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The mixed problem for the Helmholtz equation in the exterior of several bodies
(obstacles) is studied in 2 and 3 dimensions. The Dirichlet boundary condition is given
on some obstacles and the impedance boundary condition is specified on the rest. The
problem is investigated by a special modification of the boundary integral equation
method. This modification can be called ‘Method of interior boundaries’, because
additional boundaries are introduced inside scattering bodies, where impedance
boundary condition is given. The solution of the problem is obtained in the form of
potentials on the whole boundary. The density in the potentials satisfies the uniquely
solvable Fredholm equation of the second kind and can be computed by standard
codes. In fact our method holds for any positive wave numbers. The Neumann,
Dirichlet, impedance problems and mixed Dirichlet—Neumann problem are particular
cases of our problem.
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1. INTRODUCTION

We study mixed problem for the propagative Helmholtz equation in
the exterior of several bodies (obstacles) in 2 and 3 dimensions. The
Dirichlet boundary condition is given on some bodies and the
impedance boundary condition is specified on the rest. Similar
problems model, for example, scattering acoustic waves by several
obstacles and have numerous applications in different fields of physics,
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engineering and industry. The Dirichlet, Neumann, impedance and
mixed Dirichlet—Neumann problems are particular cases of our prob-
lem. The aim of the present paper is to suggest a new approach to
reduction of the mixed problem for the propagative Helmholtz
equation to the uniquely solvable Fredholm integral equation of the
second kind. This equation is very useful in applications, because its
numerical solution can be obtained by standard codes. To derive this
equation we put additional boundaries inside obstacles with impe-
dance boundary condition and specify appropriate boundary condi-
tions on the additional boundaries. The modified problem with
additional boundaries has no more than one solution. We look for a
solution of the problem in the form of single layer potential on
additional boundaries and on the obstacles with impedance boundary
condition. According to [2,12,17], a linear combination of single and
double layer potentials is taken on the obstacles with Dirichlet bound-
ary condition. Substituting the solution in the form of potentials to the
boundary condition we obtain integral equation on the whole bound-
ary. Next we verify that obtained integral equation is uniquely solvable
Fredholm equation of the second kind.

Let us compare our approach with 2 classical methods. In
[4,5,21,22] it was suggested to put infinite number of point sources
inside obstacles with the impedance boundary condition. This method
enables to prove formal solvability theorem, but it was not widely used
in applications, since it is very hard to take into account infinite
number of point sources when finding numerical solution. In our
approach we exchange point sources for distributed sources in the
form of additonal boundaries. In [12,17] it was proposed to look for a
solution of the problem in the form of a linear combination of single
and double layer potentials on the obstacles with impedance boundary
condition. The hypersingular integral equation has been obtained on
the surface of these obstacles. The numerical analysis of hypersingu-
lar integral equations requires special approaches [3,11,13—-15,18-20],
and it is much more complicated than numerical treatment of uniquely
solvable Fredholm equation obtained in our method. In addition, the
normal derivative of the double layer potential may not exist, while
the classical solution exists. Therefore the solution can not be repre-
sented as a sum of single and double layer potentials on obstacles with
impedance boundary condition in certain cases.
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Our method holds for any wave number k € (0, ko], where k, is an
arbitrary fixed positive number. In fact, our method holds for all %,
which may be used for computations in practical problems, since kg
can be taken enough large, i.e. as large as it is necessary. In addition,
the case of sufficiently large k is not interesting in diffraction theory,
since if k — oo, then the diffraction is absent and waves are subject to
the laws of geometry optics such as reflection and refraction.

The problems on scattering waves by a finite number of 2-D non-
closed screens (open arcs) were reduced to the uniquely solvable
Fredholm integral equations in [6—10].

2. FORMULATION OF THE PROBLEM

Let x=(x1,...,X,) € R" for m=2 or m=3, and A is a Laplacian in
R™. We consider exterior open multiply connected domain D C R™
with the boundary I' ="' UT?, where

N N>
M= Jrec®, r2=Jrzec®, xe(o1],
n=1

n=1

and T'},...,T},, I'},...,T}, are simple closed surfaces if m=3 or
curves if m=2 without common points. Each surface (curve) IV,
bounds interior single connected open domain D) (n=1,...,N;

Jj=1,2). Let n, be a unit normal vector to I" at x €I". The vector n, is
an outward normal regarding to D. Consider IV, as a double-sided
surface (curve). By (IY,)” we denote that side of I, which we observe
when facing towards the normal’s tips. The opposite side will be called
(T)*. Accordingly, T = (T')* U(T)*, (V)* = U, (1), j=1,2.

We say that the function W(x) defined in D belongs to the
smoothness class K if

(1) W(x) € C°(D)n C*(D),

(2) there exists a uniform for all x € (I'*)* limit of (ny, Vs W(X)) as
% € Dtends to x e ()" along the normal n,,

(3) VW(x) can be continuously extended on (I'')" from the domain D.

Let us formulate the exterior mixed problem for the propagative
Helmholtz equation in the domain D C R” withm=3 orm=2.
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PROBLEM V To find a function W(x) of the class K, so that W(x)
satisfies the Helmholtz equation in D

AW(x) +K*W(x) =0, k=Rek = const >0, (2.1)

satisfies the boundary conditions

W(x)lxe(l'")+ =f(x)|x€F" (223)
oW (x
(B2 +seow@)| =S @20)
Ny xe(r2)*
and meets the radiation conditions at infinity
w=0(|x|""""), g—l’i—/,— ikw =o(|x|"™%)  (23)

as |x| = y/x} + -+ x% — oo. The functions g(x) and f(x) are given,
and Im g(x) <0 for any x €2

All conditions of the problem must be satisfied in the classical sense.
By OW(x)/dn, on (I'’)* we mean the limit ensured in the point (2) of
the definition of the smoothness class K. The mixed Dirichlet—
Neumann problem is a particular case of the Problem V if g(x)=0.
Problem V transforms to the Neumann or Dirichlet problem if, in
addition, I'' = ) or I'> = () respectively.

The theorem holds.

THEOREM 1  There is no more than one solution of the Problem V.

Proof Let Wy(x) be an arbitrary solution of the homogeneous
Problem V. Our aim is to show that Wy(x)=0in D.

By C, we denote a ball (circle if m = 2) of the large radius r with the
center in the origin. By Wy(x) we denote a function which is complex
conjugate to Wy(x). Clearly, Wy (x) belongs to the class K. We envelope
r,...,T),. T1,...,T},, by closed equidistant surfaces (contours) [24]
lying in domain D and write energy identity for the domain bounded
by these surfaces (contours) and C,. Then we tend surfaces (contours)
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to I'" and r to infinity. Using smoothness of Wy(x) ensured by the
class K we get

. 2 2
}L%(“V WO"L; (c,nD) ~ 1| WO"LZ(C,OD))

_ 6W0(x) 3W0(X)
= F+W() o, O+ Jim acW() o

= / |Wo(x)|*g(x) ds + ik lim / [Wo(x)[*ds, (2.4)
(1—\1)+ F—00 3C,

where the conditions (2.3) and (2.2) were used. By [---ds we denote
the surface (curvelinear) integral of the 1-st kind. We recall that
Im g(x) < 0 and take the imaginary part in (2.4), then we obtain

/ |W0(x)|2|Img(x)|ds+klim/ |Wo(x)]*ds =0
(F2)+ F—00 ac,

Since k =Re k>0, we have

lim [ |Wo(x)]ds=0,

F—00 acr

and it follows from the Rellich lemma [2,25] that Wy(x) =0 for x € D.
Hence the homogeneous Problem V has only a trivial solution, and the
theorem is proved due to the linearity of the Problem V.

3. THE MODIFIED PROBLEM

In this section we consider the modification of the Problem V which
will be called V,. Recall that in our notations m=3 and m=2
correspond to 3-D and 2-D cases respectively, and D? =TI2 (n=

.,N,), 0D} =T} (n=1,...,N)). In each domain D? we consider a
simple closed surface if m =3 or curve if m =2 of class C>° and denote
it v, (n=1,..., N,). Suppose that v, bounds the interior open single
connected domain D}, C Dﬁ. The surfaces (curves) 7, are chosen in
such a way that for any k from the set Z C (0,00) the following
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Dirichlet problem in Dj;:

u(x) € C°(D) N CA(D}),
{ Au(x) + kK*u(x) =0, xe€ D, (3.1
“(x)lxe'y,, =0
has only the trivial solution (n=1,..., N,).
Clearly, surfaces (curves) -y, can be chosen in different ways. For
example, let

kel =0,k (3.2)

where kg is an arbitrary fixed positive number. For this set Z as -y, we
can take an arbitrary sphere if m =3 or an arbitrary circumference if
m =2 lying in D? with the radius r satisfying the estimation

r< ™ itme=3, <2307
ko o ko

if m=2. (3.3)

Let us show that the problem (3.1) has only the trivial solution for any
k in (3.2). We consider the spectral problem in D},

U(x) € C°(D;) N C*(D),
{AU@}+VU@)=Q x € Dj, (3.4)
U(x)lxey, = O-
The eigenvalues of (3.4) are positive and can be numbered is ascending
order [1, p. 298]. The first eigenvalue of the ball is A\; ==/r. The first
eigenvalue of the circle is A\; = ¢/r, where ¢ 222.4048 is the least positive
root of the equation Jo(z) = 0. Here Jy(z) is the Bessel function of index
zero [1, p. 301; 24]. If A < \(#) then the problem (3.4) has only a trivial
solution. Consequently, the inequality ko < A;(r) ensures that the prob-
lem (3.1) has only the trivial solution for any k in (3.2). This inequality
leads to (3.3).
Instead of ball (circle) we can take as D) an arbitrary single con-
nected domain in D,,, which diameter d satisfies the estimation

1
1 — .
d< n<1+2k3>, (3.5)
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then the problem (3.1) has only the trivial solution for any & in (3.2).
This statement results from [2, Section 3.4, Lemma 3.26].

Thus, below we suppose that the surfaces (curves) 7,...,7yn, are
chosen in the following way.

Each v, (n=1,...,N,) is a simple closed surface if m =3
or curve if m = 2, such that v, C D2n,fy,, is of class C2° and
the problem (3.1) has only a trivial solution for any k
belonging to the set Z C (0, 00).
(3.6)

Consider also one more assumption, where ~v;,...,7y, are taken
constructively.

( Let ko be an arbitrary fixed positive number, and each -,
(n=1,...,N,) is subject to one of two conditions:

(1) ~, is a sphere if m = 3 or circumference if m = 2,

{ Yo C ’Dz,,, and the radius of v, meets inequality (3.3);
(2) v, is a simple closed surface if m =3 or curve if m = 2,

vn is of class C?0,~, C Df,, and the diameter of -, meets
L inequality (3.5).
(3.7)

As indicated above, if (3.7) holds, then (3.6) is satisfied with T = (0, ko).

We put v = UnN;, v, and introduce the unit normal vector n, to «y at
x €. If x €, then the vector n, is an outward normal regarding to
the domain D) bounded by ~,. Consider v, as a double-sided surface
(curve). By v, we denote that side of v, which we observe when facing
towards the normal’s tips. The opposite side of -y, will be called ;. Set
7 = U, 7 and D = U2, (D2\ (D Uw). D' = UL, D

We say that the function W(x) defined in R”\D' belongs to the class
of smoothness Ky if

(1) W(x) € C°(R™\D') N C*(R™\(D' UT'U)),

(2) the points (2) and (3) of the definition of the class K hold,

(3) there exists the uniform for all x € (I'*)” U~ limit of (ny, Vi W(X))
as ¥ € DP° tends to x € (["*)” U~ along the normal n,.
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Clearly, any function of class K, belongs to the class K that is Ko C K.
Now we formulate the modified problem, which we call V.

PROBLEM V In assumption that condition (3.6) holds we must find a
Sfunction W(x) of the class Ko, so that W(x) satisfies the Helmholtz
equation (2.1) in R"\(D' UT U~), meets the radiation conditions (2.3),
satisfies the boundary conditions (2.2) and the additional homogeneous
boundary condition on v~

=0. (3.8)

xey~

(-

By 0W(x)/0n, on v~ we mean the limit ensured in the point (3) of the
definition of the smoothness class K. All conditions of the Problem V,
must be satisfied in the classical sense.

Clearly, any solution of the Problem V is a solution of the Problem V.
Let us prove the uniqueness theorem.

THEOREM 2  If condition (3.6) holds, then for any k € I the Problem
Vg has no more than one solution.

Proof Let Wy(x) be a solution of the homogeneous problem V. Our
aim is to show that Wy(x)=0. As noted above, Wy(x) satisfies the
homogeneous problem V. According to Theorem 1:

Wo(x) =0, xe€D. (3.9)

It follows from the definition of the class K, that Wy(x) is continuous
across I'2. So, Wy(x) satisfies the following homogeneous boundary
value problem in D°:

AWo(x) + K2 Wy(x) =0, xeD’= G(Dﬁ\(@; Um)),  (3.10a)
n=1

Wo(X)lxer> =0, (3.10b)

(aW—O(X) - iWo(x))

oo =0. (3.10¢)

xXey~
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We construct equidistant surfaces (curves) in D° for boundaries I'?
and +, write energy equalities in domains bounded by these surfaces
(curves) and tend these surfaces (curves) to the boundaries [24]. Using
the smoothness properties, ensured by the class K,, we obtain

2
=1V WollL,0) + EIWoll 00

_aW(x)
= 24 d
/I‘Z) Uy~ 0( ) Ony

3W0 (x)
/ a() 252 g

=i[ylW0(x)| ds,

where we applied the boundary conditions (3.10b) and (3.10c). Taking
the imaginary part in the latter identity we have

/ [Wo(x)|*ds = 0,
.

therefore
Wo(x)lxey = 09 (31 1)
and thanks to (3.10c)
O_WQQQ =0 (3.12)
on, xer ) )

The function Wy(x) is continuous across 7y since Wy(x) € Ko. Taking
into account (3.11) we observe that the function Wy(x) satisfies the
following Dirichlet problem in each domain D} (n=1, ..., No):

AWy(x) + E*Wo(x )—0, x €D,
Wo(x)|

xe’yll
It follows from the condition (3.6) that

Wy(x)=0, xe€D, (n=1,...,N,), (3.13)
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therefore

OWo(x)
Ony

=0. (3.14)

xeyt

Joining (3.11), (3.12) and (3.14) we obtain that the matching condi-
tions hold

OWy(x)
on,

_ OWo(x)

Wo()err = Wo(¥)lre - .

(3.15)

xeyt X€Y~

Recall that Wy(x) is twice continuously differentiable and obeys the
Helmbholtz equation in U,],Vil D,z, \"y. Thanks to matching conditions
(3.15), the function Wy(x) can be analytically continued across 7,
because 7 is a set of removable singularities for Wy(x). In other words,
it can be shown with the help of (3.15) and the 3rd Green’s formula
[2,24] that Wo(x) € C3(D?) (n=1,...,N,), and Wy(x) satisfies the
Helmholtz equation (2.1) everywhere in D2, in particular, on +,. As
shown in (3.13), Wy(x) is identically equal to zero in the subdomain of
D?, because D} C D2. At the same time, Wy(x) is analytic in D? as a
solution of the Helmholtz equation [23, Chapter 4, Section 4.4].
According to the method of analytic continuation we can prove that

Wo(x)=0, xe€D? (n=1,...,N). (3.16)

Remark Indeed, we can show that Wy(x°)=0 for any x° € ’Dﬁ. To
prove this we connect x° and a fixed interior point of D, by an arc
lying in Df,. Then we cover the arc by a finite number of balls (circles if
m=2) which lie in Dﬁ. The center of the first ball (circle) is the
mentioned interior point of D). Then balls (circles) go to x°, so that
the center of each ball (circle) is contained in the previous one and
belongs to the arc. The last ball (circle) contains x°. Since Wo(x) is
analytic in Dﬁ as a solution of the Helmholtz equation [23, Chapter 4,
Section 4.4], we expand it in the convergence Taylor series in each ball
(circle). The coefficients of the Taylor series coincide with derivatives
of Wy(x) in the origin. The Taylor expansion in the first ball (circle) is
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identically equal to zero, because Wy(x)=0 in the vicinity of its origin
thanks to (3.13), and so all derivatives of Wy(x) in the origin as well
as Taylor coefficients are equal to zero. Then we sequentially show
that expansions in all other balls (circles) are also equal to zero, since
the vicinity of the origin of each ball (circle) lies in the previous ball
(circle), where Wy(x) is identically equal to zero. Consequently,
Wo(x%) =0 for any x° € D2.

Using (3.9), (3.16) and smoothness of Wy(x) ensured by the class Kq
we obtain

Wo(x) =0 in R™\D' (m =2 or m=23).

Thus, the homogeneous problem Vo has only a trivial solution.
Consequently, the inhomogeneous problem V, has no more than one
solution. The theorem is proved.

4. INTEGRAL EQUATIONS AND THE SOLUTION THE PROBLEM

In the present section we obtain the solution of the Problem Vj in the
form of potentials which density obeys the uniquely solvable Fredholm
equation of the second kind on the total boundary I'U~. As noted
above this solution of the Problem V, is also a solution of the
Problem V.

To prove existence theorem we impose the additional conditions to
the functions in (2.2):

g(x) € CU(T?), (4.1a)
flx) e cMTHNc'T), Xe(o,1). (4.1b)

We look for a solution of the Problem V in the form:

Wi (x) = / u(3)@(x. ) ds,

r2uy

+ /r' w(y) (8—?1—, B i) Py (x,y) dsy, (4.2)
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where y=(yy, ..., m) €T Uy and ®,(x, y) is a fundamental solution of
the Helmholtz equation (2.1) in R™, so that

%Hf)’)(kpc ) ifm=2,
By(x,y) =
K= 1 expiklx )

y X —7] if m=3.

By Hgl)(z) we denote the Hankel function of the 1st kind and index
zero [16,24]

. I o\ =172
M),y \/iexp(lz—m/4)/ IPPRY) it !
Hy'(2) = 7 A exp(—1)t 1+ r de.

We look for the density u(x) of the potential (4.2) in C(I')n
C%I?U~), where the Holder exponent we (0, 1). According to the
properties of potentials [2,6,24,25] the function (4.2) belongs to the class
Ko and satisfies all conditions of the Problem V, except for the
boundary conditions on I'* and ™. To satisfy the boundary condi-
tions we substitute (4.2) into (2.2) and (3.8), use the limit formulas for
normal derivatives of a single layer potential [2,6,24,25] and arrive at
the following integral equations of the second kind for the density u(x):

_ %u(x) + ]F] () ((% -~ i) P (x, y) dsy

+ / HO)®i(x,p)ds, = flx), xeT!,  (43a)
2uy

%N(X) + /F - 1(y) ( ai\_ + g(x)) Pi(x,y)ds,

+ [ 10 (G +509) (o =) Butr) s, = A1), xer
(4.3b)
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- %u(x) + /F o O (5% - i) Di(x, y) dsy
+ /Fl u(y) (Binx - i) (5?‘; - i) Oi(x,y)ds, =0, xev. (44)

Set

0 ifygr!,
6(y,P1)={1 ifﬁilﬂ.

Equations (4.3) and (4.4) can be written in the form of one equation of
the second kind on the whole boundary I'U~y:

300+ [ HOIUC) b, =0, xETUYN  (@5)
ruy

where
Qe (x,p)
~(s0, T 5‘%-1) +(1—-6(y,1"1))><1>k(x,y) it x eI,
= (ainx+g(x)) [((1 — 6y, TH) + 6(y,1“1)<ainy - i))@k(x,y)] if x € T?,
(- i) [((1 — 80T + 6<y,r'>(a% - i))<1>k(x,y>] if x € 7,
e

Since I'' € C*, Puye C*°, the kernel in the integral equation (4.5)
has a weak singularity, and the integral term in (4.5) is continuous on
I'U~ in x (see [2,24]). Therefore, the integral operator in (4.5) maps
C%T U~) into itself. Moreover, (4.5) is a Fredholm integral equation
in C%(" U+), because its kernel has a weak singularity [24].

Let us show that any solution of integral equation (4.5) in C%(I" U~)
automatically belongs to C'*(I'")N C%I™U~) with w e (0,1]. Indeed,
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let wu(x) be an arbitrary solution of the integral equation (4.5) in
Co%("Uy), i.e. p(x) obeys (4.3) and (4.4). The second integral term in
(4.3a) is infinitely differentiable in x, since it does not have singularity
if x=y. According to [2, Theorem 2.15], the first integral in (4.3a) is a
Holder function in x on I''. It follows from the identity (4.3a) for u(x)
that p(x) is a Holder function in x on T'' also (here we take into
account condition (4.1b)). Using [2, Theorem 2.22] we verify that the
first integral term in (4.3a) belongs to C'**(I"") in x for some wy € (0, 1).
Proceeding from the identity (4.3a) for u(x) and taking into account
(4.1) we obtain: u(x) € C*(I'"), where w=min{wp, \}, 0 <w < 1.

So, any solution of Eq. (4.5) in C%I' U~) automatically belongs to
N cr?*uy) with we(0,1). The potential W[u](x) belongs
to the class K, and satisfies all conditions of the Problem V,. We
arrive at

LEMMA Let conditions (3.6) and (4.1) hold. If u(x) € C°(T'U~) obeys
Fredholm equation (4.5), then

(1) pw(x)eC*@HNCc%T?U~y) for some we(0,1);
(2) the potential (4.2) is a solution of the Problem V.

Remark The lemma is true for any £ > 0 in a 3-D case and for any
k> 01in a 2-D case, i.e. we do not require that k € Z in lemma.

Thus, below we look for a solution of Eq. (4.5) in C°(I"U~).

Assuming that condition (3.6) holds, we will show that the homo-
geneous Fredholm equation (4.5) has only the trivial solution for any
k € Z. Let 1°(x) be a solution of the homogeneous equation (4.5), then
it obeys homogeneous equations (4.3) and (4.4). We substitute 4°(x) in
(4.2) and consider a function W[u’](x). On the basis of the lemma,
W[kl)(x) is a solution of the homogeneous problem V,. According to
the Theorem 2, since condition (3.6) holds, this problem has only a
trivial solution for any k& € Z, and we obtain

Wk'l(x) =0 in R"\D' (m=2orm=3).
Recall, W[u’](x) belongs to the class Ko, and so W[u’)(x) €

CoR™\D")YN C2(R"\(D' UT'U~)). Using the jump formulas [2,6.
24,25] for the normal derivatives of the single layer potential on I'*
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and -y we obtain

0 0

W) (x - W) (x = 4°(X)| ez = O,
PV M| =i e
LWl W) = i@l = 0.
an xeyt anx X€Y~ e

Consequently, °(x) =0 for x e U~ and °(x) satisfies the following
homogeneous equation on I'':

—%uo(x) + /1“' 12 (») (5?1; — i)d?k(x,y) ds, =0, xeTl'. (4.7)

To study this equation using the Fredholm alternative we consider the
adjoint integral equation

—lpo(x) +/ P (y) —(2-+i Py(x,y)ds, =0, xeT' (4.8)
2 rt 8nx

where
i
4
1 exp(—ik|x — y|)
v |x -y

HP (klx —y)  ifm=2,
Py (x,y) =
if m=3

is a fundamental solution for Eq. (2.1). Below suppose that p°(x) is an
arbitrary solution of the homogeneous equation (4.8) in C°(I""). Then
the single layer potential

v(x) = v[p’](x) = /F () Pilx,y) dsy € COUR™) N CH(RMTY)

obeys the Helmholtz equation (2.1) in R”\I'' and meets the radiation
conditions at infinity:

kv =o(]x]"), x| — oo, (4.9)

—im 8
v=0"), g
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In addition, 8v/dn, exists on (I'')™ and (I'')” as a uniform (regarding
to x € ') limit in the normal direction. The potential v(x) satisfies the
interior impedance problem in D,ll (n=1,...,Ny):

Av+k*y=0 in D),

ov L I\—
5];+1V——0 on (Fn) . (410)

where (4.10) holds since (4.8) is true. Consider the energy equality for
Eq.(2.1)in D! (n=1,...,N)):

_, . 0v(x) .

2 201,112 2
—Iv + = ds = — ds.
” v“Lz(D,‘,) k “V“Lz(D,',) /(F},)‘ V(x) an, s 1/(”)‘ |v(x)| s

(4.11)

This equality can be derived by the technique of equidistant surfaces
(curves) [24]. Taking the imaginary part in (4.11) we obtain

/ W)Pds=0 (n=1,...,Ny).
@

Consequently
V()| rry- = v(X) I = v() |y =0 (n=1,...,N), (4.12)

because the single layer potential is continuous across I''. From (4.10)
we have

ov
—_— = =1,...,N)). 4.13

Using (4.12) we verify that v(x) obeys the following homogeneous
Dirichlet problem for the Eq. (2.1) in the exterior domain R™\D':

Av+Kk*v=0 in R™\D',
Vl(1~|)+ = 0,
v

y = O(Ix'(|~ln)/2), 0|X|

+ikv = o(|x|"""/?),  |x| — oo.
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One can prove with the help of energy equalities and the Rellich
lemma [2] that this problem has only the trivial solution v(x)=0 in
R™D'. Thanks to existing a uniform normal derivative of v(x) on
('Y* we obtain

Ov

| =0 (4.14)

n*

Using (4.13), (4.14) and the jump relation for the single layer potential,
we obtain

v

on. =p'(x)=0, xell.

(FI)+ 8nx

Hence, p°(x)=0 on I'' and homogeneous equation (4.8) has only a
trivial solution. Proceeding from the Fredholm alternative, the adjoint
homogeneous equation (4.7) has only a trivial solution also, i.e.
p(x) =0 on I''. Therefore .°(x)=0 on ' U~.

Thus, assuming that condition (3.6) holds, we have proved that the
homogeneous Fredholm integral equation (4.5) has only a trivial
solution for any k€ Z. According to Fredholm alternative the
inhomogeneous equation (4.5) is uniquely solvable in these assump-
tions for any fo(x) € C°(T' Uy). We arrive at

THEOREM 3 Let conditions (3.6) and (4.1a) hold. If k € I, then the
Fredholm integral equation (4.5) has a unique solution p(x) € C%(I'U~)
for any fo(x) € C°(T'Uw), in particular, for any fix)e C*T') in (4.6).
If, in addition, condition (4.1b) holds, then the solution p(x) belongs to
(@ N CAT? Uy) with some w € (0, 1).

Recall that condition (3.6) follows from (3.7).

COROLLARY 1  Let conditions (3.7) and (4.1a) hold. If k € (0, ko], then
the Fredholm equation (4.5) has a unique solution p(x)e C%(T'U~) for
any fo(x) e COT' U~), in particular, for any f(x)e C%T) in (4.6). If, in
addition, condition (4.1b) holds, then the solution p(x) belongs to
' (rhn T Uy) with some we (0, 1).
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The last statement of Theorem 3 and Corollary 1 follows from the
lemma. From Theorem 3 and lemma we obtain the solvability theorem
for the Problem V,,

THEOREM 4 If conditions (3.6) and (4.1) hold, then for any k € T the
solution of the Problem V exists and is given by a potential (4.2), where
w(x) is a unique solution of the Fredholm integral equation (4.5), ensured
by the Theorem 3.

As noted above, any solution of the Problem V, satisfies the
Problem V. Therefore the solution of the Problem V, constructed in
the Theorem 4 satisfies the Problem V.

THEOREM 5 If conditions (3.6) and (4.1) hold, then for any k € T the
solution of the problem V exists and is given by the potential (4.2), where
w(x) is a unique solution of the Fredholm integral equation (4.5), ensured
by the Theorem 3.

COROLLARY 2 Let assumptions (3.7) and (4.1) hold. Then for any
k € (0, ko] the solution of the Problem V is given by (4.2), where p(x) is a
unique solution of the Fredholm integral equation (4.5) ensured by the
Corollary 1.

Remark Consider a 3-D case (m = 3). Suppose that in addition to the
condition Img(x)<0, xeI'?, we have Reg(x) >0, x¢ I'?. Then
Theorem 1 holds for k > 0, and Corollaries 1 and 2 hold for k € [0, ko).
This case includes 3-D Neumann problem as well as 3-D mixed
Dirichlet—Neumann problem.

Note that condition (3.7) can be always satisfied.

The Theorem 5 and the Corollary 2 are the main results of the
present paper. Basing on the method of Fredholm integral equations,
we proved the solvability of the Problem V for I'eC* 1%eC*,
g(x) € CUT?), fix)e C" NN COT?). In fact, our proof is valid for
any positive k, since ko can be taken as large as necessary. The method
of hypersingular integral equations of I'? presented in [2,12,17] does
not enable do so, since the normal derivative of the double layer
potential used in this method may not exist under our conditions.
Recall that in the method of a hypersingular integral equation we look
for a solution of the Problem V on I'> as a sum of a single and double
layer potentials.
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The basic idea of our method is such that we introduce the interior
boundary inside interior domains (scatterers) bounded by I'? and
reduce the Problem V to the uniquely solvable Fredholm equation on
the whole boundary. The solution of the problem is represented in the
form of potentials on the whole boundary. From physical stand-point
the single layer potential defined on interior boundaries can be con-
sidered as distributed sources placed inside interior domains (scat-
terers) instead of infinite number of point sources used in [4,5,21,22].

The advantage of our approach is so that the uniquely solvable
Fredholm integral equation (4.5) can be computed by standard codes,
i.e. by discretization and inversion of a matrix. Since our method holds
for any ke (0,ky), where ko is an arbitrary positive number, the
Problem V can be computed for different k£ without any changes in a
computational scheme.
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