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In this paper, the problem of designing observers and observer-based controllers for a
class of uncertain systems with input and state time lags is considered. We construct
delay-type observers in which both the instantaneous as well as the delayed measure-
ments are utilized. Using feedback control based on the reconstructed state, the behav-
ior of the closed-loop system is investigated. It is established that the uncertain
time-lag system with delay observer-based control is asymptotically stable. Expressions
for the gain matrices are given based on two linear-matrix inequalities. A numerical
example is given to illustrate the theoretical developments.
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1 INTRODUCTION

The problem of state reconstruction for linear dynamic systems has
received considerable attention for more than three decades. For deter-
ministic systems with known dynamic models, the celebrated results
of Leunberger [1] have provided the fundamental thrust upon which
the theory of state observers is by now well developed [2]. When the
dynamic models have uncertain parameters, the available results are
limited to some cases including matched uncertainties [3], dyadic-type
uncertainties [4] and norm-bounded uncertainties [5].
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For the case of uncertain dynamical systems with state and/or input
delays, it seems that the results are very scattered. Nonlinear and
insensitive observers have been developed in [6] for linear systems with
mismatched uncertainties and state delays. H .-controllers using full-
order observers have been studied in [7] when the state and the input
delay factors are known. Modal-type observers for time-lag systems
have been developed in [8] and [9]. The present work builds on the for-
going results and extends them. It deals with the problem of designing
observers and observer-based controllers for a class of nominally linear
systems with state and input lags. We construct a delay-type observer
in which both instantaneous and delayed information is used to recon-
struct the state of the system. We then establish that, the uncertain
time-lag system with delay observer-based control is asymptotically
stable. Expressions for the gain matrices are given based on two linear-
matrix inequalities (LMIs). A numerical example is given to illustrate
the theoretical developments.

Notations and Facts

In the sequel, we denote by W' and W ™! the transpose and the inverse
of any square matrix W. We use W >0 (W <0) to denote a positive-
(negative-) definite matrix W. We let 7 be a unit matrix of appropriate
dimensions. Sometimes, the arguments of a function will be omitted in
the analysis when no confusion can arise.

Fact 1 (Schur Complement)

Given the constant matrices €, Q,, €3 where Q; =Q) and
0 < Q, = Q) then ; + Q4Q5!1Q; < 0if and only if

0 Qg - O
[93 —Qz]<0 or [ Qg 0 < 0.
Fact 2

For any real matrices 3, and 3, with appropriate dimensions, it
follows that

YT 4+ 2% <aXiE 4+ a7 '8, a>0.
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Fact3

Let X, ¥, and X5 be real constant matrices of compatible dimensions,
and H(¢) be a real matrix function satisfying H'(¢£)H(t) <+I; 1> 0.
Then for any € > 0, the following inequality holds,

LIS H()E: + SLHU (DR < '8 DB + e D5 ;.

2 PROBLEM DESCRIPTION

In this section, we consider a class of uncertain systems with state and
input lags represented by a state space model of the form:

X(1) = [Ao + AA(1)]x(£) + [Bo + AB(#)]u(1)
+ [Do + AD(8)]x(t — 7) + Eou(t — n), (1)
))x(1), ()
[

y(t) = [Co + AC(2
x(t) =i1(f) VYt € [-max(r,n),0],

where 1€ R is the time, x(¢) € R" is the state, u(f) € R” is the control
input; y(r) € R’ is the measured output, and 7,7 are known constant
scalars representing the amount of delays in the state and at the input
of the system, respectively. The matrices 4,€R"™", B,eR"*",
D, eR™", E,eR™™ and C,eRP*" are real constant matrices
representing the nominal plant with the pair (4,, B,) being control-
lable, and the pair (4,, C,) being observable. The uncertain matrices
AA(L), AB(t), AC(t) and AD(t) are assumed to be represented by

[AA() AB(1)] = HiF(1)[G) G2y AC() = H2F(1)Gr; (3)
AD(1) = HyF(1)Gy;  F'(t)F(t) < I (4)

The initial functions of system (1)—(2) are specified as x, € C([ —,0];
R") and u, € C([—n, 0]; k™).

The problem of interest is to design observer-based controllers for
the time-lag uncertain-system (1)—(2) with norm-bounded uncertain-
ties satisfying (3) and (4).
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Before proceeding further, the following definitions are given.

DEFINITION 1 The uncertain time-delay system (1)—(2) is said to be
robustly stable if the null solution x(f)=0 of (1) with u(t) =0 is globally
uniformly asymptotically stable for all admissible uncertainties satisfy-
ing (3) and (4).

DEFINITION 2 The uncertain time-delay system (1)—(2) is said to be
robustly stabilizable if there exists a feedback controller u(t) = K[x(2)],

such that the resulting closed-loop system is robustly stable in the sense
of Definition 1.

The design objectives are:

(O1) to reconstruct the state x(¢) based on the input and/or output
measurements,

(02) to determine the state-feedback gain matrix such that the closed-
loop controlled system is asymptotically stable,

(O3) to provide an efficient procedure to compute the controller and
the observer gains.

These objectives should be fulfilled for all admissible uncertainties
satisfying (3) and (4).

There are two generic groups of observers that can be used to fulfill
objective (O1). Hence, observers can be classified as delay-less observ-
ers or delay observers.

1. Delay-less Observers These observers are observers that depend
only on the instantaneous input—output measurements. Examples of
such observers can be found in [8—10]. Modal-type observers have
been developed by Levy-Ramos and Pearson [8], and Trinh and
Aldeen [9] for time-lag systems. Jabbari and Schmitendorf [3] have
developed a full state observer for uncertain systems. A delay-less
Leunberger-observer for uncertain systems with input and state delays
has been developed by Mahmoud and Zribi [10].

2. Delay Observers These observers are such that the observer state
depends on both the instantaneous and the delayed input—output
measurements.



DELAY OBSERVER-BASED CONTROLLERS 125

Conceptually, the two groups of observers are different at least from
the amount of input information for which the second group demands
more.

In this paper will concentrate on delay observers for the class of
time-lag system (1)—(2). The rationale behind the construction of these
observers is the desire to utilize all the available input—output instan-
taneous and delayed information in estimating the state variables. In
fact, the use of delayed state in feedback control design has been
shown to provide satisfactory performance [11].

By utilizing all the information at hand (both instantaneous and
delayed) we come up with the generalized full-order linear observer:

X(t) = Ao(t) + Bou(t) + Dox(t — 7) + Eou(t —n) + L{y(t) — CoX(?)],
()

where L € R"*? is the observer gain matrix to be determined later.

Remark 1 There are two possible special cases of observer (5). The
first case is given by:

X(t) = AoR(t) + Bou(t) + Dox(t — 7) + L[y(1) = Cox(0)],  (6)

where L€ R"? is the observer gain matrix. This observer uses the
delayed state measurements. The second observer is such that:

(1) = AoX(t) + Bou(t) + Eou(t —n) + L[y(t) — Cox(1)] ()

where L e R"*? is the observer gain matrix. Note that this observer
uses the delayed input measurements.

The end result of observer (5) is to develop x(¢) as a good replica of
x(). Hence it can be used for state-feedback design. A state-feedback
controller of the form

u(t) = Kx(1), (8)

where K€ R™*" is the feedback gain matrix will be designed such that
the closed-loop controlled system is asymptotically stable.
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3 STABILITY OF THE CLOSED-LOOP SYSTEM
We start by defining the state error e(f) such that:
e(t) = x(1) — x(2). 9)
The error dynamics depends on the type of observer being used. An

augmented system can be formed in the (x,e) space in terms of the
composite state vector

xi(t) = [’ef(’)] € R, (10)
Note that (8)—(10) imply that

u(t) = Kx,(t), (11)

where K,=[K —K]eR™*?". By differentiating (9), making use of
system (1)—(2) in addition to the observer dynamics (5) and manipulat-
ing, we can cast the augmented system into the general form:

Xi(1) = [Ar + AA(0)]x (1) + [B; + AB(1)]ut)

+ [Dy + AD(0)]x,(t = 7) + Equ(t — n), (12)

where
A’zﬁf AO—OLCO]’ B’z[%]’ )
e [B 5] e [2]
AA':LAA(t)A:I(LIZAC(z) g]:[m fIlLHz}F(t)[G' 0L (13
28~ (1500 = L 0% 0
AD,:-il[))Eg g]z[zﬂm)[c} 0]. (17)
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In order to investigate the stability behavior of the uncertain time-
lag system (12), we use the Lyapunov—Krasovskii functional approach
[12] and introduce the following storage functional:

V(x)) = x; () Wix(t) + /0 X (1 + ) Wax,(t + o) da

-T

+/0 xy(t+ B)Wax,(t + B) dB, (18)

n

where the weighting matrices are such that 0 < W; = W} e R¥™,
0< Wy=W,eR™™ and 0< W;=W:eR™. Note that,
V(x,) > 0 for all x(¢) # 0 and V(x,) =0 for x(f) =0. Let

_ (W 0 _ | Wa 0 [wm 0
e A e S L |
(19)

The following theorem summarizes the main result.

THEOREM 1  Consider the system (1)—(2) satisfying (3) and (4) and the
linear observer (5). Then, given T and 0, the closed-loop controlled
system (12) is robustly stabilizable if there exist matrices 0 < P= P',
0<0=0'0< S = Sjt (j=1,...,5) and scalars a; >0, a3 >0, a3 >0
satisfying the following LMIs:

B

AP+PA 4+, © P 3B, E, D,
P =S5t 0 0 0
. <0, (20a
\/§B(t) . 0 -8 0 0 ( )
E! 0 0 -S;' 0
L D! S0 0 0 -5
GG, > 0, (20b)
Wz[ - (X3G3tG3 >0, (ZOC)

W + Wsy +0[|GltG| > 0, (20d)
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and
40+04' +&+0R0 : OK' © Dy |
KQ S 0 | <o,
0 S0 —R{' 0
i D! 0 0 —S;,
where

I} = oy '"H\H| + o5 ' H1H} + o5 ' H3H},
¢ = HY,(H2H},)™" with Hy; = o' HoHY,
A=A, —I,pC, — 211, 00¢' B K + 2B, K,

Ry = 2K'BLpC, + 2CLp' BoK + 4K Bt 00 B, K,
® = —II; + I php'ly, 6= o] HyH..

Moreover, the observer and controller gain matrices are given by

K=S{'B!P,
L= (-2QK"'B! +1I))p.

(21)

(22)
(23)
(24)
(25)
(26)

(27)
(28)

Proof By differentiating (18) along the solutions of (12) using (13)—

(17), the Lyapunov derivative ¥(x,) can be expressed as:

Vix,) < Z()UZ(1),

(29)

where the extended state vector Z(¢) = [x!(f) x!(z — ) x'(¢t — n)]', and

Q=
i IREEDY) . Wi D, 0 . WHEK —WEoK]
IR ' 0 WuD, 0 0
DLW“ 0 : —Wzl + Ot3G;G3 0 0
0 Dwp 0 —Wn ’
KEW, 0 . 0 . —Wy 0
| —K'Elwy, 0 ’ 0 Wy

(30)
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with

T = Wido + A\ Wiy + K'BEWhy + Wi BoK + Woi + Wiy

+a1GltG1 +OL2KtG2tG2K+ wnlly Wy, (31)
Y = —WuBoK + Wil ' Hi(H} — HL') + o5 ' H  H}

+ o5 ' H3 Hy) Wi, — auK'GGyK, (32)
%3 = Wia(4o — LCo) + (Ao — LCo)' Wia + Wiy + W3

+ azK[GzthK+ Wil Wh,, (33)

I = o '(Hy — LH,)(H| — HiL") + o3 "H\H} + o5 ' H3Hj.  (34)

Expansion of 2, leads to

En Ea
_ —_ <0, 35
[:51 :M] (35)
where
En =5+ WinlhhWy, (36)
=5, (37)
E31 = X3+ WiuDo Wy, D Wi, (38)

I, = E,(KW3 KY)E! + Eo(KW5,' KYEL + DS, DL, (39)

A sufficient condition to satisfy (35) is that
21 <0, Z33<0, E3=0. (40)

Choosing K as given by (27), and letting S| = axG3G> and S5 = Wy +
W31 + a1 G{G), the inequality =;; < 0 reduces to

Wi1As +ALW1| + 3W1130S{_IB(§W11 + S5+ Wu(nl +H2)W|1 < 0.
(41)

Pre-multiplying and post-multiplying the above inequality by W',
and letting P = Wﬁl, Sr = Wy — a3G3‘G3, Sy = K(Wﬁl + W3'21)Kt,
we obtain

AoP + PA', + I, + PSsP + 3B,S; ' B! + E,S4E! + DoS; ' Dt < 0
(42)
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which when arranged using the Schur complement formula yields block
form (20a).

From (37), using (32) and setting =5, =0, yields
—2WBoK + W11H1W12—OL1_1W11H1H2tLtW12=0. (43)

By letting Q = W7y, and pre-multiplying the above inequality by W7,
and post-multiplying the result by Wp,', one obtains,

~2B,KQ + 10, — o] 'HIH}L' = 0 (44)
or equivalently stated,
LH; = —2QKtB(§ + II;. (45)

Assuming that H\,H}{, is nonsingular, and letting ¢ = H{,(HixH 1‘2)"1,
one directly obtains L as given by (28).

Finally considering the inequality =Z3; <0. With R, = W3, + Wy,
starting from (38) and using (33), (22)—(26), we get

W|22+2tW12 + Wi®@Wi+ R+ R, + K'S1K
+ W12Do W5, DS Wi, < 0. (46)

Pre-multiplying and post-multiplying the above inequality by W7,
one obtains,

AQ + Q4"+ & + QR0 + QR0 + QK'S|KQ + D,S;' D, < 0. (47)

Inequality (47) can be easily put in the block form (21) by using the
Schur Complement formula.

Remark 2 To implement Theorem 1, we apply the following
procedure:

(1) Read in the data 4, B, ..., Hy,...
(2) Solve inequality (20) for P, then compute the gain matrix K
from (27).
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(3) Solve inequality (21) for Q, then compute the gain matrix L
from (28).

(4) Simulate the performance of system (12) when controller (11) is
used.

COROLLARY 1 Consider the uncertain time-lag system (1)—(2) with
observer (6) and controller (11). The resulting observer-based controlled
system is asymptotically stable with controller gain matrix K as given by
(27) and observer gain matrix L such that:

L= (—20K'B! + 11, + E,S4EL)¢ (48)

where the matrix 0 < Q = Q" satisfies:

r T
A0+01' +®+0QR0Q ° QK' Q D, E,
KQ oSt 0 0

. <0.

0 D0 —R{Y 0 0
D! 0 0 -S3 0

L E! 0 0 0 —S;']

(49)

Proof The proof follows parallel lines to the proof of Theorem 1 with

Eot =35 + WHEGS4E W2, (50)
B3 = 53+ WnEoS4EL Wiy + WiyDoWy) DL Wiy, (51)

and all the other quantities remain unchanged.

COROLLARY 2 Consider the uncertain time-lag system (1)—(2) with
observer (7) and controller (11). The resulting observer-based controlled
system is asymptotically stable with controller gain matrix K as given by
(27) and observer gain matrix L expressed as:

L= (—20K'B{ +1Ij + D,S;' D} )¢ (52)
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where the matrix 0 < Q = Q" satisfies:

(d0+01'+®+0R0 : OK' O D,

KQ o=Sth o0 0 | <0. (53)
0 : 0 —R{' 0
i D! 0 0 -5,

Proof The proof follows parallel lines to the proof of Theorem 1
using

Ep1 = X2 + Wi DoS; ' DLWy, (54)
E31 = 3 + WinDoS; ' D Wy, (55)

and all the other quantities remain unchanged.

Remark 3 1In view of Theorem 1, the results of Corollaries 1 and 2
are expected due to two reasons:

(1) The controller (11) remains the same, hence K must be the same in
all cases.

(2) The change takes place in the expression of L as result of changing
the observer structure. More importantly, it is noted that the more
information used to process the observer dynamics, the lesser will
be the effort to determine the observer gain.

4 SIMULATION EXAMPLE

Consider the following third-order system:

x(1) = [Ao + AA(2)]x(2) + [Bo + AB(1)]u(z)
+ [Do + AD(2)|x(¢t — 7) + Eou(t — 1),
y(1) = [Co + AC()]x(),
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with

[AA(1) AB()] = HiF()[Gi G,], AC(1) = HyF(1)Gy,
AD(t) = H3F(I)G3,

where

Ao=1| 1 =2 —1{; Bo=1{4 3 |[; Co=[1 0 0]

-1 0 1 0.1 05

Do=|1 1 0|; E,=[02 07];

0 0 2 06 02
02 04 ~1.0 0.5
Hi= |03 —04|; Hy=[01 -03; Hy=| 03 05];

0.1 0.2 0 1.0
1.0 05 -1.0 -1.0 -0.5
G = ; Gy = ;
08 -1.0 0.2 -1.0 0.7

04 04 06 0.5sin(2f)  0.3sin(?)
G; = 5 F(t = .
-0.5 0.6 -0.7 —0.4sin(¢) 0.6sin(3¢)

The amount of delays in the state and at the input of the system are
such that 7=0.4 and n=0.2.

It is desired to design an observer-based controller for this uncertain
system. The results of Theorem 1 are used to design the observer-based
controller.

Selecting the scalars «;, o, and a3 such that o =0.0001, oy =10
and a3=1, and then solving the matrix inequality (20) by using the
LMI-Control Toolbox [13] gives:

6052 1951.2 168.0

1729.9 6052 629.4
P= .
629.4 168.0 981.5
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Using (27), the controller gain K is found to be:

K= 0.0002 0.0084 —0.0008
~10.0003 0.0139 —0.0016 |

Then, solving inequality (21) by using the LMI-Control Toolbox

yields:
380.2 423  101.7
Q=423 4132 -40.2].
101.7 —40.2 208.2
Using (28), the observer gain L is found to be:
—1.1454
L= 14073 |.
—0.5684

The performance of system (12) is then simulated using Matlab. The
state trajectories are shown in Figs. 1-3. The error trajectories are
shown in Figs. 4-6. The trajectories of the controller are shown
in Figs. 7-8. From the figures it can be seen that the state and error

3 T T
2
1H i
ol
1t 4
% 0 2 4 6 8 10
FIGURE 1 Trajectory of state one versus time.
0.5
o -
-0.5 R
1+ .
-1.5 1
) . " A . .
-2 0 2 4 6 8 10

FIGURE 2 Trajectory of state two versus time.
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15 T T T T T
1 - -
0.5F 1
o -
0% (] 2 4 6 8 10

1.5 T T T T T
1k 4
0.5 b
0 -
05 L n 2 L 1
-2 0 2 4 6 8 10

-1 . ' L L L

-2 0 2 4 6 8 10

FIGURE 6 Trajectory of error three versus time.
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0.01 T T an T T

0.005 :

-0.005 :

-0.01 E

-0.015 : ' . : -
-2 0 2 4 6 8 10

FIGURE 7 Trajectory of input (component 1) versus time.

0.02 v T a T T

0.01F p

0..

-0.01} -

-0.02 4

L 1 I 1

0 2 4 6 8 10

-0.03
-2

FIGURE 8 Trajectory of input (component 2) versus time.

trajectories converge to zero asymptotically. Hence, it can be con-
cluded that the proposed observer and observer-based controller
work quite well for a class of uncertain systems with input and state
time lags.

5 CONCLUSIONS

This paper has developed a delay-type observer-based controller for a
class of uncertain time-lag systems. It is established that the closed-
loop controlled system is asymptotically stable. The controller and
observer gains are determined by solving two LMIs. Simulation results
are given to support the theoretical developments.

References

[1] D.G. Leunberger, “An introduction to observers”, IEEE Trans. Automatic Control,
16(6), 1971, 596—-602.

[2] O’Reilly, Observers for Linear Systems, Academic Press, London, 1983.

[3] F. Jabbari and W.E. Schmitendorf, “Effects of using observers on stabilization of
uncertain linear systems”, IEEE Trans. Automatic Control, 38(2), 1993, 266—271.



DELAY OBSERVER-BASED CONTROLLERS 137

[4] L.R. Petersen, “A Riccati equation approach to the design of stabilizing controllers
and observers for a class of uncertain systems”, IEEE Trans. Automatic Control, 30,
1985, 904-907.

[5] L.R. Petersen and C.V. Hollot, “High-gain observers applied to problems in
stabilization of uncertain linear systems, disturbance attenuation and H,, optimiza-
tion”, Int. J. of Adaptive Control and Signal Processing, 2, 1988, 347—369.

[6] M.S. Mahmoud, “Output feedback stabilization of uncertain systems with state
delay”, in Analysis and Synthesis Techniques in Complex Control and Dynamic
systems, Vol. 63 of Advances in Theory and Applications, C.T. Leondes (Ed.), 1994,
pp. 197-257.

[7] M.S. Mahmoud and M. Zribi, “H,-controllers for time-delay systems using linear
matrix inequalities”, J. of Optimization Theory and Applications (JOTA), 1999.

[8] J. Levy-Ramos and A.E. Pearson, “An asymptotic modal observer for linear
autonomous time lag systems”, IEEE Trans. Automatic Control, 40(7), 1995,
1291-1294.

[9] H. Trinh and M. Aldeen, “Comments on an asymptotic model observer for linear
autonomous time lag systems”, IEEE Trans. Automatic Control, 42(5), 1997,
742-745.

[10] M.S. Mahmoud and M. Zribi, “Stabilizing controllers using observers for uncertain
systems with delay”, 1999 (submitted).

[11] M.S. Mahmoud, M. Zribi and Y.C. Soh, “Exponential stabilization of state-delay
systems with mismatched uncertainties”, 1999, IEE Proceedings of Control Theory
and Applications.

[12] V. Kolomanovskii and A. Myshkis, Applied Theory of Functional Differential
Equations, Kluwer Academic Pub., N.Y., 1986.

[13] N. Gahinet, A. Nemirovski, A.J. Laub and M. Chilali, LMI Control Toolbox for
Use with MATLAB, The MathWorks, Inc., 1995.



Journal of Applied Mathematics and Decision Sciences

Special Issue on

Decision Support for Intermodal Transport

Call for Papers

Intermodal transport refers to the movement of goods in
a single loading unit which uses successive various modes
of transport (road, rail, water) without handling the goods
during mode transfers. Intermodal transport has become
an important policy issue, mainly because it is considered
to be one of the means to lower the congestion caused by
single-mode road transport and to be more environmentally
friendly than the single-mode road transport. Both consider-
ations have been followed by an increase in attention toward
intermodal freight transportation research.

Various intermodal freight transport decision problems
are in demand of mathematical models of supporting them.
As the intermodal transport system is more complex than a
single-mode system, this fact offers interesting and challeng-
ing opportunities to modelers in applied mathematics. This
special issue aims to fill in some gaps in the research agenda
of decision-making in intermodal transport.

The mathematical models may be of the optimization type
or of the evaluation type to gain an insight in intermodal
operations. The mathematical models aim to support deci-
sions on the strategic, tactical, and operational levels. The
decision-makers belong to the various players in the inter-
modal transport world, namely, drayage operators, terminal
operators, network operators, or intermodal operators.

Topics of relevance to this type of decision-making both in
time horizon as in terms of operators are:

e Intermodal terminal design

e Infrastructure network configuration

e Location of terminals

e Cooperation between drayage companies

o Allocation of shippers/receivers to a terminal

e Pricing strategies

e Capacity levels of equipment and labour

e Operational routines and lay-out structure

e Redistribution of load units, railcars, barges, and so
forth

e Scheduling of trips or jobs

e Allocation of capacity to jobs

e Loading orders

e Selection of routing and service

Before submission authors should carefully read over the
journal’s Author Guidelines, which are located at http://www
.hindawi.com/journals/jamds/guidelines.html. Prospective
authors should submit an electronic copy of their complete
manuscript through the journal Manuscript Tracking Sys-
tem at http://mts.hindawi.com/, according to the following
timetable:

Manuscript Due June 1, 2009

First Round of Reviews | September 1, 2009

Publication Date December 1, 2009

Lead Guest Editor

Gerrit K. Janssens, Transportation Research Institute
(IMOB), Hasselt University, Agoralaan, Building D, 3590
Diepenbeek (Hasselt), Belgium; Gerrit.Janssens@uhasselt.be

Guest Editor

Cathy Macharis, Department of Mathematics, Operational
Research, Statistics and Information for Systems (MOSI),
Transport and Logistics Research Group, Management
School, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel,
Belgium; Cathy.Macharis@vub.ac.be

Hindawi Publishing Corporation

http://www.hindawi.com



http://www.hindawi.com/journals/jamds/guidelines.html
http://www.hindawi.com/journals/jamds/guidelines.html
http://mts.hindawi.com/
mailto:Gerrit.Janssens@uhasselt.be
mailto:Cathy.Macharis@vub.ac.be

	1Call for Papers4pt
	Lead Guest Editor
	Guest Editor

