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Queueing models with controllable service rate play an important role in telecommu-
nication systems. This paper deals with a single-server model with a batch Markovian
arrival process (BMAP) and two service modes, where switch-over times are involved
when changing the service mode. The embedded stationary queue length distribution
and the explicit dependence of operation criteria on switch-over levels and derived.
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1 INTRODUCTION

Queueing models with controllable service rate have many promising
applications for telecommunication systems. For e.g. they can be effi-
ciently used when optimizing the transmission protocols in Integrated
Service Digital Networks (ISDN). In ISDN, information of different
type and value is transmitted simultaneously. So there is an oppor-
tunity to change dynamically the service rate of the priority flows by
using controlled queueing models.

Another example of an effective application of such queues is the
model of satellite business systems, see e.g. [10]. The part of the sat-
ellite bandwidth is strictly shared between the network subscribers.
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The second part can be redistributed dynamically between the sub-
scribers according to their demand. Controlled queues can be used for
the optimal control by the bandwidth sharing and tariff policy
optimization.

Also controlled queueing systems can be applied for the dynamic
restriction of conversation durations in mobile cellular systems when
congestion arises.

There is also a lot of different examples of potential applications of
queueing models with controllable service rate to real-life systems. It
explains the attention that these models received in the literature.

A brief review of papers dealing with the single-server systems with
controllable service rate and Poisson or batch Poisson input was
recently presented by Nobel [19].

But it is known that the real flows in modern communication net-
works are essentially non-Poisson because they have a “bursty” behav-
iour and dependent interarrival times. Combe [1] asserts that the batch
Markovian arrival Process (BMAP) is a good mathematical model for
these flows.

The great practical importance of queues with controlled service
rate and the necessity to take into account the real nature of flows
in communication networks motivates the interest of studying the
BMAP/G/1 type models with controllable service rate. In Dudin [7],
the model with N service modes and multithreshold strategy of con-
trol is investigated. But such strategies are effective only in situations
where the switching of the modes is instantaneous and free of charge.
In the present paper, we consider the system with two service modes
but at the same time we take into consideration switching times and
penalty for switching. We consider a hysteresis strategy of control
instead of a threshold strategy. The hysteresis strategy reacts by
increasing the service rate when the queue length increases (as well as
the threshold strategy), but it is more flexible and does not cause fre-
quent switching.

The rest of the paper is organized as follows. In Section 2, we
describe the model. In Section 3, we derive an expression for the vector
generating function of the queue steady state distribution at service
completion epochs under fixed values of the thresholds (switch-over
levels). In Section 4, we construct the algorithm for calculating the
vector of the embedded queue being empty. In Section 5, we derive the
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precise result for the case when the lower switch-over level is equal to
zero. In Section 6, an expression for the objective function in the
threshold values is given.

2 THE MODEL

Consider a single-server queue whose arrival process is given by a
BMAP. The definition of a BMAP was given by Lucantoni [14,15]. A
BMAP is the natural generalization of a Poisson arrival process, which
is commonly used by the telecommunication engineers.

In the BMAP, the interarrival times of customers are directed by a
continuous time Markov process v,, t > 0 (the underlying or directing
process) with a state space {0, 1,...,W}. A transition from the state v
into the state r may induce the arrival of a batch of customers. The size
of the batch depends on v and r. Let the sojourn time in the state v be
exponentially distributed with the parameter A, >0, v = 0, W. Given
that an arrival takes place at state v, p,,(v,r) is the probability that
the size of the batch arrival is m and the state transition is from v to 7.
We suppose p,(v,r) > 0form>0,v,r =0, W, po(v,r) > 0for r # v,

4 o W
Zpo(l/,r) +Zme(1/,r) =1, v=0,W
=0 m=1 r=0

Introduce matrices D,,,, m > 0, in the following way:

(Do), = =M, v=0,W, (Do), , = \po(v,r), v,r =0, W, v #r,
(Dm)u,r=)‘l/pm(y’r)s mzla Var=0, W

So a BMAP is defined by the sequence D,,, m >0, of (W+1) x
(W + 1) matrices. The matrix D, governs transitions that correspond
to no arrivals, and D,, governs transitions that correspond to arrivals
of batches of size m. The matrix D, is a stable matrix, so the matrix
—Dy! exists and is nonnegative [14].
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Define
D(z) =Y Duz", |z|<1, D= Dy,
m=0 m=0

© _ e
B:ZmDm, D:Zm(m—l)Dm.
m=0

m=0

Let X be the stationary probability row-vector of the Markov chain v,.
It satisfies the equations XD =0, X1T = 1, where 1 is a row-vector
consisting of W+ 1 I’s; T is the symbol of transposition.

The intensity of the input A is defined by the formula

A=XD1", (1)

where A\ ™! is the mean interarrival time.

The system has unlimited waiting space and two service modes.
These modes are alternately employed according to the number of cus-
tomers presented at the service completion epochs. When the rth mode
is employed, the service time has a distribution function B,(¢) with a
Laplace—Stieltjes transform f,(s) = J;° exp(—s)dB,(¢) and finite
initial moments bﬁ,') = f(;” "dB.(t), n=1,2, r=1,2. The system can
switch from one mode into another only at the service completion
epochs. A switch-over time is involved when the system switches from
the rth mode into the other. This time has a distribution function G,(¢)
with a Laplace—Stieltjes transform g,(s), r = 1, 2. During the switching
time, the service of customers is suspended.

The following cost criteria is imposed on the model:

I=a)L+ c Py + c Py +dM, (2)

where L is an average queue length at service completion epochs, a is a
holding cost, P, is the average fraction of time, when the rth mode is
used, ¢, is the cost of rth mode per time unit, » = 1,2, M is the average
number of mode switches per time unit, d is the fine per switch.

We suppose that a>0, d>0, ¢;<cp, p;>py, where p, = Abg’),
r = 1, 2. Under such conditions the problem to determine the optimal
switching strategy is not trivial. We find the optimal strategy in the
class of so-called hysteresis strategies. This class is defined as follows.
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Two nonnegative integers j and k, j <k, are fixed. They are called
switch-over levels or thresholds. Let the queue length at the given
service completion epoch be equal to i. If the following inequality: i <j
holds, the system will operate in the first mode. If i > k, then the sys-
tem will operate in the second mode. And the system keeps the current
mode in the case j < i< k.

The optimality of hysteresis strategies in the class of Markov
homogeneous strategies is proved only in some basic cases, see e.g. Lu
and Serfozo [13], Rykov [21]. But nevertheless, it is reasonable to use a
hysteresis strategy of switching when the fine d is positive. So we will
restrict ourselves by this class of strategies. Thus we have to indicate
the optimal values (j*, k") of the thresholds, which provide the mini-
mal value cost criteria (2). To do this, we elaborate the algorithm for
calculating the stationary queue length distribution under the arbitrary
set (j, k) of thresholds and give the formulas for calculating the value
of the cost criteria.

The analogous problem was solved for the M/M/n system by Dudin
[2], for the M/G/1 system by Dudin [3], Yamada and Nishimura [23],
Nishimura and Jiang [17], for the M*/G/1 system by Dudin [5], Nobel
[19], Nobel and Tijms [20].

3 STATIONARY QUEUE LENGTH DISTRIBUTION

Let the thresholds (J, k), 0 <j <k, be fixed. Let ¢, be the nth customer’s
service completion epoch, i, be the number of customers in the
system at the moment ¢, + 0, w, be the mode, which was in force at the
moment ¢, — 0, and v, be the state of the arrival directing process v,
at the moment ¢,,.

The three-dimensional process {i,,w,,Vv,} is a Markov chain.
Using the result of Dudin and Klimenok [4,6] and the result of Gail
et al. [8,9], it can be shown that the necessary and sufficient condition
for the existence of the stationary state distribution of this Markov
chain is

p2 < L. A3)
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Let this inequality be fulfilled. Then the following limits exist:
w(,v)=lim P{li, =i, v, =v,w, =1}, i>0,
n—00

x(i,v) = nll_)rgo Pli,=i, vy =v,w, =2}, i>],

P{(i,v,w) — (Lr,@)}

="1Lngop{in+l =1, Upy1 =7, Wny :wlin:i» Up =V, w,,=w},

v,r=0,W, [>max{0,i—1}, i>0, wwow=1,2.

Define

Bu(~D(2)) = /0 " P 4B, (1),
gn(—D(2)) = / " PN dGn).
0

It is easy to verify, that the matrices W,('"), I‘f'") which are defined as
follows:

io‘, W™z = B,,(~D(2)),

=0

fj "7 = g(~D(2))

=0

have the following probabilistic meaning: the (v, r)th entry of matrix
W,(m) (F;m)) is the probability of the following event. The process v,
transits from the state v into the state r and / customers arrive into the
system during the customer processing, which is performed in the mth
mode (during the switching time from mth mode into the other).
Because the matrix exponent does not possess certain nice properties
of a scalar exponent, the problem of determination of the matrices
W,('"), I“f'") appears to be rather difficult. The examples of solving this
problem for some partial cases can be found in Dudin [7]. Here we
consider these matrices to be known.

Taking into account the above mentioned reasons, the formula of
composite probability, and the fixed strategy of control, the following
lemma can be proved.
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LEMMA 1| The transition probabilities P{(i,v,w)— (l,r,0)} of
Markov chain {i,, v,, w,} in the case j > 0 are defined as follows:

P{(z v, D)= r, D}, 1> 0—1,i>0, is the (v, r)th entry of the matrix
WI l+l’
P{O,v, )= (Lr,1)}, 1> 0,is the (v, r)th entry of the matrix

I
=Dy Y Din W
i=0
P{(i,v,2)—>(,r,2)}, 1> i—1, i>j+1, is the (v,r)th entry of the
matrix W,(_zi 1

P{i,v,)>(,r,2)}, [ >i—1,i>k+1, is the (v,r)th entry of the
matrix

I+
O] 2)
ZF Wl+1 m

m=i

P{(j,v,2)—> (,r, D}, [ > j— 1, is the (v, r)th entry of the matrix

A @) ()
Z Fm—j Wl+1~m‘

m=j

In the case j =0 only the last transition probability is changed. Here

P{(0,v,2) = (l,r,1)}, 1 > 0, is the (v, r)th entry of the matrix

—F(zDOIZD,HW +Zr wi .
i=0

Introduce into consideration the following row-vectors:

= {n(1,0),n(/,1),...,7(l, W)}, 1>0,
X = {x(L0), x(L1),....x(LW)}, 1>].

Here we consider only the case j> 0. The results for the case j=0 will
be given in Section 5.
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It is easy to see that the vectors 7, ¥, satisfy the following system
of equations:

! 1+1
) = 7?0(—1)61 ZD,-HW}_‘,?) +y T Wl 1=07-2, 4
i=1

i=0

7?1=7?0< D' ZDMW/ ,> +Z”1W1 i+1

i=0 i=1

Z Wi, =7 TE-T, (5)
m=j
k
ﬁl:ﬁO( DO ZDI‘HWI l) Z l—l+1
i=0 i=1
I+1 S
+>—<'/ZF'"—./'W1+1—W 1>k, (6)
m=j

ZX’ l~1+l’ :j’k"—l’

i=j+1
oy L N = S )

X = z XWiii+ Z ﬁiZFm_iW[H_m, [>k. (7)
i=j+1 i=k+1  m=i

Introduce the partial generating functions

k 00 00
M) =) 77, Thz)= ) 7z Kz)=> %7, |4<1
i=0 i=k+1 i=j

THEOREM 1 The partial generating functions Ti(z), T,(z), K(z)
satisfy the following equalities:

k k—j
)= (Z Fiz' — v(k,)) Z Q,z’“), (8)
i=0

1=0
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Ml (2) = i (2)(B1(~D(2)) — Ez)z™'

+ 7o(—Dy ' D(z) + 2/v(k, j)g2(—=D(2))Bi (~=D(2))z"",  (9)
K(z) = (7ov(k, )z’ — Ta(2)g1(—D(2))) B2(~D(2))
x (B2(—D(2)) — zE)™". (10)

Here
e matrices F;, [ = 0, k, are defined by the recurrent relations

Fy =E,
1 i 1
Fiyy = (F, +D5' Y D W) - ZEW,<12+1> (wi") ", 1z
i=0 i=1
(11)
o Eis(W+1)x (W+1)identity matrix;
e matrices S are defined as follows:
i
=) IO, (12)
r=0
where matrices Q; are defined by the recurrent relations
Q=E Qu=F-D;'Y DL, 1>1; (13)
r=0
o the matrix v(k,j) is defined by the formula
V(k,j) = Fk+lQ/:_]j+1' (14)

Proof We use the matrix analogue of the principle of disregarding,
which was formulated for the scalar case in Dudin [5].

Principle of disregarding. To find the form of the vectors 7, | = 1,1,
up to the value of vector 7, we can take into consideration only the
first i equations of the system (4), i = 1,j — 1. To find the form of the
vectors 7, [ = j, m, up to the values of vectors 7, Xj» We can take into
consideration only system (1) and Eq. (§) for i =j — 1,m — 1. In both
cases we can disregard the tails of the systems (4), (5) and even we can
change the tails temporarily.
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Apply this principle to the system (4). Set temporarily j=oo and
introduce the temporary generating function

(&
(Z) = Zﬁlzl.
=0

Multiplying Eq. (4) by the corresponding degree of z and summing up,
we derive the following expression for the function II(z):

mb

fi(z) = 7Dy D(2) B (~D(2)) (Bi(~D(2)) — zE) ™. (15)

The matrices F; are the coefficients of the expansion in series of the
matrix D;'D(z)81(—D(2))(Bi(—D(z)) — zE)”". They satisfy the sys-
tem (11). Formula (15) makes clear the probabilistic sense of the
matrices Fj: they coincide with the corresponding matrices in the
following representation:

m=7F, [>0,

of a stationary state probabilities of a classic BMAP/G/1 system
operating in the first mode, see Lucantoni [14,15].

Now we recall, that system (4) actually holds only for / = 0,j — 2, so
the representation

) = Tk (16)

for our system is valid only for / = 0, — 1.
Further, consider systems (4) and (5). Set temporarily k=00 and
introduce a temporary generating function

7T[ZI.

jun Y

NgE

() =

-~
Il
o

Multiplying Eqs. (4) and (5) by the corresponding degree of z and
summing up, we obtain the following expression for the function II(z):

Ii(z) = 7Dy D(2)B1 (~D(2)) (61 (~D(2)) — 2E)”"
~ X2/82(~D(@)Bi (D) (B(~D(2) —zE) . (17)
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Expanding (17) in series, we have the following expression:
Ty = ToFj — X, (18)

where the matrices €2, are defined by formulas (12) and (13). Recall that
system (5) is actually valid only for / = — 1,k — 1. We see that (18) is
valid for / = 0,k — j.

Thus, from (16) and (18) we deduce

k k—j
Mi(z) =7 Y Fiz' =%,y uz'V. (19)
i=0 =0

To find the relationship between 7y and x;, we use Eq. (6) for /=k.
By substituting (16) and (18) into this equation and taking into
account the recurrent relations (11) and (13), after some algebra we
have the relation

Xj = Tov(k,j), (20)

where the matrix v(k,j) is defined by formula (14). Substituting (20)
into (19), we have proved formula (8).

Multiplying systems (4)—(6) by the corresponding degree of z and
summing up, we prove formula (9). By analogy we have (10) from
system (7).

So, Theorem 1 is proved.

Introduce also the following stationary probabilities:

R(i,v) = }Lnolo P{i, =i, vy, = v},

the vectors R; = (R(7,0), R(i, 1), ..., R(i, W)) and the vector generat-
ing function

ko)=Y R

It is easy to see, that R, = 7; + X; and hence

R(z) = T, (2) + Ta(2) + K(2).
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So, it is very easy to verify the validity of the following statement:

COROLLARY  The vector generating function R(z) is defined as follows:

=

R(z) = 7'T’O{DEID(Z)/% (=D(2)U(2) + 2/v(k. /) [B2(~D(2))
X (B(=D(2)) = 2E)”" = g2(=D(2))B81(~D(2)) U(z)]

+
=0

koo k) '
Z Fiz' —v(k,j) le’“}
=0

X (E = (Bi(=D(2)) - EZ)U(Z))}, 21

where U(z) = (2E — (E — g1(— D(2)))B2(— D@))(Ba(— D(z)) = zE) 'z
The generating function R(z) of the queue length stationary
distribution:

o0
R(z) = ZRiZi, Ri= Jlim Pli, =i}
i=0

is defined as follows:
R(z) = R()17.

Formulas (8)—(10), (21) in the scalar case coincide with the corre-
sponding formulas in Dudin [5]. In that case they almost completely
define stationary state probabilities because the probability 7y of the
system being empty is defined from the normalization condition rather
simply. In our case the problem is not so simple because we have the
vector 7y with W+ 1, still unknown, entries and we have to find its
value.

As mentioned in Dudin [7], there are two possible ways to determine
the vector my: the approach of Neuts [16] and the approach, which
exploits the analyticity of corresponding generating function in the
unit disc. As in Dudin [7], we follow the second way.
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4 DETERMINATION OF THE VECTOR 7

To develop the algorithm for finding the vector my, we need some
preliminary considerations.
Using (8) and (9) in (10), we derive the formula

—

K(z)(B2(=D(2)) — zE)
—Wo{vkj (ZFZ —vkj ZQ[Z[‘H) ,81 ())—ZE) -l

0
+(=Dy'D(z) + 2/v(k,j)g2(=D(2))) 81 (—D(2))z"'

X g (—D(Z))}ﬂz(—D(Z))- (22)

It follows from (22) that

K(z) = Wo{v(kd

kj
(Z Fiz'—v(k,j ZQIZ/H) (B1(=D(z))—zE)z

=0

+(=Dg' D(2) + 2/v(k, ))g2(=D(2)))B1 (= D(2))z”"!
X gl(—D(Z))}ﬂz(—D(Z))(ﬂz(—D(Z)) —zE)". (23)

Define Q(z) the adjoint matrix to the matrix 8,(—D(z)) — zE, that is,

0(2) = (B(~D(z)) — 2E)™" - det(62(~D(2)) - zE).

The equation
det(8,(—D(z)) — zE) =0 (24)

has a simple root z=1 and W roots (taking into account the multi-
plicity) inside the region |z| < 1, if condition (3) is fulfilled. This has
been proved by Klimenok [11] and Galil et al. [8,9]. We denote these
roots in the region |z| <1 as z,, r = 1, m and their multiplicities by k,,
r=Tmk ++ky=
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Because of the function K(z) being analytical in the region |z| < 1,
we derive from (23) the following system of linear algebraic equations
for the components of the unknown vector 7:

" k k—j
T % {{v(k,j)z-/;_ (;Fizi - v(k,j); le£+.i> (B1(=D(z,)) — ZrE)Z,_l

+(=Dy'D(zr) + zf;v(k,j)gz(—D@r)))m(—D(zr))z;'}

X gl(—D(Zr))}ﬂz(—D(Zr))Q(Zr)}e}r =0,

n=0,k -1, r=1m, (25)

where e is (W + 1)-vector (1,0,...,0).

According to Gail et al. [9], it can be shown that Eq. (25) are linearly
independent. So we have system (25) of W linear independent equa-
tions for W+ 1 entries of the vector 7). Now we need only one inhomo-
geneous equation. To obtain this equation we perform the following.

Introduce into consideration the matrices Bﬁ,’,’), GS,',’), m=1,2,
n=1,2, which are defined as follows:

Bn(=D(2)) = zE = fu(—D) — E+ (z — 1)B)
+(z— l)zBff) +o(z— 1)2,
gm(—D(z)) — zE = gm(—-D) — E+ (z — I)GS,:)

+(z=1)*G? + oz - 1)~

The problem of finding the matrices B, G can be solved by using
the technique of eigenvalues as in Nishimura and Sato [18] under the
conditions that the eigenvalues of D are simple and D(z) is analytic in
a neighbourhood at z=1. This assumption is not crucial in applica-
tions. Note that 8,,(—D)1T =17, g,(—D)1T =1". Formulas for calcu-
lating the vectors Bﬁ,’f)lT, GS,',')IT are given in Dudin [7] in the same
partial cases.

Expanding (22) in powers of (z— 1), multiplying it by 17, and
equating the coefficients under corresponding degrees of (z — 1), we
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have the following relations:
KRBT
= ir'o{Dgl(D + DB(II) + DBi(—D)Ny) — v(k,j)
x (Ny = B +2E + g2(~D)Bi1(~D)Ny)
k k—j
_ (Z Fi—v(k,j)y Q,) ((6i(~D) — E)N; + Bg”)}ﬂ,
i=0 =0
(26)
where

N =6 +g(-D)B, N,=6 +g(-D)B,

and
BB = —K(1)BP1T + 7pv(k, ) (Bgz> + B (’; I)E) 17
— {0 [1(-D)BY + (61" + E) (E+ B") + 6]
+1i4(1) [o1(=D) (E+ B ) + GV + E| +41T5(1) J1™.
(27)

Here ' is the symbol of derivative.
We can calculate the vectors Tiy(1), Tij(1) and the number Ii5(1)17
in (27) using the following formulas:

I,(1) = I, (1)(81 (D) — E)
+ @o(—Dy' D + v(k,))g2(—D)) A1 (—D), (28)
()17 = Zov(k, )1,

where

K k=
=7 |y Fi—v(kj)) Q/} ; (29)
=0

1=0




270 A.N. DUDIN AND S. NISHIMURA

Iy(1) = I (1)(8: (~D) — E) + i (1)(B\" + E— 61(~D))
+o[(—Dy ' D + jv(k, j) + v(k,/)(GS + E)) By (~D)
+(=Dy' D + v(k,j)g2(~D))(B\ + E~ Bi(~D))],  (30)

where
. k k—j
I (1) = 7 {Z iF; — v(k, ) Z(1+1’)91},
i=0 1=0
T = —2{ﬁ;(1)1T — 1 ()BT — 13, (1) BP1T

{40! (5420 (5 ) + 2007

(k) [J(E+6)+ 6P+ jea(-D) (E+ B)

+(6+ E)(E+ BY) +j——(j; Vg, gz(—D)Bgz)]}lT}-
(31)

Now we are ready to describe the algorithm for determination of the
vectors 7o, 7, [ > 1, 111 (1), IIx(1), I?(l), I_I”l(l), IT5(1), IZ"(I).

The Algorithm

Step 1 Set z=1 in (22) and consider (22) as the system of linear
algebraic equations for the entries of vector K(1). The matrix
B2(=D) — E of this system is singular. Replace one equation of this
system by Eq. (26). Inverting the matrix of such modified system, we
obtain the following relation:

K(1) = 7 H, (32)

where H is a known matrix.

Step 2 Taking into account (28), (29), (32) and the normalization
condition, we have the following equation for the entries of the
unknown vector 7:

7r0<H+vkj (ZF—vkj kX:Q,)) = (33)

=0
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Solve systems (25) and (33) and obtain the value of vector 7.

Step 3 Using (16) and the known vector 7, obtain the values of
the vectors 7; forany [, [ > 1.

Step 4 From (32), (28) and (29) obtain the values of the vectors
1 (1), (1), K(1).

Step 5 Differentiate Eq. (22) and set z= 1. Consider this equation
as the system of linear algebraic equations for the entries of the vector
K'(1). Replace one equation of this system by Eq. (27). The vectors
[/ (1), Ti5(1) and the number T14(1)17 are calculated from (30) and
(31). Solve the modified system and obtain the value of the vector
K'(1).

The End

Having formulas (8)—(10) and the value of the vector 7y, which was
calculated by means of our algorithm, we solved the problem of
determining the stationary state probabilities of the embedded Markov
chain {i,, v,, w,} for any fixed set of the thresholds (j, k), 0 < j<k.

5 THE CASE j=0

Above we calculated the stationary state distribution in the case j > 0.
The case j=0 requires special consideration because the probabilities
P{(0,v,2)— (l,r, 1)} have now another form (see Lemma 1). But not-
withstanding these special considerations, we showed that the result
coincides with the result in the case above up to some small modifi-
cations. Namely, in the case j =0 we have to write

g1(=D(2)) — T¥'Dy' D(z) instead of g,(—D(z)),
g:(—=D) —TPD;'D instead of gy(—D),
Q- F(()z)Fl instead of €,

G —1?D;'D instead of G,

G(Zz) - I‘((,Z)Da 'D/2 instead of ng).

By making these modifications, we obtain the stationary state distribu-
tion for j =0 from the general formulas above.
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6 CALCULATING THE VALUE OF THE COST CRITERIA

Having available the values of vectors 7, II; (1), I, (1), K(1), I} (1),
I, (1), K'(1) under the fixed values of thresholds (j,k), we can
calculate the value of the cost criteria (2), which corresponds to this set
of thresholds. The formula for the calculation of the mean queue
length L is evident:

L= (T (1) + (1) + K'(1)™. (34)

By exploiting the ergodic theorems for Markov chains, see e.g.
Skorokhod [22], and the strong law of large numbers, see Kolmogrow
[12], it can be shown that

Py = E(1B®, P =1-P, (35)
It is easy to see that M = 2\,1" or
M = 2X7v(k, j)17. (36)

Substituting (1), (34)—(36) into (2), we get the value of the cost criteria
(2). Having the possibility to calculate the value of criteria (2) for any
fixed (J, k), practically we have an opportunity to find the optimal set
(j*, k") of thresholds.

Note, that the most costly part of the algorithm — calculating the
roots of Eq. (24) — is implemented only one time, because of (j, k) not
being involved in (24).

7 CONCLUSION

Throughout this paper, we have studied the controlled queueing model
with two service modes. This model can be widely used by practical
engineers to optimize the processing of the real-life systems when it is
possible to handle the demands by means of fast and expensive or slow
and cheap tools. We offer an algorithm to calculate the optimal strat-
egy for dynamically changing the tool for processing the demands in
accordance with the queue length. It allows to handle the trade-off
between the mean queue length and the cost of lending the tools. The
model of the input flow is more flexible than the stationary Poisson
input which is used by the engineers traditionally.
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