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The allocation of buffers between workstations is a major optimization problem faced
by manufacturing systems designers. It entails the determination of optimal buffer
allocation plans in production lines with the objective of maximizing their throughput.
We present and compare two stochastic approaches for solving the buffer allocation
problem in large reliable production lines. The allocation plan is calculated subject to
a given amount of total buffer slots using simulated annealing and genetic algorithms.
The throughput is calculated utilizing a decomposition method.
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1 INTRODUCTION

The allocation of buffers between workstations is a major optimiza-
tion problem faced by manufacturing systems designers. It has to do
with devising an allocation plan for distributing a certain amount of
buffer space among the intermediate buffers of a production line. It is
a very complex task that must account for the random fluctuations in
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mean production rates of the individual workstations of the lines. To
solve this problem there is a need for two different tools. The first is a
tool that calculates the performance measure of the line which has to
be optimized (e.g., the throughput or the mean work-in-process). This
may be an evaluative method such as simulation, a decomposition
method [1,2], or a traditional Markovian state model in conjunction
with an exact numerical algorithm [3]. The second tool is a search
(generative) method that tries to determine an optimal or near optimal
value for the decision variables, which in our case are the buffer capaci-
ties of the intermediate buffer locations in the line. Examples of such
methods are the classical search methods such as the well-known
Hooke—Jeeves method, various heuristic methods, knowledge based
methods, genetic algorithms, and simulated annealing.

Evaluative and generative (optimization) models can be combined
in a “closed loop” configuration by using feedback from an evaluative
model to modify the decision taken by the generative model. In such a
configuration the evaluative model is used to obtain the value of the
objective function for a set of inputs. The value of the objective func-
tion is then communicated to the generative model which uses it as an
objective criterion in its search for an optimal solution. In the rest of
this paper we will use the formalism S(G, E) to describe a closed loop
system using the generative method G and the evaluative method E.
The generative models that will be used in this paper are:

CE complete enumeration,
RE reduced enumeration,
GA genetic algorithms, and
SA simulated annealing.

Furthermore, two evaluative models will be used:

Exact the exact numerical algorithm described in the work by Heavey
et al. [3], and

Deco the decomposition algorithm numbered as A3 in the work by
Dallery and Frein [2].

An overview of the existing research in the area of evaluative and
generative models of manufacturing systems can be found in two
review papers [4,5] and a number of books [6—11].
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Several researchers have studied the problem of optimizing buffer
allocation to maximize the efficiency of a reliable production line
[12—14]. Their results are based on comprehensive studies to character-
ize the optimal buffer allocation pattern. Authors have provided
extensive numerical results for balanced lines with up to 6 stations and
limited results for lines with up to 9 stations. However, few methods
can handle this problem for large production lines in a computation-
ally efficient way. In this paper we compare two stochastic approaches
suitable for large production lines, one based on genetic algorithms,
and one based on simulated annealing. Details on how these methods
can be applied to the problem can be found in the work by Bulgak
et al. [15] which describes the application of genetic algorithms for the
buffer allocation in asynchronous assembly systems and in our work
[16] which describes a corresponding approach using simulated anneal-
ing. The implementation of both approaches in this paper works in
close cooperation with a decomposition method [2].

Simulated annealing is an adaptation of the simulation of physical
thermodynamic annealing principles [17] to the combinatorial optimi-
zation problems [18,19]. Similar to genetic algorithms and tabu search
techniques [20] it follows the “local improvement” paradigm for
harnessing the exponential complexity of the solution space. The algo-
rithm is based on randomization techniques. An overview of algo-
rithms based on such techniques can be found in the survey by Gupta
et al. [21]. A complete presentation of the method and its applications
are described by Van Laarhoven and Aarts [22] while a number of
works present accessible algorithms for its implementation [23,24]. As
a tool for operational research simulated annealing is presented by
Eglese [25], while Koulamas et al. [26] provide a complete survey of
simulated annealing applications to operations research problems.

Genetic algorithms [27-29] are global optimization techniques that
avoid many of the shortcomings exhibited by local search techniques
on difficult search spaces, such as the buffer allocation problem.
Goldberg [30] described a number of diverse genetic algorithm
applications, while Karr [31] presented their use for modeling, design,
and process control. Finally, Tompkins and Azadivar [32] used genetic
algorithms for optimizing simulated systems.

This paper is organized as follows: Section 2 states the problem and
the assumptions of the model and Section 3 describes the evaluation
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methodology and associated implementation decisions. In Section 4,
we compare the numerical results obtained from the algorithms.
Finally, Section 5 concludes the paper and suggests some future
research directions.

2 THE BUFFER ALLOCATION PROBLEM

In asynchronous production lines, each part enters the system from
the first station, passes in order from all stations and the intermediate
buffer locations, and exits the line from the last station. The flow of
the parts works as follows: in case a station has completed its pro-
cessing and the next buffer has space available, the processed part is
passed on. Then, the station starts processing a new part that is taken
from its input buffer. In case the buffer has no parts, the station
remains empty until a new part is placed in the buffer. This type of line
is subject to manufacturing blocking (or blocking after service) and
starving.

21 Assumptions of the Model

The model operates under the assumption that the first station is never
starved and the last station is never blocked. The processing (service)
times at each station are assumed to be independent random variables
following the exponential distribution, with mean service rates, u;,
i=1,2,...,K. In our model, the stations of the line are assumed to be
perfectly reliable, that is, breakdowns are not allowed.

The exponentiality of the processing times as well as the absolute
reliability of the line’s workstations are rather unrealistic assumptions.
However, the service completion times can be exponential or can be
approximated by an exponential distribution. The variability in com-
pletion times may be attributed to failures and repairs which implicitly
exist in the problem at hand. Following this view, the proposed model
may be applied to any unreliable production line under the exponen-
tiality assumptions for the service completion times.

Figure 1 depicts a K-station line that has K — 1 intermediate loca-
tions for buffers, labeled B,, Bs, ..., Bk.
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FIGURE 1 A K-station production line with K — 1 intermediate buffers.

The basic performance measures in the analysis of production lines
are the throughput (or mean production rate) and the average work-
in-process (WIP) or equivalently the average production (sojourn)
time.

The object of the present work is the buffering of asynchronous,
reliable production lines with the assumptions given above. The objec-
tive is the maximization of the line’s throughput, subject to a given
total buffer space.

2.2 The Buffer Allocation Problem

In mathematical terms, the buffer allocation problem can be stated as
follows:

Find B = (B, Bs,...,Bg)so asto
max Og(B) (1)

subject to
K
ZB,-zN, B; >0, B;integer (i=2,3,...,K), 2
i=2

where

e N is a fixed nonnegative integer, denoting the total buffer space
available in the production line,
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e B=(B,,Bs,...,Bk) is the “buffer vector”, i.e., a vector with ele-
ments the buffer capacities of the K— 1 buffers, and

e Ok, denotes the throughput of the K-station line. This is a function
of the mean service rates of the K stations, u;, (i=1,2,...,K), of the
coefficients of variation, CV;, of the service times and the buffer
capacities, B;.

The number of feasible allocations of N buffer slots among the
K — 1 intermediate buffer locations increases dramatically with N and
K and is given by the formula:

(N+K—2>=(N+1)(N+2)---(N+K—2) 3)
K-2 (K—2)! '

For this reason exhaustive search techniques are not practical for
determining optimal configurations of production lines with a large
number of stations or buffers.

3 EVALUATION METHODOLOGY

We have evaluated different approaches for solving the optimal buffer
allocation problem for large production lines, by performing the fol-
lowing steps:

S1 We utilized the decomposition method [2] as an evaluative tool to
determine the throughput of the lines. The algorithm computes
approximately the throughput for any K-station line with finite
intermediate buffers and exponentially distributed processing
times.

S2 To find the buffer allocation that maximizes the throughput of the
line, we utilized two stochastic methods, simulated annealing and
genetic algorithms, specifically adapted for solving this problem.

In order to evaluate the applicability of the stochastic methods to
the buffer allocation problem using comparable architectures we
designed and implemented a system to calculate the optimum buffer
configuration for a given reliable production line using a variety of
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algorithms [33]. The system takes as input:

e the number of stations in the production line, K,
e the available buffer space, N, and
e the station mean service rates, yu;, i=1,2,..., K.

Based on the above input, the system calculates the buffer allocations
B = (B, Bs,...,Bxk) for the maximal line throughput. Furthermore,
the system is instrumented to provide as part of the solution the
throughput of the suggested configuration, as well as the number of
different configurations that were tried. The line throughput is used to
evaluate the quality of the suggested configuration when compared
with the throughput calculated by other methods. The number of
different configurations tried is used as an objective performance
criterion, because the configuration evaluation step is the dominant
execution time factor and the basic building block of all optimization
methods. In addition, a special system configuration allows the crea-
tion of a file containing step-by-step snapshots of the algorithm pro-
gress. After obtaining the test results we wrote a number of scripts in
the Perl programming language [34] that utilized the snapshot file to
visualize and animate the dynamic behavior of the algorithms.

We ran a number of tests on both balanced and unbalanced lines
and compared the stochastic method results against each other and
against the results obtained by other methods. For short lines and
limited buffer space a complete enumeration of all configurations pro-
vided an accurate measurement base to verify the stochastic algorithm
results. For larger configurations we used a reduced enumeration in
order to provide the comparative measure.

3.1 The Reduced Enumeration Method

Reduced enumeration is based on the experimental observation that
the absolute difference of the respective elements of the optimal buffer
allocation (OBA) vectors with N and N + 1 buffer slots is less than or
equal to 1:

|BN*1 — BN <1, Vi: 2<i<K. (4)

In this way, we have been able to derive the OBA by induction for any
number N of buffer slots that are to be allocated among the K—1
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buffer locations of the line. The reduction works as follows: when
N™ and K are given one needs to determine all the OBA vectors for
N=1,2,...,N" and then for N=N"+ 1 by searching only the values
of BY — 1, BY and BY + 1. Furthermore, this reduction starts after a
number of total buffer slots N. To quantify the reduction, by applying
the improved enumeration it has been experimentally observed that
the number of iterations were reduced by at least 60% for short lines.
This reduction accounts for well over 90% for large production lines
(with more than 12 stations). Recall that the number of feasible
allocations of N buffer slots among the K — 1 intermediate buffer loca-
tions increases dramatically with N and K and is given by Formula (3).

3.2 Simulated Annealing

Simulated annealing is an optimization method suitable for combina-
torial minimization problems. Such problems exhibit a discrete, fac-
torially large, configuration space. In common with all paradigms
based on “local improvements” the simulated annealing method starts
with a non-optimal initial configuration (which may be chosen at
random) and works on improving it by selecting a new configuration
using a suitable mechanism (at random in the simulated annealing
case) and calculating the corresponding cost differential (AOk ). If the
cost is reduced, then the new configuration is accepted and the process
repeats until a termination criterion is satisfied. Unfortunately, such
methods can become “trapped” in a local optimum that is far from the
global optimum. Simulated annealing avoids this problem by allowing
“uphill” moves based on a model of the annealing process in the
physical world.

Our implementation of the simulated annealing algorithm for dis-
tributing N buffer space in a K-station line [16] follows the following
steps:

1. [Set initial line configuration.] Set B;« |N/K|, set B/, < By, +
N — S5,[N/K].

2. [Set initial temperature Ty.] Set 7« 0.5.

[Initialize step and success count.] Set S« 0, set U — 0.

4. [Create new line with a random redistribution of buffer
space.] Move R, space from a source buffer Bg, to a destination

w
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buffer Bg,: set B’ — B, set Ry« |[rand[2...K+1)|, set R4«
|rand[2...K+1)], set R, < [rand[0...Bg, +1)], set Bg, < Br,—
Ry, set B, < Bg, + Ry.

5. [Calculate energy differential.] Set AE « Ok(B) — Ok(B’).

6. [Decide acceptance of new configuration.] Accept all new config-
urations that are more efficient and, following the Boltzmann
probability distribution, some that are less efficient: if AE<0 or
exp(—AE/T)>rand(0...1),set B+ B',set U« U+1.

7. [Repeat for current temperature]. Set S« S+ 1. If S <maximum
number of steps, go to step 4.

8. [Lower the annealing temperature.] Set 7«—cT (0 < c < 1).

9. [Check if progress has been made.] If U >0, go to step 3; otherwise
the algorithm terminates.

3.3 Genetic Algorithms

Genetic algorithms are also global optimization techniques that avoid
many of the shortcomings exhibited by local search techniques on dif-
ficult search spaces. They rely on modeling the problem as a popu-
lation of organisms. Every organism represents a possible valid
solution to the problem. Organisms are composed of alleles represent-
ing parts of a given solution. Standard genetic recombination opera-
tors are used to create new organisms out of existing ones by
combining alleles of the existing organisms. In addition, mutations can
randomly change the composition of existing organisms. Typically,
the algorithm evaluates all the organisms of the population and creates
new organisms by combining existing ones based on their fitness. This
procedure is repeated until the variance of the population reaches a
predefined minimum value.

An important characteristic of our implementation of the genetic
algorithm concerns the representation of the solution. A good repre-
sentation should ensure that the application of standard crossover
recombination operators (where a new organism is composed from
parts of two existing ones) would result in a valid new representation.
Representing the line configuration as a vector B of buffers allocated
across the line is not such a representation since given two buffer
configurations (B;, B,) and recombining them as a new buffer B’
at point ¢ so that Bj ,« Big.. and B/ | g« Bycy1.x Will not
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guarantee that Yk, B/ = N i.e. that the resulting line configuration
will be composed of N buffers. For this reason we devised an
alternative, position-based, representation using a vector P of length
equal to the number of buffers N. Every element of P can take values
0...K representing the position of the given buffer slot within the
production line. The two representations are equivalent; the vector P
can be mapped to B as follows:

Bi=§:{l if i =, )
‘% {0 otherwise.

The position-based representation will generate valid buffer configura-
tions using standard genetic crossover and mutation operators. Using
this representation, the genetic algorithm we implemented for dis-
tributing N buffer space in a K-station line is described in the following
steps:

1. [Initialize a population of size S.] Set Py . .so0..n—
|rand[0...K—1)].

2. [Evaluate population members creating throughput vector 7.] For
i—0...8:set T; — Ok(P).

3. [Create roulette selection probability vector R.] Set R; « Z}:o( T:/
E/io Tk)-

4. [Create new population using crossovers from the previous popula-
tion.] For i«0...8: if rand[0...1)<crossover rate, set c«
[rand[0...S)], set P/, .« Pro.c, Set P/ n Prcil.n;
otherwise set P] «— Py Dby selecting each r using the roulette selec-
tion probability vector so that R, <rand[0...1) < R, ;.

5. [Introduce mutations.] For i—0...S: for j<O0...N: if
rand[0... 1) <mutation rate, set P;; < |rand[0... K —1)].

6. [Keep fittest organism for elitist selection strategy.] Select f so that
Tr2 To...s, 8¢t Ploangp..s)) — Br

7. [Make new population the current population.] Set P « P'.

8. [Loop based on the population’s variance.] If Ef:o |Ty — T;i| >
maximum variance go to step 2; otherwise the algorithm terminates
with the optimal line setup in Py.

The implementation of genetic algorithms can be tuned using a
number of different parameters. In our implementation we used the
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parameters that Grefenstette [35] derived using meta-search techniques
namely:

a population size S of 50,

a crossover rate of 0.6,

a mutation rate of 0.0001,

a generation gap of 1 (the entire population is replaced during each
generation),

no scaling window, and

e an elitist selection strategy (the organism with the best performance
survives intact into the next generation).

The random floating point numbers 0 < R< 1 used for selecting
energy differentials based on the annealing temperature R<
exp(—AE/T), the crossover points, the mutation rates, and the selec-
tion of organisms are produced using the subtractive method algorithm
[36]. Finally, the evaluative function that we used for calculating AE
is based on the decomposition method [2].

4 METHOD COMPARISON

Before detailing the comparative results of our examination, it is
interesting to visualize the operation of the two stochastic methods.
Figure 2 depicts the runtime behavior of the two methods. Each point
on the two scatter charts represents a given production line throughput
value at a specific step of the algorithm. Both charts depict the calcu-
lation of the placement of 30 buffers in a balanced line of 10 stations.

Simulated annealing

Genetic algorithm

L
07
0.68 | Line throughput
5
£ o066 ogé
5 X
2 §Is4
£ 064 4 OOGE
o A
2
3 oe 8% ~TTTT—
=
06 %
° 50 10 i 20 Organism
058 0 g
0 10000 20000 30000 40000 Generation 2000

Round

FIGURE 2 Stochastic method operation comparison.
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The simulated annealing algorithm optimizes a single solution in the
specific example in 45,000 iterations. The solution’s throughput value
oscillates as both better and worse solutions are randomly selected at
each iteration step. As can be seen on the chart, the oscillation width
decreases following the algorithm’s exponential cooling schedule and
converges towards the optimal value.

The genetic algorithm is based on the implicit parallelism of the
solutions represented by the initial population depicted on the chart’s
z-axis. Thus, in the specific example, it terminates with an optimal
configuration after 250 generations. As the chart demonstrates the
search starts with a wide spectrum of different solutions which are
evaluated and evolve in parallel with non-optimal solutions gradually
becoming extinct. Mutations and recombinations regenerate subopti-
mal solutions, but, due to the “survival of the fittest” organism selec-
tion strategy, their survival does not last for long.

Our first comparison experiment concerned the algorithm operation
on balanced lines for cases where exact solutions were known. In Fig. 3
we present the optimum throughput configurations for balanced lines
found using the stochastic methods against the throughput found
using complete (for 9 stations) and reduced enumeration techniques. It
is apparent that the stochastic algorithm results are almost identical
and follow closely the results obtained by the other methods. Both
methods are subject to the reduced evaluative accuracy of the decom-
position method compared to the Markovian model.

Throughput: 9 stations Throughput: 15 stations
0.62 — 0.65
0.6 S(CE, Exact) S(RE, Deco) ——
0.58 S(CE, Deco) - 06 g(gﬁ. [D’eco; e
. S(SA, Deco) ----w---- (GA, Deco)

S(GA, Deco) - ©

5 0.56 -
055
2 os4 %
g os2 g o5
£ 05 £
g o € ous g
046 #
0.44 04 /
042} «
04 035
2 4 6 8 10 12 o 5 10 15 20 25 3

Buffer space Buffer space

FIGURE 3 Computed throughput of simulated annealing S (S4, Deco) and genetic
algorithms S (GA, Deco) compared with compared with complete enumerations using
the exact S (CE, Exact) and the decomposition evaluative methods S (CE, Deco) for 9
stations (left); compared with reduced enumeration S (RE, Deco) for 15 stations
(right).



BUFFER ALLOCATION IN PRODUCTION LINES 453

In addition to the balanced line evaluation, we compared the
stochastic methods against unbalanced line enumeration using the
Markovian evaluative procedure for a variety of line sizes, service
time configurations, and available buffer space. The results are
summarized in Fig. 4. It is apparent, that the stochastic method

s Service rates: 5, 8, 8, 5. o Service rates: 3, 5, 3, 5.
S(SA, Deco) ° S(SA, Deco) ©
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g 4 o © 41 39 4
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FIGURE 4 Simulated annealing S (S4, Deco) and genetic algorithms S (GA, Deco)
with decomposition evaluation versus complete enumerated Markovian S (CE, Exact)
throughputs for unbalanced lines with 4—6 stations.
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configurations — although identical to each other — are not always
optimal for limited available buffer space; however, they quickly con-
verge towards the optimal configurations as buffer space increases.
This difference can be accounted by the use of the fast decomposition
evaluative procedure used in the stochastic algorithm implementation
yielding approximate results against the use of the Markovian evalua-
tive procedure for the enumeration method yielding exact results.

Our goal for using stochastic methods is to optimize large produc-
tion line problems where the cost of other methods is prohibitively
expensive. As an example the reduced enumeration method when run
on a 15 station line with a buffer capacity of 30 units took more than
10h to complete on a 100 MHz Pentium processor. As shown in Fig. 5
the cost of the stochastic methods is higher than the cost of the full
and reduced enumeration methods for small lines and buffer alloca-
tions. However, it quickly becomes competitive as the number of
stations and the available buffer size increase. In addition, the perfor-
mance of the genetic algorithm implementation is approximately an
order of magnitude better than the simulated annealing implementa-
tion. Notice that — in contrast to the deterministic methods — the
stochastic method cost does not increase together with the available
buffer space and that it increases only linearly with the number of
stations.

Finally, Fig. 6 depicts the comparative performance and calculated
throughput for the two stochastic methods when optimizing lines of up
to 400 stations and 1200 buffers. The genetic algorithm implementation

9 stations; 1-20 buffers 15 stations; 1-30 buffers
- 1e+006 ° 1e+011
1 )

§ s ges e
5 R pd , Deco
3 10000} . = 3 11008 (A, Deco)
§ 1000 s § 1e+006
3 A S(CE, Deco) © 100000 |
g 10 / S(BE, Deco) - § 10000
5 e = 1000
3 10 S(GA, Deco) - = E 100

1 10 .

0 5 10 15 20 0 5 10 15 20 25 30
Buffer space Buffer space

FIGURE 5 Performance of simulated annealing S (S4, Deco) and genetic algo-
rithms S (G4, Deco) compared with complete S (CE, Deco) and reduced S (RE, Deco)
enumerations for 9 stations and 15 stations. Note the log;o scale on the ordinate axis.
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SA, GA for 20-400 stations; station*3 buffers Throughput: 20-400 stations; station*3 buffers
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FIGURE 6 Performance and accuracy of simulated annealing S (S4, Deco) com-
pared with genetic algorithms S (G4, Deco) for large production lines. Note the logo
scale on the ordinate axis.

producing solutions with only 2,000,000 evaluations even for 400
station lines is clearly the performance winner. However, as depicted
on the right hand chart, the throughput of the line configuration found
by the genetic algorithm is consistently lower than the throughput of
the line found by the simulated annealing method. The results we
obtained could not be independently verified, because no other
numerical results for the buffer allocation problem in large production
lines can be found in the open literature.

5 CONCLUSIONS AND FUTURE DIRECTIONS

The results obtained applying stochastic methods to the reliable line
near-optimal buffer allocation problem are interesting. The perfor-
mance and the accuracy of the methods, although inferior for
optimizing small lines with limited buffer space, indicate clearly that
they become the methods of choice as the problem size increases. Both
methods can be used for optimizing large line configurations with
simulated annealing producing more optimal configurations and the
genetic algorithm approach leading in performance. This indicates
that the two methods can be used in complimentary fashion. Real-time
applications can utilize genetic algorithms for the swift recalculation
of optimal configurations, while batch-oriented calculations can utilize
simulated annealing for obtaining an optimal configuration.

Further investigation is needed in order to fully evaluate the poten-
tial of the two methods. The failure, in large production lines, of
the genetic algorithm method to locate the optimal configuration
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found by the simulated annealing method is intriguing. It would be
interesting to carefully examine the “endgames” of the two methods
and find if and how the genetic algorithm implementation can be
tweaked to evolve towards more optimal configurations. A dynamic
re-adjustment of the algorithm’s parameters (population size, cross-
over rate, mutation rate, etc.) forms one such possibility.

The annealing schedule and the genetic algorithm parameters that
we used can clearly be optimized potentially increasing both methods’
accuracy and performance. The use of heuristics in setting up the
initial buffer configuration can decrease the number of steps needed
for reaching the optimal. The differing relative strengths of the two
stochastic approaches could also be combined in the form of a hybrid
algorithm. Such an algorithm could capitalize on the rapid conver-
gence exhibited by the genetic algorithms to quickly arrive at an
acceptably efficient solution pruning away dead-ends. It could then
pass the quickly derived buffer configuration to a simulated annealing
algorithm which would use it as a starting point for obtaining an
optimal solution.
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