
256

525
w2 =

43293

175 (3 + 7
√

15)2
w3 =

43293

175 (3 + 7
√

15)2

w4 =
43293

175 (−3 + 7
√

15)2
w5 =

43293

175 (−3 + 7
√

15)2
w6 =

1

21
and w7 =

1

21

x1 = 0 x2 = −
√

495 + 66
√

15

33
x3 =

√
495 + 66

√
15

33

x4 = −
√

495− 66
√

15

33
x5 =

√
495− 66

√
15

33
x6 = 1 and x7 = −1

Substituting these weights and abscissa in the Lobatto quadrature inequality
(4) and replacing the left hand side by the exact integral gives:

ln

(
1 +

1

n

)
<

27720n6 + 83160n5 + 93030n4 + 47460n3 + 10689n2 + 819n+ 5

27720n7 + 97020n6 + 132300n5 + 88200n4 + 29400n3 + 4410n2 + 210n

ln

(
1 +

1

n

)
<

1

n

 1

1 +
13860n5 + 39270n4 + 40740n3 + 18711n2 + 3591n+ 205

27720n6 + 83160n5 + 93030n4 + 47460n3 + 10689n2 + 819n+ 5



1 > ln

(
1 +

1

n

)
n

[
1 +

13860n5 + 39270n4 + 40740n3 + 18711n2 + 3591n+ 205

27720n6 + 83160n5 + 93030n4 + 47460n3 + 10689n2 + 819n+ 5

]
Now using the property: a > ln b ⇒ ea > b, we get:

e >

(
1 +

1

n

)n

241+
13860n5 + 39270n4 + 40740n3 + 18711n2 + 3591n+ 205

27720n6 + 83160n5 + 93030n4 + 47460n3 + 10689n2 + 819n+ 5

35

This is our lower bound for the number e.

For n = 100, the right hand side of the above inequality gives

2.71828182845904523536028747135239335

which is e accurate to thirty one decimal places.

For deriving an upper bound, we use the Gauss-Legendre quadrature. Let
us now discuss about the Gauss-Legendre quadrature [8]. Integral of a function
f(x) between the limits a and b through n points Gauss-Legendre quadrature
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is given as follows:

b∫
a

f(x) dx = k

n∑
i=1

ωi f(xi) + E (5)

Here, ωi, xi and E are weights, abscissa and error of the quadrature, respec-
tively. The error is given as:

E =
22n+1 (n!)4

(2n+ 1) [(2n!)]3
f 2n(ξ) (6)

Here, ξ ∈ [a, b]. For the function f(x) = 1/x, f (2n)(ξ) is given as follows:

f (2n)(ξ) =
(2n)!

ξ2n+1

and which is strictly positive for all ξ > 0. Thus the error is positive for a posi-
tive interval of integration. Consequently for a positive interval of integration,
equation (5) results in the following inequality:

b∫
a

1

x
dx > k

n∑
i=1

ωi f(xi) (7)

Weights and abscissa for a five point Gauss-Legendre quadrature are taken
from the literature [8]. The weights wi and the points xi are given as follows:

w1 =
128

225
x1 = n+

1

2

w2 =
161

450
+

13

900

√
70 x2 = n+

1

2
+

1

42

√
245− 14

√
70

w3 =
161

450
+

13

900

√
70 x3 = n+

1

2
− 1

42

√
245− 14

√
70

w4 =
161

450
+

13

900

√
70 x4 = n+

1

2
+

1

42

√
245 + 14

√
70

w5 =
161

450
− 13

900

√
70 x5 = n+

1

2
− 1

42

√
245 + 14

√
70

Substituting these weights and abscissa in the Gauss-Legendre inequality (7)
gives:
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ln

(
1 +

1

n

)
>

7560n4 + 15120n3 + 9870n2 + 2310n+ 137

7560n5 + 18900n4 + 16800n3 + 6300n2 + 900n+ 30

>
1

n

 1

1 +
3780n3 + 6930n2 + 3990n+ 763 + 30n−1

7560n4 + 15120n3 + 9870n2 + 2310n+ 137



⇒ e <

(
1 +

1

n

)n

241+
3780n3 + 6930n2 + 3990n+ 763 + 30n−1

7560n4 + 15120n3 + 9870n2 + 2310n+ 137

35
(8)

Which is our upper bound for the number e. For n = 100 the right hand side
of the above inequality gives:

2.718281828459045235360287508375

and which is e accurate to twenty five decimal places.

Open Problem and Suggestions

The number e is one of the most fundamental numbers in mathematics. The
number e is irrational. Thus it is not a ratio of integers. And, it is transcen-
dental. Thus it is not a root of any polynomial with integer coefficients. It is
not known whether the following numbers are transcendental:

ee and πe

Classically the number e is defined as [see 1–4; 9, and references there in]:

e
def
= lim

n→∞

(
1 +

1

n

)n

(9)

Let us define the number e through the limit:

e = lim
n→∞

(
1 +

1

n

)n

241+
13860n5 + 39270n4 + 40740n3 + 18711n2 + 3591n+ 205

27720n6 + 83160n5 + 93030n4 + 47460n3 + 10689n2 + 819n+ 5

35

(10)

Let us see the motivation behind the above result. Let us compute e from
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these two definitions for n = 100. From the classical definition, we get e =
2.704813829. Which is accurate only till 2 decimal places. While from the new
definition (10), we get

2.71828182845904523536028747135239335

which is e accurate to thirty one decimal places.
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