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In the above paper [1] an analysis has been carried out to obtain results in the Poiseuille
flow of a Newtonian fluid with viscous dissipation and temperature-dependent viscosity.
The fluid viscosity is an exponential function of temperature. The equations are solved
numerically with the finite difference method. However, there are some fundamental er-
rors in this paper which are presented below.

1. The title is wrong. The channel is not symmetrically heated because the plate tem-
peratures are not equal. The upper plate has temperature Tb and the lower plate tem-
perature T0 (see [1, Figure 1.1, equations (2.5) and (2.6)]). Except that all the presented
results are given for different values of α = Tb −T0. In addition the temperature profile
shown in [1, Figure 1.1] is wrong.

2. In the abstract it is mentioned that “the coupled nonlinear differential equations
arising in the planar Poiseuille flow are not amendable to analytical solutions.” In [1, Fig-
ure 1.1] it is shown that the two plates are motionless. In page 2 it is mentioned that
“The coupled nonlinear momentum and energy equations arising in planar Poiseuille
flow are solved numerically.” In page 4 it is mentioned that “In this section, numerical
solutions of plane Poiseuille flow are presented.” In page 7 it is mentioned that “The nu-
merical solutions of the coupled nonlinear equations arising from planar Poiseuille flow
are also presented.” From the above it is clear that the present work concerns a Poiseuille
flow, which in fluid mechanics, is defined as the flow between two motionless plates, or
the flow in a pipe driven by a pressure gradient. However, in page 3 it is mentioned that
“U0 is the constant velocity at moving surface.” This is a contradiction because in
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Poiseuille flow there is no moving plate and therefore U0 is zero. If we suppose that the
authors treated a Couette-Poiseuille flow and they forgot to mention it, the velocity pro-
files [1, Figures 4.1 and 4.3] show clearly that the fluid velocity at the two plates is zero.
If the upper plate was moving, the dimensionless velocity at the upper plate in [1, Fig-
ures 4.1 and 4.3] should be 1. If we suppose that the authors treated a Poiseuille pipe
flow, this problem has been already solved for a more complicated fluid (a third grade
fluid) by Massoudi and Christie [2]. So we consider the present flow as Poiseuille flow
between parallel plates. Taking into account this fact, the dimensionless velocity and di-
mensionless pressure included in [1, equation (2.5)] cannot be defined becauseU0 is zero.
Otherwise the authors should explain how this velocity U0 is defined. In addition, if the
present problem is a planar Poiseuille flow (which is the most probable scenario), then
this problem has been already solved for a more complicated fluid (a third grade fluid) by
Szeri and Rajagopal [3]. Except that the problem treated by the authors is actually stated
and/or solved (in similar situations) in textbooks. For example, see Constantinescu [4,
pages 208–214] and Slattery [5, pages 330–336].

3. In page 3, it is mentioned that the flow is symmetric. This is not valid because the
temperatures at the two plates are unequal. The boundary conditions

du(0)
dr

= 0 (middle of plates),

dθ(0)
dr

= 0 (middle of plates),

θ(1)= 0 (upper plate)

(1)

are all wrong. The first two conditions are not valid because the flow is not symmetric
and the correct form, the third condition, should be

θ(1)= 1 (upper plate). (2)

4. We see that both velocity and temperature [1, Figures 4.1, 4.2, 4.3] are symmetric.
However, due to unequal plate temperatures, the velocity and temperature profiles should
be nonsymmetric. The correct form of the temperature profiles should be as shown in
Figure 1.

5. In two recent papers, Costa and Mecedonio [6, 7] mentioned that in a steady state
fully developed Poiseuille flow of an incompressible fluid with temperature-dependent
viscosity and viscous dissipation, there is a dimensionless parameter G which is an im-
portant criterion for this flow. If G > Gcrit the system does not admit a solution, whereas
when G < Gcrit, the system has two solutions, one of which (the solution with greater
temperature) may be unstable. The existence of a critical quantity which characterizes
the flow in ducts for fluids with temperature-dependent viscosity including viscous heat-
ing was suggested by Grundfest [8]. A very good review on this matter is given by Sukanek
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Figure 1. Temperature distribution in a Poiseuille flow with unequal plate temperatures and viscous
heating.

and Laurence [9]. The authors ignore these criteria and mention nothing in their paper
about it.

6. In conclusion this is a completely wrong paper.
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