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A problem on electric current in a semiconductor film from an electrode of an arbitrary
shape is studied in the presence of a magnetic field. This situation describes the Hall
effect, which indicates the deflection of electric current from electric field in a semi-
conductor. From mathematical standpoint we consider the skew derivative problem for
harmonic functions in the exterior of an open arc in a plane. By means of potential theory
the problem is reduced to the Cauchy singular integral equation and next to the Fredholm
equation of the 2nd kind which is uniquely solvable. The solution of the integral equation
can be computed by standard codes by discretization and inversion of the matrix. The
uniqueness and existence theorems are formulated.
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1 INTRODUCTION

It is well-known [18-21] that the direction of an electric current and the
direction of an electric field do not coincide in a semiconductor in the
presence of a magnetic field. This effect has been found by Hall [17].
Mathematically the Hall effect leads to a skew derivative boundary
value problem [5,8,9,23—25]. An electrode in a semiconductor can be
modeled by an open arc of an arbitrary shape. So, the problem on an
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electric current from such an electrode in the presence of a magnetic
field results in the skew derivative problem in the exterior of an open
arc in a plane. Similar problems were not treated before, while Dirichlet
and Neumann problems in the exterior of an open arc as well as skew
derivative problems in domains bounded by closed curves were actively
treated. In general, boundary value problems with an open boundary
are different from those with closed boundary, because different
methods are used in their analysis, so that the number of rigorous
results is much less in case of an open boundary. Nevertheless, Dirichlet
and Neumann problems in the exterior of an open arc were considered,
for example, in [1,4,10—13,15,16] with the help of classical single and
double layer potentials.

The skew derivative problems for an open boundary are too com-
plicated to be effectively studied by a classical approach. To solve the
2-D skew derivative problem outside an open arc by a classical approach,
we must look for a solution of this problem by a linear combination
of single and double layer potentials, because the problem cannot be
solved by only one of them. In this way we arrive at a very complicated
system of boundary integro-differential equations. The system contains
hypersingular integrals, Cauchy singular integrals, compact operators
and the derivative of the density of the double layer potential. Clearly,
the system is too complicated to be studied by standard methods. The
basic lack of the classical approach is so that single and double layer
potentials have different orders of singularities at the boundary. In
the present paper we suggest to solve the 2-D skew derivative problem
outside an open arc in another way, namely, with the help of the
nonclassical angular potential, which has the same order of singularity
as a single layer potential [2,6,7]. Looking for a solution of the problem
as a sum of angular and single layer potentials, we reduce the problem
to a Cauchy singular integral equation with some additional condi-
tions. By inversion of Cauchy singular operator, we obtain the uniquely
solvable Fredholm equation of the second kind. Therefore the solution
of the problem can be computed by standard codes.

2 FORMULATION OF THE PROBLEM

In Cartesian coordinates x = (x;,x,) € R*> we consider plane semi-
conductor film. Suppose, that the constant magnetic field acts in the
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normal direction to the plane (xi, x;). The projection of the magnetic
induction onto the Ox; axis is M. The equations for the electric current
in the semiconductor film in a linear case [5,18—21] are

divl=0, J=AE, E=-Vu

Here J = (J1,J5) is the current density, E is the intensity of an electric
field, u is the electric field potential, A is the conductivity tensor

Ca (1 g
A‘1+ﬂ2(—ﬂ 1)’

where 7 is the conductivity of the semiconductor, if the magnetic field
is absent, §=aM, « is the mobility of the carriers. Suppose, that nis a
positive constant and 3 is a real constant.

We note, that our equations describe the Hall effect [17—21], that is
the directions of E and J do not coincide in the presence of a magnetic
field.

By a simple open curve we mean a nonclosed smooth arc of finite
length without self-intersections [11].

We consider an electrode placed in the unbounded semiconductor
film. The electrode is modeled by a simple open curve I' € C*>*, where
the Holder index A € (0, 1].

We assume that the curve I' is parametrized by the arc length s:
I'={x: x=x(s) = (x1(s), x2(s)), s € [a, b]}. Therefore points x €' and
values of the parameter s are in one-to-one correspondence.

We denote the tangent vector to I' at the point x(s) by 7, = (cos a(s),
sin a(s)), where cosa(s) = x/(s), sina(s) = x5(s). Let n,=(sin ofs),
—cos a(s)) be a normal vector to I' at x(s). The direction of n, is chosen
such that it will coincide with the direction of 7, if n, is rotated
anticlockwise through an angle of 7/2.

Suppose that the normal current density is specified at the electrode
T'. According to equations written above, this leads to the skew
derivative boundary condition in terms of the electric potential u(x):

o ou ou
()l (er = — 37 (a; + ﬂg;;)

g
= —ﬂ—ﬁjf(s),

x(s)el’

where f{(s) is a function, specified on [a, b].
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The equations presented above are transformed to the Laplace
equation with respect to u(x). To give the rigorous mathematical
formulation of the skew derivative problem for the Laplace equation
we introduce the definition of the appropriate smoothness class.

We say, that the function u(x) belongs to the smoothness class K if

(1) u € C°(R?\T') N C2(R?\T"), and u is continuous at the ends of T,

(2) Vu € CO(R2\I'\ X), where X is a point-set, consisting of the end-
points of I', i.e. X = {x(a) U x(b)},

(3) in the neighborhood of any point x(d)€ X for some constants
C>0, e> —1 the inequality holds

|Vl < Clx — x(d)[, (1)
where x — x(d) and d=a or d=b.

Remark In the definition of the class K we consider functions, which
are continuously extended on I from the left and right, but their values
on I' from the left and right can be different, so that the functions may
have a jump on I'.

On the basis of our model we arrive at the skew derivative problem
for the Laplace equation in R*\T.

PrOBLEM U To find a function u(x) of the class K which satisfies the
Laplace equation

Au(x) =0, x € RA\T; A= Oil + (9)262, (2a)
the boundary condition
0 0
(potx(9) + 8 -tx) )| =1 (2b)

and the following conditions at infinity
lu(x)| < Const, |Vu(x)| = o(]x|™"),

(2¢)
x| =1/x3+x3 — oo.

We suppose, that 3 is a real constant. All conditions of the problem U
must be satisfied in the classical sense.



HALL EFFECT IN A SEMICONDUCTOR 87

The Neumann problem for the Laplace equation in the exterior of
an open curve is a particular case of our problem when §=0.

On the basis of the energy equalities [14] we can easily prove the
following assertion.

THEOREM 1 Let '€ C**, A€ (0, 1). If the solution of the problem U
exists, then it is defined up to an arbitrary additive constant.

Proof Let us show, that if uy(x) is a solution of the homogeneous
problem U, then wuy(x)=const. To prove this with the help of the
energy equalities, we envelope I' by a closed contour, tend this contour
to I" and use the smoothness of the solution of the problem U. In this
way we obtain

2 . 2
||V“0”L2(R2\r) = hm ||VMO||L2 C\I)
6u0> / b <6uo>*
= [ u ds — — | ds,
/,, 0 (8nx "0\ on,

where the conditions (1), (2c) are taken into account and C, is the
circle of the radius r with the center in the origin. Besides, in the latter
formula we consider I" as a cut. The side of I" which is on the left, when
the parameter s increases, we denote by I' * and the opposite side we

denote by I' ™. In a similar manner, by the superscripts “+” and “ —”
we denote the limit values of functions on ' and I' ™ respectively.

Using the homogeneous boundary condition (2b) we obtain from
the latter formula

IVl = -] [ 4 (f,;’) ds - / i (5e) )
- s (o)
- ([ua<x<b>>] —[ua<x<a>>] N}=
since uf (x(b)) = uy (x(b)), ug(x(a)) = uy(x(a)), in accordance with
the smoothness properties of the function uy, which belongs to the

class K. Thus, Vuy =0, uy = const and the theorem is proved due to the
linearity of the problem U.
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3 INTEGRAL EQUATIONS AT THE BOUNDARY

Below we assume that f{s) from (2b) is an arbitrary function from the
Banach space C%*[a, b], where the Holder index A € (0, 1].
We consider the angular potential from [2] for the Eq. (2a) on T’

b
W) = —5- [ w0y ao 3)

The kernel V(x,0) is defined (up to indeterminacy 2mm, m=
+1, £2,...) by the formulae

cos V(x,0) = X IRg) y1(9) , sinV(x,0) = X2 = y2(0,

= T = y(0)| ")
where
y(0) = (y1(0),y2(0)) €T,
= 3(0)] = v/ (51 = 21(0))* + (32 = 2(0))*

One can see, that V(x, o) is the angle between the vector m and the
direction of the Ox,; axis. More precisely, V(x,o) is a many-valued
harmonic function of x connected with In|x — y(c)| by the Cauchy—
Riemann relations.

Below by V(x,0) we denote an arbitrary fixed branch of this
function, which varies continuously with ¢ along the curve I" for given
fixed x¢T.

Under this definition of V(x, o), the potential v[u](x) is a many-
valued function. In order that the potential v[u](x) be single-valued it
is necessary to impose the following additional condition:

b
/a w(o)do =0. 4)

Below we suppose that the density u(o) belongs to the Banach space
C¢la,b], we(0,1], g €[0, 1) and satisfies condition (4).
We say, that u(s) € C[a, b] if

u(s)ls — alfls - Bl7 € C*[a, b,
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where C%“[a, b] is a Holder space with the index w and

() eyt = llsls)ls — al®ls = bIl| couia p)-

As shown in [2,6] for such (o) the angular potential v[u](x) belongs
to the class K. In particular, the inequality (1) holds with e= —gq, if
q €(0,1). Moreover, integrating v[u](x) by parts and using (4) we
express the angular potential in terms of a double layer potential

b
) =5 [ p(a)a—i;ln Ix — 3(0)| do, (5)

with the density
oo) = [ s oeab (©)

Consequently, v[u](x) satisfies both Eq. (2a) outside I' and the
conditions at infinity (2c).

Let us construct a solution of the problem U. This solution can be
obtained with the help of potential theory for Eq. (2a). We seek a
solution of the problem in the following form:

ulp)(x) = vlu)(x) — Bwlul(x) + C, (7)

where C is an arbitrary constant, v[u](x) is given by (3), (5) and

b
wlil(x) = =57 [ nlo)nlx = 5(0)| do

Asmentioned above, we will seek p(s) from the Banach space Cy [a,b],
we(0,1],¢g€][0,1). We note, that u(s) must satisfy condition (4).

For such pu(s) the function (7) belongs to the class K and satisfies all
conditions of the problem U except the boundary condition (2b). In
particular, conditions at infinity hold due to (4).

To satisfy the boundary condition we put (7) in (2b), use the limit
formulas for the angular potential from [2,6] and arrive at the singular
integral equation [11] for the density u(s):

_1+ﬁ2/" (o) S X)) 4o ey sean),  (®)

2 x(s) = »(o)l
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where @y(x, y) is the angle between the vector X) and the direction of
the normal n,. The angle ¢o(x,y) is taken to be positive if it is
measured anticlockwise from n, and negative if it is measured clock-
wise from n,. Besides, @o(x, y) is continuous in x, y € T if x # y.

Thus, if p(s) is a solution of Eqs. (4), (8) from the space C/[a,b],
w€(0,1], g €10, 1), then the potential (7) satisfies all conditions of the
problem U. The following theorem holds.

THEOREM 2 If T'e C**, fis) e C%Na, b), A€ (0, 1], Eq. (8) has a solu-
tion p(s) from the Banach space Cila,b], w€ (0,1], g €[0,1) and condi-
tion (4) holds, then the function (7) is a solution of the problem U.

Our further treatment will be aimed to the proof of the solvability of
the system (4), (8) in the Banach space C;’[a, b]. Moreover, we reduce
the system (4), (8) to a Fredholm equation of the second kind, which
can easily be computed by classical methods.

It can easily be proved that

1 fsing(x() (@) 1
Y(”)“w( () — (o) a—s)
€ C*([a, b] x [a,b])

(see [6,7] for details). Therefore we can rewrite (8) in the form

b o b
1/a ,u(cr)—d——+/a w(o)Y(s,0)do = —l—f—ﬁif(s), s € [a, b].

©)

4 THE FREDHOLM INTEGRAL EQUATION AND
THE SOLUTION OF THE PROBLEM

Inverting the singular integral operator in (9) we arrive at the following
integral equation of the second kind [11}]:

1

1 b
) +————/'T—\/b_—_/ waYA(s, 0)do + —ee s G
! d(s), s¢€a,b], (10)

T Vs—avh—s
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where
A(s,0) = *; Yg(g O JE—ayb—Ede,

1 bayo= \/b——a o
CI)(S) l+,82 / ? — f )

g,

and G is an arbitrary constant. We mean arithmetic values of square
roots in all formulas where they are used.

To find the constant G we substitute u(s) from (10) in the condition
(4) and use the explicit formulas for integrals from [22]:

/a \/a—a\/b—azm
do
a VJo—avb—o0—S

Then we obtain that G =0. We substitute G in (10) and arrive at the
integral equation for u(s) on [a, b]

=0, s€]lab].

b
M)+ i | W) b
= Tal—b\/_—=s®(s)’ s € |a, b]. (11)

It can be shown using the properties of singular integrals [3,11], that
®(s), A(s, o) are Holder functions if s €[a, b], o € [a, b]. Consequently,
any solution of (11) belongs to Cy, /2[a b] and below we look for u(s) on
[a, b] in this space. Moreover, it follows from our treatment, that any
solution of (11) meets condition (4).

Instead of p(s) € Cy),la, b] we introduce the new unknown function

pa(s) = u(s)vs —avb — s € C*[a, b]

and rewrite (11) in the form

A(s,0)

wo+ [ o) 2

do=®(s), s€la,b] (12)
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Thus, the system of equations (4), (8) for u(s) has been reduced to
the Eq. (12) for the function u,(s). It is clear from our consideration
that any solution of (12) gives a solution of system (4), (8).

As noted above, ®(s) and A(s, o) are Holder functions if s € [a, b],
o €[a, b]. More precisely (see [7,11]), ®(s) € C*?[a, b], p=min{1/2, \}
and A(s, o) belongs to C®”[a, b] in s uniformly with respect to o € [a, b].

We arrive at the following assertion.

LEMMA 1 IfT e C** Ae(0,1], ®(s) € C*[a, b], p=min{\, 1/2}, and
() from C%a, b] satisfies the Eq. (12), then p.(s) € C*[a, b].

The condition ®(s) € C*?[a, b] holds if f(s) € C®a, b]. Hence below
we will seek pu,(s) from C%a,b]. Since A(s, o) € C°([a, b] x [a, b]), the
integral operator from (12):

b S, O
(an)6) = [ (o) ——a—f—(w% do

is a compact operator mapping C°[a, b] into itself. Therefore, (12) is a
Fredholm equation of the second kind in the Banach space C°[a, ].

Let us show that homogeneous equation (12) has only a trivial
solution. Then, according to Fredholm’s theorems, the inhomoge-
neous equation (12) has a unique solution for any right-hand side. We
will prove this by a contradiction. Let u?(s) € C°[a, b] be a nontrivial
solution of the homogeneous equation (12). According to the Lemma 1
p2(s) € C*”[a, b], p=min{)\, 1/2}. Therefore the function

0( _ I‘Lg(s) Cp b
O = s s el

converts the homogeneous equation (11) into identity. Using the homo-
geneous identity (11) we check, that ;%(s) satisfies condition (4). Besides,
acting on the homogeneous identity (11) with a singular operator with
the kernel (s — ) ~ ' we find that ;°(s) satisfies the homogeneous equa-
tion (9). Consequently, p’(s) satisfies the homogeneous equation (8).
On the basis of Theorem 2, u[x°](x) is a solution of the homogeneous
problem U. According to Theorem 1: u[;°](x) = const, x € RZ\F. Using
the limit formulas for tangent and normal derivatives of potentials
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[2,6], we obtain

im {85100 ~ a6 |

x—x(s)e(T)*

~ lim {ﬂgi—xu[u"](x)—gi—xu[u"l(ﬂ}

x—x(s)e()”
=—(1+)s) =0, s€ab]

By I'" we denote the side of I which is on the left as a parameter s
increases and by I' ~ we denote the other side.
Consequently, if s € [a, b], then p%(s) =0,

p(s) =———7"=—=0

and we arrive at the contradiction to the assumption that ul(s) is
a nontrivial solution of the homogeneous equation (12). Thus, the
homogeneous Fredholm equation (12) has only a trivial solution in
C%a, b).

We have proved the following assertion.

THEOREM 3 IfT'e C** A€ (0, 11, then (12) is a Fredholm equation of
the second kind in the space C°[a,b). Moreover, Eq. (12) has a unique
solution p.(s) € C%a, b] for any ®(s) € C%a, b).

As a consequence of the Theorem 3 and the Lemma 1 we obtain the
corollary.

COROLLARY If T'e C** Xe(0,1] and ¥(s) € C*la,b], where p=
min{)\, 1/2}, then the unique solution of (12) in C°a,b), ensured by
Theorem 3, belongs to C*?[a, b].

We recall that ®(s) belongs to the class of smoothness required in
the corollary if f{s) € C®*[a, b]. As mentioned above, if y.(s) € C®[a, b]
is a solution of (12), then

is a solution of system (4), (8). We obtain the following statement.



94 P.A. KRUTITSKII et al.

PROPOSITION  If T'€ C**, f(s) € C*[a, b], A€ (0, 1], then the system of
equations (4), (8) has a solution y(s) € C¥ /2[0, b, p=min{1/2, \}, which
is expressed by the formula

0]
p(s) S iy

where p,(s) € C%[a, b] is the unique solution of the Fredholm equation
(12) in C%a, b).

Thus, the system (4), (8) is solvable for any f(s) € C**a, b]. On the
basis of the Theorem 2 we arrive at the final result.

THEOREM 4 IfT'e C**, fis) € C*a, b], A€ (0, 11, then the solution of
the problem U exists and is given by (7), where u(s) is a solution of equa-
tions (4), (8) from C’]’ 1’ [a, b], p=min{1/2, A} ensured by the proposition.

It can be checked directly that the solution of the problem U satisfies
condition (1) with e = —1/2. Explicit expressions for singularities of the
solution gradient at the end-points of I" can easily be obtained with the
help of formulas presented in [6,7].

Theorem 4 ensures existence of a classical solution of the problem U
when T € C**, f(s) € C®a, b]. On the basis of our consideration we sug-
gest the following scheme for solving the problem U. First, we find the
unique solution y,(s) of the Fredholm equation (12) from C°a, b]. This
solution automatically belongs to C®?[a, b], p=min{), 1/2}. Second,
we construct the solution of Eqs. (4), (8) from C/ /2[a, b] by the formula

oo ()
“()"——\/m Tt

Finally, substituting u(s) in (7) we obtain the solution of the problem U.
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