Mathematical Problems in Engineering © 2000 OPA (Overseas Publishers Association) N.V.

Volume 5, pp. 397-419 Published by license under
Reprints available directly from the publisher the Gordon and Breach Science
Photocopying permitted by license only Publishers imprint.

Printed in Singapore.

Optimal Hysteretic Control fora
BMAP/SM/1/N Queue with
Two Operation Modes

ALEXANDER N. DUDIN®* and SHOICHI NISHIMURA®

@[ aboratory of Applied Probabilistic Analysis, Faculty of Applied Mathematics
and Computer Sciences, Belarus State University, 4, F. Skorina Ave., Minsk-50,
220050, Belarus; ® Department of Applied Mathematics, Faculty of Science,
Science University of Tokyo, Kagurazaka, Tokyo 162, Japan

(Received 11 September 1998)
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1 INTRODUCTION

The single-server queues with controllable modes of operation have
many promising applications in modern broadband integrated services
digital networks. Since there are many different types of data with dif-
ferent requirements to Quality of Service and different economical
values, it is necessary to organize a dynamic schedule of information
transmission. Controllable queueing models provide appropriate tools
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for optimizing such dynamic schedules. One of the most interesting
queues in this category is a system with two controllable modes of
customer processing. One mode is cheaper but slower than the other
one. When the quality of the customers being processed is evaluated by
some economic criteria, which includes holding, service, and switching
costs, the problem of switching the modes in dependence on the cur-
rent value of queue length is very interesting and complicated. The
papers, which are devoted to investigation of such queues, can be
divided into two groups. In the first group, the authors deal with the
qualitative analysis. As a result, they prove that the optimal strategy
possesses some good properties like monotonicity. The number of alter-
native control designs can be narrowed significantly. Unfortunately,
these results have two essential disadvantages. The first one is that
until now such results are obtained only for simplest queues under
different technical assumptions. The second disadvantage is that these
papers do not contain algorithms for synthesis of optimal strategies.

In contrast, the papers from the second group include some class of
parametric strategies to be used for control. The algorithms for deter-
mination of optimal sets of parameters are elaborated upon.

Our present paper belongs to the second direction in investigation
of queues with controllable operation mode. Nevertheless, it is not
proved that the optimal homogeneous Markovian strategy belongs
to the class of hysteresis strategies; we specify such a class as an
appropriate class of potentially optimal strategies and present an algo-
rithm for determining the optimal values for parameters of hysteresis
strategy.

There is a rather long history of investigating the analogous systems
beginning from Suzuki and Ebe [16]. We mention only several recent
papers. Nobel and Tijms [15] investigated an M*/G/1 prototype of our
model by using the theory of Markov decision processes. Nobel [14]
has exploited a regenerative approach to this model. Nishimura and
Jiang [13] investigated an M/G/1 prototype by direct approach. Dudin
[4] investigated an M*/G/1 prototype also by direct approach, but
with exploiting the so-called “Principle of Disregarding.” Dudin and
Nishimura [5] extended the last result to a BMAP/G/1 type system.
BM A P-inputs were introduced by Lucantoni [9]. Such inputs ade-
quately describe real flows of information in modern telecommunica-
tion networks and it motivated paper [5].
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The motivation of our present paper is the following. Recently,
Lucantoni and Neuts [10] introduced and studied a BMAP/SM/1
queue. Machihara [12] obtained the results for an analogous system
allowing vacations in the idle state. The finite-buffer variant of this
system (BMAP/SM/1/N) is not investigated yet. From the past lit-
erature on MAP/G/1/N systems (see e.g. Baiocchi [1], Baiocchi and
Blefari-Melazzi [2]) and on BMAP/G/1/N systems (see Blondia [3]
and Gouweleeuw [6]), the extension of results for the systems with
MAP-input and infinite queue to the case of a finite queue is rather
nontrivial. In our present paper, we derive results concerning the
embedded queueing process for the system BMAP/SM/1/N by exploit-
ing the Principle of Disregarding. It seems that our algorithm in the
special case of BMAP/G/1/N system is preferable to the algorithm of
Blondia [3]. And our second achievement is that we extended our
approach to a controlled variant of the BMAP/SM/1/N system. These
results have no analog even for much simpler M/G/1/N controlled
systems.

The rest of this paper is organized as follows. In Section 2, we
describe our model. In Section 3, we find the stationary distribution
for an uncontrolled BMAP/SM/1/N system. In Section 4, we derive
the stationary distribution for a BMAP/SM/1/N system with a thresh-
old strategy of control and zero switching time. In Section 5, we con-
sider the general model and derive the stationary distribution of the
embedded queueing process for any fixed value of thresholds. In
Section 6 we give an expression for the objective function in threshold
values. Section 7 contains concluding remarks.

2 THE MODEL

Let us consider a single-server queue with a waiting space of capac-
ity N. Two different modes for processing customers are available.
There is an opportunity to switch the mode of operation upon the
service completions.

The rth mode of customer processing is described as follows. The
input to the system is a BMAP (Batch Markovian Arrival Process).
This input is controlled by continuous-time Markov chain v,, which
is called a directing process of the BMAP. The state space of v, is
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{0,1,..., W}. The transitions of process v, and arrivals of customers
are performed according to a matrix generating function D" (z) =
2% Dzk, |z] <1. A more detailed description of the BMAP is
given in Lucantoni [9]. Note that we make the same assumptions
about functions D?(z) as Lucantoni [9] does. Denote by §¢) the sta-
tionary probability row vector of the Markov chain v,. It is defined by
equations

ODN(1) = Opyr, 601y = 1.

Here 6W+1 is a null vector of size W+ 1and 1y ={1,..., l}T.
The intensity A of BMAP-input (the fundamental rate) is calcu-
lated as

a0 —god2@ |
dz z=1

The service of customers is governed by a semi-Markovian pro-
cess m;. We refer to it as to a directing process of service. The state
space of this process is {1,..., M}. The sojourn time of m;, in a state m
under the condition that the next state is m’ is defined by conditional
distribution function B (1), m,m’ =T, M. Denote by B®")(f) =
(Bf,:?m,(t))m’m,e{lmM} a matrix of these conditional probabilities. This
matrix is called the semi-Markov kernel. Denote by P() = B(")(00) =
( pf;?m,)m?m,e {1,..,m the transition probability matrix of the embedded

Markov chain for process m;.
Let #") be the invariant probability measure of P and let o be

the following column vector:

N Rt LI a0 i
r r r r r
ol = (Z /0 (P — BOM0) dt, > /0 (P41 — Bi(0)) dt) .
m=1 m=1

The average service time bg') in the rth mode is defined as
bﬁ’) = 7",

We make the same assumptions about the matrix B™(f) as those in
Lucantoni and Neuts [10].
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The switching of operation mode #r to operation mode #r' is per-
formed during the time which has a distribution function G,(f). Let
g.(s) be its Laplace—Stieltjes transform and let the two first initial
moments of distribution be finite. During the switching time, the ser-
vice of customers is suspended and the directing process of service
remains in its current state. The input to the system is continuing. For
the sake of generality, we suppose that directing process v, of the
BMAP has matrix generating function D"')(z), r'#r, during this
switching time. The switching of modes does not cause any additional
transitions of processes v, and m,.

If we let N=o00 and consider only one operation mode, the model
described above coincides with the model of Lucantoni and Neuts [10].

Because we consider the model with a finite buffer and batch arriv-
als, it is necessary to have a convention concerning the case when the
size of an arriving group exceeds the number of free waiting places in
the buffer. We assume that a part of this group, which corresponds to
the number of free places, is admitted to the system. The rest of the
group is lost by the system.

We assume that the quality of the system operation is evaluated by
the following cost criteria:

I=alL+ ¢ Py + Py +dS+ cR. (1)

Here L is the mean queue length upon a service completion in the
steady state; P, is the probability of processing a customer in the rth
mode, r=1,2; S is the probability of switching the mode at an arbi-
trary service completion epoch; R is the probability that the buffer is
full at the service completion epoch; a, ¢y, o, d, and ¢ are the corre-
sponding cost coefficients.

Note that it was preferable to include the loss probability of the
system in cost criteria (1). But the problem of calculating such a prob-
ability for the systems with batch arrivals is not solved even for much
simpler systems than ours. Only some approximate expressions are
derived (see e.g., Gouweleeuw [6,7], Tijms [17]), and recently Kofman
and Korezlioglu [8] derived this probability for the BMAP/M/1 queue
by using techniques of marked point processes. So, we include into the
cost criteria the value R, which characterizes the losses indirectly.
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We make the following assumptions about the cost coefficients and
traffic intensities:

a>0’ dZO, C>O, g <c, p1>pP2

where p, = b\ is the traffic intensity (load) in the rth mode,
r=1,2.

So the first mode is cheaper but slower. The second one is faster but
more expensive. Because the system is charged also for customers wait-
ing in a queue and losses of customers, the problem of optimal switch-
ing the modes is not trivial.

Due to a given relation of the service costs and traffic intensities, it
seems natural to exploit a so-called threshold strategy for the modes
control. This strategy is determined as follows. An integer-valued
threshold j is fixed, j > 0. If a queue length is i at a given service com-
pletion epoch and it does not exceed j, the first mode is selected for
servicing the next customer. Otherwise, the second mode will be used.

Really, in case d=0 and instantaneous switching of operation
modes the optimality of threshold strategies in the class of homoge-
neous Markovian strategies was proved for several kinds of queueing
models.

When d >0 and (or) the system wastes time for the switchings, the
threshold strategy turns out to be not optimal. The threshold strategy
causes frequent switching of the modes. In this case, when switchings
are charged, the strategy is expensive. So it seems natural to consider
other strategies, which react by increasing the service rate if the queue
length increases but do not cause frequent switchings. Such strategies
are called hysteresis strategies. Hysteresis strategy is determined as fol-
lows. Two integer-valued thresholds j and k are fixed, 0 <j < k. Let the
queue length i at a given service completion epoch be less than or equal
to j. Then the system will exploit the first mode of operation. If i >k,
then the system exploits the second mode. And if j < i<k, the system
retains a current mode of operation.

There are only a few papers where the optimality of hysteresis strat-
egies is proved. And it was done only for very basic queueing models.
But in situations, where only the information about the current value
of the queue length and the current processing mode is available, the
class of hysteresis strategies seems to be very appropriate for control
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of operation modes. Consequently, we exploit the class of hysteresis
strategies in this paper. We use a so-called direct approach for deter-
mining the optimal hysteresis strategy. This approach is as follows.
Fix the parameters (j, k) of hysteresis strategy. Investigate the Markov
chain describing the system behavior. Calculate the stationary state
probabilities of this chain. Using these probabilities, calculate the value
of cost criteria under the fixed values of thresholds. So, the problem of
determining the optimal hysteresis strategy is reduced to a problem of
minimizing the known function of two integer-valued variables. This
problem is solvable easily.

3 UNCONTROLLED VARIANT OF THE MODEL

To introduce the necessary notions and to illustrate the Principle of
Disregarding, consider the model which exploits only one rth mode.
We can omit index r, but we prefer to keep it when using the corre-
sponding notations in the upcoming sections. However, this model is
of independent value.

Let ¢, be the nth service completion epoch in the system. Introduce
the following three-dimensional stochastic process:

{in,men}s n>1,

where i, is a queue length at the epoch ¢,+0, i, >0, v, is the state of
process v, at the epoch t,, v, = 0, W, m, is the state of process m;, at
the epoch ¢, — 0, m, = 1, M.

This process is a Markov chain. We enumerate its states in lexicog-
raphic order. Denote by P{(i,v,m)— (I,v’,m’)} one-step transition
probabilities:

P{(i,v,m) = (l,v',m’)}

. / 1. .
=Plipsi=1L vp=v',mpa=m'|i, =i, vy, =v,my=m}, n>1.

These transition probabilities form matrix W,(_’z L i i>0, [>i-1.

The matrices W,(:)i 41 can be determined from the following matrix
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expansion:

S iz = / e?"" @ dBO(1) = B,(2), 2)

n=0

where ® stands for Kronecker product.

The algorithms for calculating these matrices are based on the
approach of Lucantoni and Ramaswami [11].

Introduce also the matrices \Il(') with matrix generating function

VU,(2). The entry of the matrix ¥; ™ has the following probabilistic
sense. It is a probability of presenting exactly i customers in the corre-
sponding system with unlimited waiting space upon beginning of a
busy period and corresponding transition of processes v,, m, during
the idle state.

It is easy to see that

v = ((-D{)'D0) @ Ev, i>1,
where E,; stands for the identity matrix of size M.
The transition probabilities P{(0, v, m) — (I, v’,m")} form the matrix

I+1
> WL, 120

So, we defined the transition probabilities of Markov chain
{is, U, my,} completely.
Introduce the following stationary state probabilities:
w(i,v,m) = lim P{i, = i,v, = v,m, = m},
n—oo
i>20, v=0,W, m=1,M. (3)
Due to finiteness of the queue and corresponding assumptions about
the processes v, m; in [9,10], the limits (3) exist for any given set of

input and service rates.
Denote also

7(i,v) = (n(i, v, 1), ..., 7(i, v, M),
= (7(3,0),...,7(i, W)).
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THEOREM 1 The stationary state distribution vectors 7, | = 0, N, are
defined as follows:

7 =mA", 1=0,N, 4)
where the matrices A}') are calculated by the following recursive formulas:

AY = E,

AE-rH - (A(r) qu WI—H—] ZA Wl—t+1> ()) ’ 12 0.
i=1
(5)

The entries of vector Ty are calculated from the following system of
linear algebraic equations:

N N—i
ﬁo{—A%) S0 Y W+ w13 0)

i=1 m=0
N N—i
+3 40 (gr(1) -3 Wm> } = w1y (6)
i=1 m=0
N
70y A1 =1 7
7o i ‘ (7)
1=0

Here E is the identity matrix of size (W + 1)M and 1 is the unit col-
umn vector of this size.

Proof Having known one-step transition probabilities, it is very easy
to derive the following system of equations for unknown vectors 7,
I=0,N:

I+1 +1
d=7y VWO +3 wwl,,, I=0N-1, (8)
i=1 i=1
N ) ) . N 00
iv=mY O N Watd Y UM+ Y W
i=1 m=N+1-i i=N+1 i=1 m=N+1-i
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Solve system (8), (9). The key point of our solution is the following.
It is evident that Eq. (8) coincides with the analogous equations for
the system with unlimited waiting space. So, because the probabilities
7, I=1,2,... are calculated step by step from (8) up to the value of
unknown vector 7 in the form

#=md", 1=1,2,..., (10)

and only / first equations of system (8) are exploited for calculating the
matrices A;'), then the matrices Af') coincide with the corresponding
matrices in representation (10) for the system with unlimited buffer.

It is known, that such matrices can be calculated from the following
matrix expansion:

o0

N A = (E-¥0(2)B,()(B,(2) - E2) ",

=0

or from recurrent relations (5).

Recurrent relations like (5) are criticized for catastrophic cancella-
tion (see Lucantoni [9]). The recursive scheme (49) from Lucantoni [9]
can be exploited for calculating the matrices A§') instead of (5). It is
inessential for us. The essential thing is that these matrices coincide
with corresponding matrices for the system with an infinite buffer and
the problem of their calculation is already solved.

Having expression (4) for vectors 7, / =0, N, we substitute them
into (9) and derive Eq. (6) for the vector 7y. Because (6) is just system
(8)—(9) after implementing the elimination of unknowns, the rank of
this system for a vector 7 is equal to W. So, we replace one equation
of system (6) by normalization condition (7) and solve system (6)—(7).
The system has an unique solution 7. By substituting this solution
into (4), we finish the calculations.

Note that a critical point of our approach is an opportunity of pre-
sentation of vectors 7 in form (4). It is evident from (5), that such
presentation is only possible if the matrix WO(') is nonsingular. The ques-
tion of singularity of this matrix is common in papers concerning the
systems with the BM A P-input. For our model, we proved the follow-
ing sufficient condition for nonsingularity of matrix WO(').
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LEMMA 1  If the following conditions are fulfilled:

(1) the entries of a kernel B®Xz) have form

Bl (1) = BY ()P,

mm’?

m,m' =1, M, (11)

i.e. the sojourn time of the process m; in the state m does not depend
on the future state;

(2) matrix P® is nonsingular,

(3) distributions Bﬁ;)( t) belong to the class of infinitely divisible distribu-
tions,

then matrix W\ is nonsingular.

Note that condition (11) is rather usual in practical systems and that
the class of infinitely divisible distributions is rather broad. For exam-
ple, the Erlangian and degenerate distributions, which are widely used in
the queueing theory, belong to this class. Note also that condition (3)
can be omitted if all eigenvalues of matrix D(()r) are real.

Although our idea of calculating the probabilities 7; in form (4) with
consequent solving of system (6), (7) seems to be very transparent and
trivial, in the classical paper Blondia [3] this idea is not noticed upon.
So a system of (W +1)- M - (N + 1) equations should be solved instead
of our system (6), (7) of (W + 1)M equations.

4 THRESHOLD CONTROL AND INSTANTANEOUS SWITCHING

Suppose now that two operation modes are available and the switch-
ing of modes is performed instantaneously. We find an optimal strat-
egy in a class of threshold strategies which was defined above.

Fix a threshold j, j > 0.

THEOREM 2 The stationary state distribution vectors i, | =0, N, are
defined as follows:

7 =mdl, 1=0, (12)

J+ LN, (13)

7 =A?, 1
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where the matrices /1(2) are calculated by the following recurrent formulas:

2 1 1) 2)\—
A1(+)1 —A1(+)1W( (W( )
"152) = <A§2)1 —A§11 + Z A(l Wl(l
m=j+1 (14)

-1
Z A(Z)W(z))(WO(Z))—I, j+2s lsN’
m=j+1

where the matrices Agl) are defined by Eq. (5).
The entries of vector Ty are calculated from the following system of
linear algebraic equations:

7?0{'” 2(2 +vM(M)B, (1 Z\P(I)Z W(l) +EA(1

m=0
R N—i -of N—i N
(a0 -Sm)+ 3230 (0 - S} =i
m=0 i=j+1 m=0
(15)
J

ﬁo{ZA§‘ + Z A(Z)}l =1. (16)

=0 I=j+1

Proof The system of equations for vectors 7, / = 0, N, has here the
following form:

= WOZ‘I’(I)WI(IIH + ZWIWI 1)+1’ 1=0,j-T, (17)
p

i) = Mo let(l) I/I/'l(—li)%-l + ZWIVVI(?+1 + Z 7T’I/Vl—1+l’ I=j,N—1,
i=1 i=1

i=j+1
(18)

N oo 00
dy=ry " S wh+d Y vVh 1)
i=1 m=N+1—i i=N+1

00 N o0

+zjjﬁ,~ > wh+ > wm Y wd. (19)

=1 m=N—i+l i=t1  m=N—i+1
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Solve system (17)—(19). Equation (17) coincides with (8), so we con-
clude automatically that probabilities 7, /= 0,j, have form (4) or,
equivalently, form (12).

Consider now system (17), (18). Set temporarily N=oc in (18).
Because finite system (17), (18) and a temporarily infinite system have
the first N equations coinciding and all probabilities 7, / = T, N are
defined by these N equations up to the value 7, this allows us to find
the probabilities 7}, / = j + 1, N. Such a way of neglecting and tempo-
rarily changing the tails of systems of equations was called the Prin-
ciple of Disregarding; see Dudin [4] and Dudin and Nishimura [5].

We set N = 0o and introduce partial generating functions

ﬁl(z) = z]:ﬁizi, fIz(z) = i iz,

i=0 i=jt+1

Multiplying Egs. (17), (18) by the corresponding degrees of z and sum-
ming them up, we derive the equation

T (2)(Ez - B5(2)) = Thi(2) (B (2) — Ez) + 7o(¥(z) — E)Bi(2). (20)

Because we introduced the generating function II, (z) only tempora-
rily and we need only coefficients near z’, / = j, N in its expansion, we
remind of the matrix representation of Y .- A,(.l)zi given above and

rewrite (20) into the form:

00 X o0 oC . o0
3 @ (Z W@z — Ez) =7 Y Az (Z whzn Ez). (21)

i=j+1 n=0 i=j+1 n=0

Comparing the coefficients at equal degrees of z in (21), we conclude
that probabilities 7, / =j+ 1, N, are really defined by formula (13),
where the matrices /152) are calculated by means of recursion (14).

Because the values of all vectors 7, [ = 0, N, are already derived up
to the value of 7y, we substitute (12) and (13) into (19) and derive (15).
Equation (16) is just a consequence of normalization condition.
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5 STATIONARY STATE PROBABILITIES FOR A GENERAL
FORMULATION OF THE PROBLEM

Finally, consider the problem of optimal hysteresis control. Let the
thresholds (j,k), 0 <j<k <N, be fixed. When a hysteresis strategy is
exploited, the process {i,, v,, m,}, which was introduced in Section 3, is
not Markovian. But the process {i,, v,, m,, r,}, where r, is the number
of the mode, which was exploited at the epoch 1, —0, is a Markov
chain.

Denote by P{G,v,mr)—U v ,m' ) =Plipa=1l vpa=v,
My =m', o =r'|i,=i, v,=v, m,=m, r,=r} one-step transition
probabilities of this Markov chain.

LEMMA 2 Transition probabilities P{(i,v,m,r)— (l,v’,m’,1")} are
defined as follows:

e probabilities P{(i,v,m,1) — (l,v',m’, 1)} form matrix

wh ., 0<i<k, i—-1<I<N;

—i+1°
e probabilities P{(i,v,m, 1) — (N,v’,m’, 1)} form matrix
[e.*]
oowh, 0<i<k

n=N—i+1

o probabilities P{(i,v,m,2) — (I,v',m’,2)} form matrix

WP, j<i<N, i-1<I<N;
e probabilities P{(i,v,m,2) — (N,v',m’,2)} form matrix
[e¢]
W@, j<i<N;
n=N-i+1
e probabilities P{(0,v,m, 1) — (I, v',m’, 1)} form matrix

I+1 . )
Z‘I’Sx )VVl—n+l’ 0<I<N;

n=1
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e probabilities P{(0,v,m, 1) — (N,v',m’, 1)} form matrix

o0

Sed S w3 ey
i=1

n=N—i+1 i=N+1
e probabilities P{(i,v,m, 1) — (I,v’',m’,2)} form matrix

I—=i+1
S rwl L, N2ixk+1, i-1<I<N,
n=0

where the matrices TS are defined from the following matrix
expansion:

00 oo '
> Tz = / e 4G,(1) ® Enr; (22)
n=0 0

e probabilities P{(i,v,m,1) — (N,v',m’,2)} form matrix

N—i o] 0 .
YT Y WP Y TR, k<ish
n=0 I=N—i—n+1 n=N—-i+1

e probabilities P{(j,v,m,2) — (I,v,m, 1)} form matrix

I—j+1
Sr@wl) . ifj>0,j-1<I<N,
n=0

or matrix

I+1 I+1
IS W+ YT =0, 0<1<N;

n+1°
n=1 n=1

e probabilities P{(j,v,m,2) — (N, v,m, 1)} form matrix

N—j [e) 00
ZI‘Sf) Z w + Z rPp,(1), ifj>0,

n=0 I=N—j—n+1 n=N—j+1
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and

N 00 00
FS”(Z\P,‘” Yoo wh+ w,“’ﬂl(l))

i=1 n=N—i+1 i=N+1

N o0 00
+31® S w4 3 r@s,0), ij=o0.
n=

1 I=N—-n+1 n=N+1

Lemma 2 is proved by analyzing the corresponding transitions of the
Markov chain.
Denote by

7(i,v,m) = '}LIEOP{in =L vy=v,My=m,r,=1},

x(i,v,m) = lim P{i, =i, v, = v, my =m, r, = 2},

n—oo

the stationary distribution of the Markov chain {i,, v, mp, r,}, n> 1.
Introduce vectors

7, v) = (v(i,v,1),...,7(i,v, M)),
xX(@,v) = (x(i,v,1),...,x(i,v,M)),

#o= (7(5,0), ..., G, W), %= &R(0),....% W)).

THEOREM 3 Vectors 7;, X;, i = 0, N, of the stationary state distribution
are defined as follows:

#=rA, 1=0,j-1, (23)
=m0, =]k, (24)
I+1
ﬁ,=ﬁo<@,— > @,,W,<_‘3+1>, I=k+L,N—1, (25)
n=k+1
7y = 7O, (26)
X =7k )00, =]k, (27)
50 v - M Yo
_‘l = 7?0 [V(k,j)ﬂl_; - Z (el - Z en VVH_]_n) QI_,':I s
i=k+1 n=k+1

I=F+ N1, (28)
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N—
v = T [v(k,J)n(” - <9 -3, W(m) ﬂﬁf’_i—%ﬂ(‘f)],

i=k+1 n=k+1

(29)

where the matrices AEI) are defined by formula (5), matrices ©; are
defined by

0= A" — vk, )Y, 1=FN, (30)
( :J) k+] (Qk—j-f—l) (31)

the matrices QE') are defined by

!
0f =TT, 120, 4k -T2 ()
i=0

matrices fz§” are calculated by recurrent formulas

ay =,
_ -1 _ (33)
6 =40+ Y U000, 121

=0

the matrices A,(r) are defined by formula (5), and the matrix Oy is
defined by

N N-i
Onv=T(MB(1) =Y uYy W
]

n=0

i=

j—1 —i k i
£y Al (ﬁl(l -y Wn“)) +>6; (ﬁl -3 WJ”)
i=1

n= i=j n=0

n=0 =0

N—j N—j—n
+ v(k.j) (82 1)/61 ZFSIZ) Z Wz(l))- (34)
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The entries of vector Ty satisfy the following system:

N-1
ﬂo{v(k,j Z Q,_]< Z Wn(z)> v(k ])953)]

I=j+1 n=0

+ Z (@ - Z @ t—n+1) (( (1) _F(()l)),éz(l)—E

i=k+1 n=k+1

—1 —i —i—n
-3 (- S - S S wee)
n=0

I=i+1 n=0 =0

+6n((& (1) — T§)B,(1) +rf,‘>>} = Owa iy (35)

{ZA(1)+Z@ + Z <®1 Z WI(-lr)t-H)

I=j I=k+1 n=k+1
5 Lo % (1 ®)
+@N+V(kaf)291—j‘ Z Z ( i~ Z O”Wz+1—n> Q.
I=j I=k+1 i=k+1 n=k+1
N-1 i+1 5
- > <@i- > e W,(_‘,’,+1)953)_,~—6N982’} =1 (36)
i=k+1 n=k+1

Proof Taking into account Lemma 2, we have the following system
of equations in vectors 7, X;, / = 0, N:

I+1
1 - 1 T
=7 Z vOw) |+ z;mw,(_,.lr], 1=0,j-2, (37)
=

(1 1) 2)
WI—WOZ\II )Wl(t+1 +Z7T'VVI i+1 + J Z F( WI— n—j+1°

i=1 i=1 n=0
I=j=Tk=1, (38)
g () m
M=y CWI, + Z”t Wi+ % Z T jins
i=1 n=0

I=kE,N—1, (39)
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N 00 k 0o
ven(S 35w 3 wh0)e3n 3w
i=1 n=N—i+1 i=N+1 i=1 n=N-—i+1
N—j 00 [’ .
+3( TP Y wh+ r£,2>ﬁ1(1>), (40)
n=0 u=N—j n=N—j+1
I+
Z X1W1—1+1’ I=jk—1, (41)
i=j+1
e Ll g o
X1 = Z XiWlia + Z i E rOwe L
i=j+1 i=k+1 n=0
=G N—1, (42)
N 00 N
Iv=D % ), WP+ @
i=j+1  n=N—i+l i=k+1
N—i &) 00 .
x DT S w@ 4 ST a1 43)
n=| u=N—i—n+1 n=N—i+1

We solve system (37)-(43) by repeated use of the Principle of
Disregarding. Equation (23) follows from Eq. (37). Consider system
(37), (38), set temporarily k= oo and introduce temporary generating
function 11(z) = 3.°, #z’. Multiplying Egs. (37) and (38) by the corre-
sponding degrees of z and summing them up, we derive:

I (z) = 7o(¥1(2) — E)By1(2)(By(2) — 2E) ™"
- szjgz(z)ﬁl(z)(ﬁl(z) - EZ)_l' (44)

Expanding (44) in series, we have

7T1 - 7r0A( - X] Q(l)

—p 127 (45)

where matrices Qg are defined by formulas (32), (33). Because the real
tail of system (37), (38) is not infinite, we derived relation (45) only for
l=j,k
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Substituting (23) and (45) into Eq. (39) for /=k, after some tedious
algebra we derive the relation:

)zj = ﬁov(k,f), (46)
where matrix v(k,j) is defined by formula (31).
Substituting (46) into (45) we prove (24).
Now consider system (37)—(39). Also, temporarily set N=o00 and

denote Ti;(z) = 3% 7z and TIy(z) = 322, #iz. By the standard
way we get from (37) to (39) the following relation:

I (z) = 1 (2) (B (2) — Ez)z™" + 7o(1(2)
— E+2'(k,))$,(2))B1 (2)z7". (47)

As we already know,

j k
i (z) = 7 (ZAS"Z"+ > @iz'"). (48)

i=0 i=j+1

Expanding (47) in series, after some calculations, we get formula (25).
Formula (26) is derived by substituting (23)—(25) and (46) into (40).

Consider system (41). Set temporarily k=00 and introduce tempo-
rary generating function K(z). From (41) we derive that

K(z) = X;2B(2) (Ba(z) — E2) ™. (49)

Expanding (49) in series we prove (27).

Consider now system (41), (42). Set temporarily N= oo and intro-
duce temporary generating function K(z). It follows from (41), (42),
that

K(z) = #ov(k, /)zBy(2) (Ba(2) — 2E) ™!

- ) #'81(2)By(2)(Ba(2) — 2E) 7. (50)
i=k-+1
Expanding (50) in series, we derive (28), (29). Finally, we derive (35)
just by substituting (23)—(29) into (43). Equation (36) follows from the
normalization condition.
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So, we can calculate the stationary state probabilities for Markov
chain {i,, v, my, r,} under any fixed value of (j,k),0<j<k < N. It can
be verified that Theorem 3 is valid for j =0 also, but two modifications
should be implemented. Matrix function g,(z) should be replaced by
8,(2) + F(()Z)(\Ill (z) — E) and matrices QEI) should be replaced by Q}l) -
I‘(()Z)AEI). The case k = N is trivial.

6 DEPENDENCE OF COST CRITERIA ON THRESHOLDS

Having formulas (23)—(29), (35)—(36), we can calculate a value of the
cost criteria for any given set (j, k) of thresholds.
Consequently,

L= (iiﬁi+i%>l, (51)

i=0 i=j

P = (EN: ﬁ,.) 1, (52)

i=0

N
Py = (Z x) 1, (53)

S = 27wk, )1, (54)
R = (7x+ Xn)1. (55)

Substituting (51)—(55) into (1) we have a required dependence. The
problem of determining the optimal set (j*,k*) of thresholds turned
out to be rather trivial.

7 CONCLUDING REMARKS

In this paper, the following results are obtained. The algorithm for
calculating the stationary state probabilities of embedded queue length
for the system BMAP/SM/1/N is obtained. It is simpler than the
known algorithm of Blondia [3] for the special case: the system M AP/
G/1/N. The algorithms for calculating the stationary state probabilities
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of embedded queue length for the system BMAP/SM/1/N and con-
trolled modes of operation are elaborated for two strategies of control.
The first strategy is the threshold combined with the case of instanta-
neous switching. The second strategy is a more general hysteresis strat-
egy with switching times involved. For the latter model, formulas for
calculating the dependence of cost criteria on thresholds are presented.
Two important contributions in comparison to known results are
made in this paper. At first, a more general service process in compari-
son to other papers devoted to operation mode control is considered.
Real-life systems can be described more adequately by it. And the sec-
ond accomplishment is that a controlled system with finite buffer is
investigated. In some real-life systems, the buffer is rather small and
the models with infinite buffer produce not accurate results.

The elaborated algorithms are simpler than those for corresponding
systems with an infinite buffer. The problem of calculating the roots of
an equation in the unit disc is avoided.

We use notation \I/E') instead of its explicit form intentionally. By cor-
responding definitions of these matrices, all our results are easily extend-
able to systems with different kinds of vacations and breakdowns.
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