
Int. J. Open Problems Compt. Math., Vol. 2, No.2, June 2009

Lacunary Statistical Convergence

on Probabilistic Normed Spaces

Mohamad Rafi Segi Rahmat

School of Applied Mathematics,
The University of Nottingham Malaysia Campus,

Jalan Broga, 43500 Semenyih,Selangor Darul Ehsan.
Mohd.Rafi@nottingham.edu.my

Abstract

In this paper, we study the concepts of lacunary statisti-
cal convergent and lacunary statistical Cauchy sequences in
probabilistic normed spaces and prove some basic properties.
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1 Introduction

Probabilistic normed (PN) spaces are real linear spaces in which the norm of
each vector is an appropriate probability distribution function rather than
a number. Such spaces were introduced by Šerstnev in 1963 [15]. In [1]
Alsina, Schweizer and Sklar gave a new definition of PN spaces which in-
cludes Šerstnev’s as a special case and leads naturally to the identification of
the principle class of PN spaces, the Menger spaces. In [2], the continuity
properties of probabilistic norms and the vector space operations (vector ad-
dition and scalar multiplication) are studied in details and it is shown that
a PN space endowed with the strong topology turns out to be a topological
vector space under certain conditions. A detailed history and the development
of the subject up to 2006 can be found in [14]. Şençimen and Pehlivan [13]
extended the results in paper [2] to a more general type of continuity, namely,
the statistical continuity of probabilistic norms and vector space operations
via the concepts of strong statistical convergence (see also [12, 8, 7]).

Since the concept of Lacunary statistical convergence is a generalization of
the concept of statistical convergence (see [4, 5, 10]), it seems reasonable to
think if the concept of lacunary statistical convergence and lacunary statistical
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Cauchy sequences (see [3, 6, 9]) via the concepts of lacunary statistical strong
convergence and lacunary statistical Cauchy can be extended to probabilistic
normed spaces and in that case how the basic properties are effected. Since the
study of convergence in PN spaces is fundamental to probabilistic functional
analysis, we feel that the concept of lacunary statistical convergence and lacu-
nary statistical Cauchy in a PN space would provide a more general framework
for the subject.

2 Preliminaries

We recall some basic definition and results concerning PN spaces, see [1, 11]. A
distance distribution function is a nondecreasing function F defined on R+ =
[0, +∞], with F (0) = 0 and F (+∞) = 1, and is left-continuous on (0, +∞).
The set of all distance distribution functions will be denoted by ∆+. The
elements of ∆+ are partially order by the usual pointwise ordering of functions
and has both a maximal element ε0 and a minimal element ε∞: these are given,
respectively, by

ε0(x) =

{
0, x ≤ 0,

1, x > 0.
and ε∞(x) =

{
0, x < +∞,

1, x = +∞.

There is a natural topology on ∆+ that is induced by the modified Lévy
metric dL (see, [11], Sec. 4.2). Convergence with respect to the metric dL is
equivalent to weak convergence of distribution functions, i.e., {Fn} in ∆+ and
F in ∆+, the sequence {dL(Fn, F )} converges to 0 if and only if the sequence
{Fn(x)} converges to F (x) at every point of continuity of the limit function
F . Moreover, the metric space (∆+, dL) is compact and complete.

A triangle function is a binary operation τ on ∆+ that is commutative,
associative, non-decreasing in each place, and has ε0 as an identity element.
Continuity of triangle function means uniform continuity with respect to the
natural product topology on ∆+ ×∆+.

Definition 2.1 A probabilistic normed space (briefly, a PN space) is a
quadruple (V, η, τ, τ ∗) where V is a real linear space, τ and τ ∗ are continuous
triangle functions, and, η be is a mapping from V into the space of distribution
functions ∆+ such that - writing Np for η(p)-for all p, q in V , the following
conditions hold:
(N1) Np = ε0 if and only if p = θ, the null vector in V ,
(N2) N−p = Np,
(N3) Np+q ≥ τ(Np, Nq),
(N4) Np ≤ τ ∗(Nαp, N(1−α)p), for all α in [0, 1].
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It follows from (N1), (N2), (N3) that if F : S × S → ∆+ is defined via

F(p, q) = Fpq = Np−q, (1)

then (V,F , τ) is a PM space ([11], Chap. 8). Furthermore, since τ is continu-
ous, the system of neighborhoods {Np(t) : p ∈ V, t > 0}, where

Np(t) = {q ∈ V : dL(Fpq, ε0) < t} = {q ∈ V : Fpq(t) > 1− t} (2)

determine a first-countable and Hausdorff topology on V , called the strong
topology. Thus, the strong topology can be completely specified in terms of
the convergence of sequences. Throughout this paper, V denotes a PN space
endowed with the strong topology, written additively, which satisfies the first
axiom of countability.

A sequence {pn} in V converges strongly to a point p ∈ V , and we write
limn pn = p, if for any t > 0 there is a positive integer m such that pn ∈ Np(t)
for all n ≥ m. Similarly, a sequence {pn} in V is a strong Cauchy sequence
if for any t > 0 there is a positive integer i such that (pn, pm) ∈ U(t) for all
n,m ≥ i, where

U(t) = {(p, q) ∈ V × V : dL(Fpq, ε0) < t}

for any t > 0 is called the strong vicinity(see [11]).

Definition 2.2 [8] A sequence {pk} in V is statistically strong convergent
to θ the null vector in V provided that for every t > 0

lim
n→∞

1

n
|{k ≤ n : dL(Npk

, ε0) ≥ t}| = 0.

In this case we write S − limk pk = θ or pk → θ(S).

We shall use S to denote the set of all statistically strong convergent sequences
in V . Of course, there is nothing special about θ as a limit; if one wishes to
consider the convergence of the sequence {pn} to the vector p, then it suffices
to consider the sequence {pn − p} and its convergence to θ.

The statistical strong Cauchy sequence in PN space can be defined in a
similar way as

Definition 2.3 A sequence {pk} in V is a statistically strong Cauchy se-
quence if there there exists a positive integer m such that

lim
n→∞

1

n
|{k ≤ n : (pk − pm) /∈ U(t)}| = 0.
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3 Lacunary statistical convergence and some

basic properties

By a lacunary sequence ϑ = {kr}; r = 0, 1, 2, · · · , where k0 = 0, we means
an increasing sequence of nonnegative integers with hr = kr − kr−1 → ∞ as
r → ∞. The interval determined by ϑ will be denoted by Ir = (kr−1, kr] and
qr = kr

kr−1
. A real number sequence {xk} is said to be lacunary statistically

convergent (briefly Sϑ-convergent) to a ∈ R provided that for each t > 0

lim
r→∞

1

hr

|{k ∈ Ir : |xk − a| ≥ t}| = 0.

A sequence {xk} is a cauchy sequence if there exists a subsequence {xk′(r)} of
{xk} such that k′(r) ∈ Ir for each r, limr→∞ xk′(r) = l and for every t > 0

lim
r→∞

1

hr

|{k ∈ Ir : |xk − xk′(r)| ≥ t}| = 0.

Using these concepts, we extend the lacunary statistical convergence and
lacunary statistical Cauchy to the setting of sequences in a PN space endowed
with the strong topology as follows.

Definition 3.1 Let ϑ be a lacunary sequence. A sequence {pk} in V is said
to be lacunary statistically strong convergent (briefly, Sϑ-strong convergent) to
θ in V if for each t > 0,

lim
r→∞

1

hr

|{k ∈ Ir : dL(Npk
, ε0) ≥ t}| = 0 (3)

or, equivalently,

lim
r→∞

1

hr

|{k ∈ Ir : pk /∈ Nθ(t)}| = 0, (4)

where Nθ(t) = {p ∈ V : Np(t) > 1 − t} is the neighborhood of θ. In this case,
we write Sϑ − lim pk = p or pk → θ(Sϑ), and we will call θ, as the lacunary
strong limit of the sequence {pk}. We shall use Sϑ to denote the set of all
lacunary strong convergent sequences from V .

Of course, there is nothing special about θ as a limit; if one wishes to
consider the Sϑ-strong convergent of the sequence {pn} to the vector p, then
it suffices to consider the sequence {pn− p} and its Sϑ-strong convergent to θ.

Theorem 3.2 Let ϑ be a lacunary sequence. If {pk} is a Sϑ-strong conver-
gent sequence in V , then its limit is unique.



Lacunary Statistical Convergence on PN spaces 289

Proof. Suppose the sequence {pk} is Sϑ-strong convergent to two distinct
points p and q (say). Since p 6= q, we have Np−q 6= ε0, whence t = dL(Np−q, ε0) >
0. Set

K1 = {k ∈ Ir : p− pk ∈ Nθ(t/2)},
K2 = {k ∈ Ir : pk − q ∈ Nθ(t/2)}.

Then, clearly limr→∞
|K1∩K2|

hr
= 1, so K1 ∩ K2 is a nonempty set. Let m ∈

K1 ∩ K2, then dL(Np−pm , ε0) < t/2 and dL(Npm−q, ε0) < t/2. By uniform
continuity of τ , we have

dL(Np−q, ε0) ≤ dL(τ(Np−pm , Npm−q), ε0) < t = dL(Np−q, ε0),

a contradiction to the fact that K1 ∩K2 is a nonempty set. Therefore p = q
and the proof is completed. 2

Theorem 3.3 For any lacunary sequence ϑ, Sϑ ⊆ S if lim supr qr < ∞.

Proof. If lim supr qr < ∞ then there exists a γ > 0 such that qr < γ for all
r. Let Sϑ − limk pk = θ. We are going to prove that S − limk pk = θ. Set
Kr = |{k ∈ Ir : pk /∈ Nθ(t)}|. Then, by definition, for a given t > 0, there
exists r0 ∈ N such that

Kr

hr

<
t

2γ
for all r ≥ r0.

Let M = max{Kr : 1 ≤ r ≤ r0} and let n ∈ N such that kr−1 < n ≤ kr. Then
we can write

1

n
|{k 6 n : pk /∈ Nθ(t)}| 6

1

kr−1

|{k 6 kr : pk /∈ Nθ(t)}|

=
1

kr−1

{K1 + K2 + · · ·+ Kr0 + · · ·+ Kr}

6
M

kr−1

· r0 +
t

2γ
· qr

6
M

kr−1

· r0 +
t

2

and the result follows immediately. 2

Theorem 3.4 For any lacunary sequence ϑ, S ⊆ Sϑ if lim supr qr > 1.

Proof. If lim supr qr > 1 then there exists a ξ > 0 and a positive integer r0

such that qr ≥ 1 + ξ for all r ≥ r0. Hence for r ≥ r0,

hr

kr

= 1− kr−1

kr

=
ξ

1 + ξ
.
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Let S − limk pk = θ. Then for every t > 0 and for every r ≥ r0, we have

1

kr

|{k ≤ kr : pk /∈ Nθ(t)}| ≥ 1

kr

|{k ∈ Ir : pk /∈ Nθ(t)}|

≥ ξ

1 + ξ
· 1

hr

|{k ∈ Ir : pk /∈ Nθ(t)}|.

Therefore Sϑ − limk pk = θ. 2

Corollary 3.5 Let ϑ be a lacunary sequence, then S = Sϑ if

1 < lim inf
r

qr ≤ lim sup
r

< ∞.

Proof. By combining the Theorem 3.3 and Theorem 3.4. 2

Definition 3.6 Let ϑ be a lacunary sequence. A sequence {pk} in V is said
to be Sϑ-strong Cauchy sequence if there exists a subsequence {pk′(r)} of {pk}
such that k′(r) ∈ Ir for each r, limr→∞ pk′(r) = p and for every t > 0

lim
r→∞

1

hr

|{k ∈ Ir : pk − pk′(r) /∈ Nθ(t)}| = 0, (5)

Theorem 3.7 The sequence {pk} in V is Sϑ-strong convergent if and only
if it is Sϑ-strong Cauchy sequence in V .

Proof. Let Sϑ − limk pk = θ and write

Kn = {k ∈ N : pk ∈ Nθ(1/n)},

for each n ∈ N. Then, obviously Kn+1 ⊆ Kn for each n and limr→∞
|Kn∩Ir|

hr
= 1.

This implies that there exists m1 such that r ≥ m1 and |K1∩Ir|
hr

> 0, i.e.,
K1 ∩ Ir 6= ∅. We next choose m2 ≥ m1 such that r ≥ m2 implies that
K2 ∩ Ir 6= ∅. Thus for each r satisfying m1 ≤ r ≤ m2, we choose k′(r) ∈ Ir

such that k′(r) ∈ Ir ∩K1, i.e., pk′(r) ∈ Nθ(1). In general we choose mn+1 > mn

such that r ≥ mn+1 implies that k′(r) ∈ Ir ∩ Kn, i.e., pk′(r) ∈ Nθ(1/n).
Thus k′(r) ∈ Ir, for each r and pk′(r) ∈ Nθ(1/n) implies that limr pk′(r) = θ.
Furthermore, for t > 0 and the uniform continuity of τ implies that

{k ∈ Ir : dL(Npk−pk′(r)
, ε0) ≥ t} ⊆ {k ∈ Ir : dL(τ(Npk

, Npk′(r)
), ε0) ≥ t}

⊆ {k ∈ Ir : dL(Npk
, ε0) ≥ t/2} ∪ {k ∈ Ir : dL(Npk′(r)

, ε0) ≥ t/2}.

The above inclusion implies

1

hr

|{k ∈ Ir : pk − pk′(r) /∈ Nθ(t)}| ≤ 1

hr

|{k ∈ Ir : pk /∈ Nθ(t/2)}|

+
1

hr

|{k ∈ Ir : pk′(r) /∈ Nθ(t/2)}|.
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Since Sϑ − limk pk = θ and limr pk′(r) = θ, it follows that {pk} is a Sϑ-strong
Cauchy sequence.

Conversely, suppose that {pk} is a Sϑ-strong Cauchy sequence. For every
t > 0 and the uniform continuity of τ , we have

{k ∈ Ir : dL(Npk
, ε0) ≥ t} ⊆ {k ∈ Ir : dL(τ(Npk−pk′(r)

, Npk′(r)
), ε0) ≥ t}

⊆ {k ∈ Ir : dL(Npk−pk′(r)
, ε0) ≥ t/2} ∪ {k ∈ Ir : dL(Npk′(r)

, ε0) ≥ t/2}.

The above inclusion implies

1

hr

|{k ∈ Ir : pk /∈ Nθ(t)}| ≤ 1

hr

|{k ∈ Ir : pk − pk′(r) /∈ Nθ(t/2)}|

+
1

hr

|{k ∈ Ir : pk′(r) /∈ Nθ(t/2)}|

for which it follows that Sϑ − limk pk = θ. 2

Corollary 3.8 If {pk} in V is a Sϑ-strong convergent sequence, then {pk}
has a strong convergent subsequence.

Proof. The proof is an immediate consequence of Theorem 3.4. 2

4 Conclusion

We study the concepts of lacunary statistical convergent and lacunary sta-
tistical Cauchy sequences in probabilistic normed spaces and proved several
important properties of sequences in probabilistic normed spaces.

5 Open Problem

It can be easily proved that if a sequence {pn} in V is a strong convergent se-
quence in V then it is a Sϑ-strong convergent sequence in V . But the converse
is not necessarily true. Find a suitable condition(s) so that the converse of the
above proposition valid.
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[12] C. Şençimen and S. Pehlivan, Strong statistical convergence in probabilis-
tic metric spaces, Stoch. Anal. Appl. 26(3)(2008), 651-664.
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