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This paper is concerned with the realization and implementation of multicontroller sys-
tems, consisting of several linear controllers, subject to the bump phenomenon which
occurs when switching between one controller acting in closed loop and another con-
troller in the set of “offline” controllers waiting to take over the control loop. Based on
a deep characterization of the bump phenomenon, the paper gives a novel and simple
parameterization of such set of linear controllers, possibly having different state dimen-
sions, to cope with bumps and their undesirable transients in switched-mode systems.
The proposed technique is based on a non minimal state-space representation allow-
ing a common memory and a unique dynamics shared by all controllers in that set. It
also makes each initially open-loop unstable controller run in a stable way regardless of
whether that controller is connected to the controlled process.
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1. Introduction

Advanced control systems deal with changing operating environments and such control
systems exhibit themselves as hybrid dynamical systems which mix continuous behavior
with discrete and logic decisions. In these control systems, it is common that the input to
the controlled process is temporarily different from the output issued by the controller,
such a difference is caused by a substitution due to the instantaneous switching between
different control laws. Typical instances of input substitution occur in reconfigurable con-
trol or multicontroller schemes such as those found in flight control for widening aircraft
performance envelope, fault-tolerant systems, multimode systems, mode-switching from
manual to automatic in industrial controllers. The discrepancy between the process in-
put and the controller output might lead to performance degradation and instability of
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the closed-loop system. Solutions dealing with these problems are known as bumpless
transfer techniques. The issue of bumpless transfer has been usually regarded as the same
problem as that of the antiwindup problem which has attracted a tremendous research
activity for several years, see, for example, [1–4] and references therein. In this paper, the
bumpless transfer problem is considered for multicontroller systems, consisting of several
linear controllers, with the requirement that such bumpless transfer should be multidi-
rectional in the sense that the swapping in and out of a controller in the loop should
result in a transientless input signal to the plant regardless of the switching sequence. The
bump phenomenon is known to be directly related to the initial value of the output of
the of-line controller to be switched on as compared to that of the active controller at
the switching instant. Clearly, when these two output signals are equal or very close, “al-
most continuity” of the signal at the plant input is achieved, thereby allowing a “smooth”
transition where undesirable transients are avoided or minimized. As in the controller
windup problem [4], it has been recognized that the bump phenomenom originating
from the mismatch between controllers outputs can be translated into conditions on the
controllers states or memories. Indeed, controllers being dynamical systems, their state
must have the correct value when a mode switching occurs, and if this is not the case, the
corresponding control loops experience undesirable and harmful switching transients.

In simple mode switching where the aim is to switch from manual control to an ul-
timate controller in the loop, the bumpless transfer is usually unidirectional and is ob-
tained by adding an antiwindup circuitry to the controller to be switched on. Graebe
and Ahlén [5] pointed out the need to consider bidirectional bumpless transfer between
two controllers in modern industrial control systems where it is often the case that a
newly designed controller should be temporarily installed and tested during normal pro-
cess operation. They derived a bumpless transition scheme by recasting the problem in
an associated tracking problem where the standby controller is viewed as a dynamical
system whose output should track the online control signal by means of a two-degree-
of-freedom controller. Bidirectionality in their bumpless transfer scheme is obtained by
adding a symmetrical second tracking loop for the other controller. A direct approach
to bumpless transfer in a two-controller configuration is also considered in [6] where
the problem is formulated as an optimal linear quadratic control problem yielding a
feedback gain which acts as a “subcontroller” for the standby controller; unfortunately
bidirectionality is not considered there. For multicontroller schemes such as found in
hybrid or switched-mode systems, multidirectional bumpless transfer and avoidance of
undesirable switching transients should be mandatory, and to achieve this the common
approach consists in appending each controller with an antiwindup circuitry, see, for ex-
ample, [7, 8]. In [7], the antiwindup circuitries are high-gains feedback loops around
all idle controllers which force the controllers outputs to track the process input, whilst
in [8] each controller is augmented with dynamics identical to that of the plant in or-
der to allow the controller states to evolve in an appropriate way when the controller is
not connected to the plant input. Clearly, such bumpless transfer schemes become cum-
bersome and hard to implement when the number of controllers is large. Note also that
in the high-gain approach, the unstable zeros of the controllers limit the increase of the
gains and the technique used by Zaccarian and Teel [8] might fail if a sufficiently accurate
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model of the plant is not available or if the plant is described by several models, each
model being valid in a certain region of the operating space.

In this paper, we further characterize the bump phenomenon and identify its source
in switched-mode systems. With this new insight on bumps, we derive a state-space real-
ization for a multicontroller system in which the memories and the system matrix of the
state equations are common and shared by all controllers of the switched-mode system.
With such a representation, the dynamical parts of all controllers reduce to a single dy-
namics and by feeding back the actual process input into this single dynamics, that is, by
conditioning the controllers, it is shown that we contend with the source of the bump
phenomenon. As a consequence, this prevents the closed-loop dynamics to blow up or
enter into unacceptable transients after modes switching. The distinctive parts of the con-
trollers, removed from their dynamics, are realized through the static gains attached to
their outputs. The parameterization technique used for the realization of the controllers
is reminiscent to a classical technique for plant identification in adaptive control [9].

2. Bumpless transfer and switching transients

The noticeable manifestation of the bump phenomenon is a jump in the plant input,
and most importantly a significant deterioration of the actual closed-loop performance
with respect to the ideal or expected performance following a controller switching. But
quite surprisingly, and to the best of our knowledge, the concept of bumpless transfer
itself has never been precisely formalized [8] and it is sometimes misunderstood as noted
in [10]. A common vague statement which conveys the idea of bumpless transfer is that
of switching “smoothly” as possible from one controller to another where the notion of
smoothness is understood in some sense. Different meanings can be found in the litera-
ture and one of these meanings is related to the continuity property (in the mathematical
sense) of the plant input signal at the switching instants, that is, an input signal which
does not experience a jump or discontinuity in time when switching between controllers
[11]. Such a definition makes sense only for continuous-time systems but does not extend
to discrete-time systems since it is difficult to talk about continuity in time on a discrete
time setting. A slightly modified acceptation of the bumpless transfer concept is when the
jump at the plant input is minimized in some way [5, 6]. However, realizing an input sig-
nal which is continuous in time or which has a small jump at the switching instants does
not preclude the closed-loop system from exhibiting very poor transients with the new
online controller [12]. In most switched-mode systems, switching between controls aims
at realizing instantaneous or fast transitions between different modes to maintain the per-
formance of closed-loop systems, hence jumps or abrupt changes in the input signal of
the plant are actually inherent to such control strategies. However, the underlying control
objective constraints should not be violated by the transients induced by such instanta-
neous events. Therefore, it is appropriate and meaningful to consider control switching
as bumpless when the followup transients are reduced to some extent or possibly elim-
inated from the closed-loop system behavior albeit the occurrence of jumps in plant in-
put signals and the performance still remains good after mode switching. This notion of
bumpless transfer has been considered by Hanus [12] and was later termed “conditioned
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Figure 2.1. Switching from controller 1 to controller 2.
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Figure 2.2. Closed-loop systems with (a) controller 1 and (b) controller 2.

transfer” by Peng et al. [10]. It is worth noticing that this notion applies indifferently to
continuous-time or discrete-time systems and conveys the idea that switching should take
place without perturbing the closed-loop system to depart from its desired performance.
Throughout this paper, the bumpless switching problem is understood in the sense of the
aforementioned idea of conditioned transfer.

Consider the switched-mode system of Figure 2.1 where we assume that the online
controller in the time interval [0, ts) is controller C1 and at time ts, the second controller
C2 is switched in closed-loop.

The design methodologies for the controllers of such switched-mode systems are usu-
ally based on the synthesis of the closed-loop systems composed of the individual con-
trollers as depicted in Figure 2.2 with the desire that the plant output signal y of the
switched-mode system in Figure 2.1 be given by the ideal signal obtained by concatenat-
ing signal y1 on [0, ts) with signal y2 on [ts,∞), that is,

yid(t)=
(
y1

ts� y2

)
(t) �

⎧⎨
⎩
y1(t) for t ∈ [0, ts

)
,

y2(t) for t ≥ ts,
(2.1)

where it is assumed that at time ts, system (a) and system (b) in Figure 2.2 are in steady
state. This requirement means that the closed-loop system should instantaneously reach
its steady state after switching to controller C2 so as to have a transientless signal y after
controller switching. If P denotes the transfer operator of the plant, then the ouptut signal
(2.1) is achieved in the switched-mode system of Figure 2.1 through the following ideal
input signal to the plant:

u(t)= uid(t)=
(
u1,id

ts� u2,id

)
(t) for t ∈ [0,∞), (2.2)
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where y1 = Pu1,id and y2 = Pu2,id, with u1,id, u2,id as given in the closed-loop systems of
Figure 2.2. A key feature of such ideal control uid is that its segment on [ts,∞), that is,
signal u2,id from ts to∞, is issued from controller C2 which has been constantly connected
to the plant in closed-loop. However, due to the very structure of the switched-mode sys-
tem of Figure 2.1, controller C2 can only be connected to the plant from time ts to∞ and
consequently its history (i.e., its state trajectory) on [0, ts) has no relation with the history
of the plant in that time interval. This lack of dynamical consistency between the two
state trajectories up to the switching instant is the main cause of the switching transients
which impair the performance of the closed-loop system when controller C2 becomes
active. Bumpless switching should aim at guaranteeing such dynamical consistency.

The actual input signal to the plant in the switched-mode system of Figure 2.1 can be
written as a perturbation to the ideal input signal, that is,

u(t)= uid(t) +utr(t) for t ∈ [0,∞), (2.3)

where utr(t)= (0
ts� (u−uid))(t) is the transient signal induced by the switching at time ts.

To see how this switching transient arises in the switched-mode system, let (F1,G1,H1, J1),
(F2,G2,H2, J2), (AP ,BP ,CP) denote the state-space realizations for controllers C1, C2, and
plant P, respectively.

The closed-loop dynamics with controller C2 being constantly in the loop is given by

(
ẋ2

ẋP

)
=
(

F2 −G2CP

BPH2 AP −BPJ2CP

)(
x2

xP

)
+

(
G2

BPJ2

)
r, (2.4)

where x2 and xP are the state vectors of C2 and P. The control issued by C2 is given by the
readout map

u2,id =
(
H2 −J2CP

)(x2

xP

)
+ J2r. (2.5)

When controller C2 is not connected to the plant in the switched-mode configuration
of Figure 2.1, its output signal u2 is still given by the right-hand side of (2.5) but the
evolution of the state vectors x2 and xP is obtained from the dynamics

⎛
⎜⎝
ẋ2

ẋP
ẋ1

⎞
⎟⎠=

⎛
⎜⎝
F2 −G2CP 0
0 AP −BPJ1CP BPH1

0 −G1CP F1

⎞
⎟⎠

⎛
⎜⎝
x2

xP
x1

⎞
⎟⎠+

⎛
⎜⎝

G2

BPJ1
G1

⎞
⎟⎠r. (2.6)

For notation convenience, let ξ = (xT2 ,xTP )T denote the joint state of the controller C2 and
the plant where the superscript T stands for the transposition of the vector. The state
trajectory of the closed-loop system with C2 constantly in the loop from the time origin
t0 = 0 to time t and initial condition ξ(t0)= ξ0 is given by

ξid(t)= ξid
(
t; t0,ξ0,r

)=Φ
(
t, t0

)
ξ0 +Θ

(
t, t0

)
r, (2.7)
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where Φ(t, t0) is the state transition matrix of system (2.4) and Θ(t, t0) is an integral op-
erator. When C2 is not connected to the plant, the trajectory of ξ is obtained from the dy-
namics (2.6). This trajectory is the first block component of vector η = (ξT ,xT1 )T which is
the solution of the differential equation (2.6) with initial condition η0 = (ξT0 ,xT1,0)T . When
the switched-mode system of Figure 2.1 transfers the control authority to controller C2 at
time ts, the closed-loop dynamics starts evolving on [ts,∞) according to (2.4) with initial
condition ξ(t−s ) obtained from the left limit of η(t) at ts, that is,

ξ(t)=Φ
(
t, ts
)
ξ
(
t−s
)

+Θ
(
t, ts
)
r; (2.8)

while for the closed-loop system with controller C2 constantly connected to the plant, the
state trajectory on [ts,∞) is

ξid(t)=Φ
(
t, ts
)
ξid
(
ts
)

+Θ
(
t, ts
)
r. (2.9)

The switching transient is the free motion given by the difference between trajectories
(2.9) and (2.8), that is,

ξtr(t)=Φ
(
t, ts
) · (Δξ)ts for t ≥ ts, (2.10)

and the transient in the input signal to the plant is

utr(t)=
(
H2 −J2CP

)
ξtr(t), (2.11)

where (Δξ)ts = ξid(ts)− ξ(t−s ) is the mismatch between the ideal vector and actual state
vector ξ at the switching instant. It is now clear that if at the switching instant ts, the
joint state ξ(t−s ) of the plant and offline controller C2 is equal to the ideal state ξid(ts),
then the input signal (2.3) to the plant in the switched-mode system will be transientless
after switching even if it experiences a jump (Δu)ts = u2(t+

s )−u1(t−s ) /= 0 at the switching
instant (the arguments t+

s and t−s stand, resp., for the right and left limits at ts of the
corresponding signal).

It is interesting to note that the switching transient can be viewed as the impulse re-
sponse of the dynamics ξ̇ = �cl2ξ for an impulse of “height” (Δξ)ts applied at time ts
and where �cl2 is the state matrix in (2.4). The dynamical consistency between the state
of the plant and the state of controller C2 is traced in the ideal state ξid of the joint
plant/controller which results from a controller constantly connected to the plant. It is
also worth noticing from (2.6) that an inconsistency between these states is evidenced
from the zeroed entry (2,1) of the state matrix so that the plant state evolves indepen-
dently from the state of the idle controller. Since in a switched-mode system, only one
controller can be effectively connected to the plant at each time, a solution to the bump-
less switching problem inspired from the above analysis is to realize a virtual constant
connection of all idle controllers to the plant so as to assure the dynamical consistency
between the state of the plant and the states of all controllers.

3. Controllers parameterization

Assume that N single-input/single-output (SISO) linear controllers, not necessarily of
the same order, have been designed for the control of a plant P as depicted in Figure 3.1
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Figure 3.1. Switched-mode control system.

and that each of these controllers taken alone and connected to the plant is stabilizing.
Some of these controllers might be open-loop unstable such as, for instance, controllers
having an integrating action. In the feedback control system of Figure 3.1, the connec-
tion of a controller to the plant at each instant t is dependent on a switching signal σ(t)
issued by a high-level supervisory system. The switched-mode control system operates
as follows: at time t, the actual input u(t) to the process is given by u(t) = ui(t) if the
switching signal σ(t) = i, where i takes its value in the set {1,2, . . . ,N}. Assuming that a
stabilizing switching policy has been designed through the synthesis of the supervisor, the
main issues which remain to be solved for the switched-mode system are how to achieve
bumpless transfer between the controllers in order to avoid undesirable transients and
how to assure that each controller runs in a stable way even when it is not connected to
the plant in closed loop.

With reference to Figure 3.1, let e = r − y be the control error and denote the SISO
transfer functions of the controllers by

Ci(s)= ui(s)
e(s)

= nCi(s)
dCi(s)

(i= 1, . . . ,N) (3.1)

with coprime polynomials nCi(s), dCi(s) and set

n= max
i=1,...,N

deg
(
dCi(s)

)
, (3.2)

where deg(dCi(s)) is the highest power of polynomial dCi(s). Then, all transfer functions
Ci(s) can always be written as

Ci(s)= Ni(s)
Di(s)

, (3.3)

where the denominators Di(s) are such that

deg
(
Di(s)

)= n, ∀i= 1, . . . ,N , (3.4)
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and the numerators are of the form

Ni(s)= bi,0s
n + bi,1s

n−1 + ···+ bi,n−1s+ bi,n. (3.5)

Furthermore, each Di(s) is a monic polynomial, that is,

Di(s)= sn + ai,1s
n−1 + ···+ ai,n−1s+ ai,n. (3.6)

With the transfer functions form (3.3), compared to the initial transfer functions (3.1),
there might be some pole/zero cancellations introduced by the designer which should be
stable.

Next, decompose the controllers (3.3) into a strictly proper part C′i (s) and a feedfor-
ward part bi,0,

Ci(s)= C′i (s) + bi,0, (3.7)

and write the ith controller output as

ui(s)= u′i (s) + bi,0e(s) (3.8)

with u′i (s) defined by

u′i (s)
e(s)

= C′i (s)=
N ′

i (s)
D′i (s)

= b′i,1sn−1 + ···+ b′i,n−1s+ b′i,n
sn + a′i,1sn−1 + ···+ a′i,n−1s+ a′i,n

, (3.9)

where D′i (s) are actually equal to Di(s). The strictly proper part C′i (s) bears all the memory
(dynamics) of controller i whilst no memory information is carried out by the feedfor-
ward part bi,0. Now using (3.9), the output signal u′i (s) can be written as

u′i (s)=
N ′

i (s)
λ(s)

e(s) +
λ(s)−D′i (s)

λ(s)
u′i (s), (3.10)

where λ(s) is an arbitrary monic polynomial of order n, λ(s) /=D′i (s), and strictly Hurwitz,
that is,

λ(s)= sn + λ1s
n−1 + ···+ λn−1s+ λn, (3.11)

and for pi ∈ C,

λ
(
pi
)= 0=⇒ Re

(
pi
)
< 0. (3.12)

Note that (3.10) results in the same input-output transfer u′i (s)/e(s) as in (3.9) but the
controller is viewed as a two-input/single-output dynamical system in which one of the
inputs is its output filtered by (λ(s)−D′i (s))/λ(s). The denominators of the filters in (3.10)
are independent of the controllers Ci and are all equal to λ(s). For notation convenience,
let

βi(s)=N ′
i (s)= b′i,1s

n−1 + ···+ b′i,n−1s+ b′i,n,

αi(s)= λ(s)−D′i (s)=
(
λ1− a′i,1

)
sn−1 +

(
λ2− a′i,2

)
sn−2 + ···+

(
λn− a′i,n

)
,

(3.13)



J. J. Yamé and M. Kinnaert 9

and introduce the constant vectors

βTi =
(
b′i,n b′i,n−1 ··· b′i,1

)
,

αTi =
(
αi,n αi,n−1 ··· αi,1

)
,

(3.14)

with αi,k = λk − a′i,k. Equation (3.10) has now the simple form

u′i (s)= βTi �(s)e(s) +αTi �(s)u′i (s), (3.15)

where the multioutput filter �(s) expressed in vector block form is given by

�(s)= 1
λ(s)

⎛
⎜⎜⎜⎜⎝

1
s
...

sn−1

⎞
⎟⎟⎟⎟⎠
. (3.16)

From [13, page 239], the vector (3.16) can be seen as the product

�(s)= (sI −�λ
)−1

bλ, (3.17)

where �λ is the companion matrix whose characteristic equation is given by λ(s)= 0,

�λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 ··· 0
0 0 1 ··· 0
· · · · ·
· · · · ·
0 0 0 0 1
−λn −λn−1 −λn−2 ··· −λ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

bλ =
(

0 0 ··· 0 1
)T

.

(3.18)

A property of � which will be used later is that this matrix is nonsingular if and only
if λn /= 0 [13, page 65], which is the case here by the strict Hurwitz property (3.12) of
polynomial λ(s). From (3.15) and (3.17), the two-input/single-output dynamical systems
(3.10) admit the controller canonical state-space representation

(
σ̇1(t)
σ̇2(t)

)
=
(

�λ 0
0 �λ

)(
σ1(t)
σ2(t)

)
+

(
bλ 0
0 bλ

)(
e(t)
u′i (t)

)
, (3.19)

with the outputs u′i (t) given by

u′i (t)= βTi σ1(t) +αTi σ2(t). (3.20)

The representation (3.19)-(3.20) realizes exactly each of the N transfer functions C′i (s)
with the main advantage that the dynamics (memories) are independent of these transfer
functions and only the readout map (3.20) actually characterizes C′i (s). The dimension



10 Mathematical Problems in Engineering

of the state space is 2n, hence 2n memories are sufficient for describing the N dynamical
systems C′i (s). Returning back to (3.8), the outputs of the controllers Ci(s) are

ui(t)= u′i (t) + bi,0e(t)= βTi σ1(t) +αTi σ2(t) + bi,0e(t). (3.21)

The dynamical part of the N controllers is determined by the state matrix in (3.19).
Therefore, if a transfer function Ci from e to ui was originally unstable, the bounded-
ness of the corresponding control signal in (3.21), whether it is connected or not to the
plant, is guaranteed by the choice of λ(s) as a strictly Hurwitz polynomial.

To proceed further, let us assume that coefficients bi,0 are all equal to a constant b0;
the general case of nonconstant feedforward terms will follow. From the operation of
the switched-mode control system, only one controller can be connected to the plant at
each instant. If σ(t)=m for some m∈ {1, . . . ,N} at time t, the plant input is equal to the
output of controller m and the following equations hold for controller m:

u(t)= um(t)= βTmσ1(t) +αTmσ2(t) + b0e(t), (3.22)

(
σ̇1(t)
σ̇2(t)

)
=
(

�λ 0
0 �λ

)(
σ1(t)
σ2(t)

)
+

(
bλ 0

−bλb0 bλ

)(
e(t)
u(t)

)
, (3.23)

where (3.23) is obtained from (3.19) by using

u′m(t)= um(t)− b0e(t)= u(t)− b0e(t). (3.24)

The difference between the dynamical equations (3.23) and (3.19) is that the actual plant
input u(t) is now fed back in the filter, and for controller m which is effectively connected
to the plant input, the above (3.22), (3.23) are completely equivalent to (3.19) and (3.21).
In view of (3.23), and from the fact that all controllers outputs ui(t) (i = 1, . . . ,N) are
obtained from the 2n states of the same dynamics (3.19), the set of all controllers Ci can
now be considered as a unique dynamical system with two inputs (e,u), 2n states (σ1,σ2),
and N outputs ui (i = 1, . . . ,N). In this new setting, the filter states are no longer driven
by the dynamical part (u′i ) of the floating outputs ui as it should have been the case in
the initial setting (see (3.19)) and these outputs ui for all i /= m given by the readout
equation (3.21) are clearly different from the outputs as computed by ui(s) = Ci(s)e(s)
by the individual controllers as in Figure 2.1. However, these differences do not matter
since when a switching occurs when the system is in steady state with zero tracking error
and connects a new controller output, say ul, to the plant input u, it will be shown that
this new active controller output takes upon the correct values that would have resulted
from ul(s) = Cl(s)e(s) or equivalently from (3.19) and (3.21) as if it has been constantly
in the loop.

The multicontroller itself can now be viewed as the system, of which the input is e and
the output is the input signal u to the plant as depicted in Figure 3.2, described by

σ̇(t)=�σ(t) + �uu(t) + �ee(t),

ui(t)=�iσ(t) + b0e(t) for i= 1,2, . . . ,N ,

u(t)= uσ(t)(t)= ui(t) if σ(t)= i with i∈ {1,2, . . . ,N},
(3.25)
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Figure 3.3. Closed-loop system with state-shared multicontroller.

where σ= (σT1 ,σT2
)T

and the matrices in (3.25) are the following block matrices:

�=
(

�λ 0
0 �λ

)
, �u =

(
0
bλ

)
, �e =

(
bλ

−bλb0

)
, �i =

(
βTi αTi

)
.

(3.26)

From the very nature of the filter, the state of the multicontroller is continuous at the
switching instants, that is, σ(ts)= σ(t−s )= σ(t+

s ) for any switching instant ts. Moreover, the
joint plant/controller state is always dynamically consistent. This is achieved through the
“tracking” (via feedback) of the actual plant input which makes the state of the multicon-
troller correspond to the effective input/output signals (e,u). Indeed, for plant P with
state vector xP and state-space realization (AP ,BP ,CP), the joint plant/multicontroller
state of the closed-loop system of Figure 3.3 satisfies the dynamics

(
σ̇
ẋP

)
=
(

� + �u�σ −(�ub0 + �e
)
CP

BP�σ AP −BPb0CP

)(
σ
xP

)
+

(
�ub0 + �e

BPb0

)
r, (3.27)

where �σ =�i if σ(t)= i. The dynamical consistency is guaranteed by the nonzero entry
(2,1) of the closed-loop state matrix of (3.27) so that the evolution of the plant state is
linked to the controllers state and vice versa. Since all pending controllers outputs ui in
(3.25) are computed from the same closed-loop dynamics producing state vector σ, it
appears that their behavior is virtually the same as if they have been constantly connected
to the plant.

Next, assume that the switching instants are such that the closed-loop system of Figure
3.3, when in any of its control modes, has already reached its steady state and the tracking
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error is zero (e = 0). Then, the equilibrium points of the joint plant/multicon-troller state
in all control modes are identical. Indeed, if P(s)= CP(sI −AP)−1BP denotes the transfer
function of the plant, the input signal to the plant under the above assumption of zero
tracking error in steady state is given by u(0) = P(0)−1r, where P(0) /= 0 is the plant static
gain which might be finite or infinite. The equilibrium state of the multicontroller system
(3.25) satisfies equation

�σ(0) + �uu
(0) = 0, (3.28)

and from the non-singularity of matrix �λ, this equilibrium is unique and is given by

σ(0) =−�−1�uP(0)−1r. (3.29)

The corresponding equilibrium state of the plant is given by

x(0)
P =−A−1

P BPP(0)−1r if AP is not singular, (3.30)

otherwise it is the solution of the algebraic equations

APx
(0)
P = 0

CPx
(0)
P = r

if AP is singular. (3.31)

Thus, the equilibrium points are independent of the control modes since � and �u are
invariant with respect to the modes. In any control mode, the joint plant/multicontroller

equilibrium state ξ(0) = ((σ(0))T , (x(0)
P )T)T is the “ideal” state (see Section 2) when the

steady sate has been reached in that mode. Now, referring to Section 2, it is trivial to
see that when switching occurs at steady state under the zero tracking-error assumption,
a transientless plant input signal is achieved from the continuity of the joint state ξ at the
switching instant and from the fact that the ideal joint state ξid(t+

s ) to be reached after
switching and the actual state ξ(t−s ) before switching are the same and are equal to ξ(0).
Note that the input signal might experience a jump at the switching instant ts when trans-
ferring from controller j to controller i; this jump is given by (Δu)ts = ui(t+

s )− uj(t−s )=
(�i−� j)σ(ts), where σ(ts)= σ(0). Therefore, a jump at the plant input does not preclude
the input signal u(t) to exhibit a transientless behavior after the switching instants. Be-
sides, the closed-loop tracking performance is maintained after switching.

For the general case where the coefficients bi,0 are not all identical, the following state
equation for the filter is obtained using the same reasoning lines as previously developed:

(
σ̇1(t)
σ̇2(t)

)
=
(

�λ 0
0 �λ

)(
σ1(t)
σ2(t)

)
+

(
bλ 0

−bλbσ(t),0 bλ

)(
e(t)
u(t)

)
, (3.32)

and the N outputs ui(t) are still given by (3.21). The input matrix in the state equation
(3.32) is now dependent on a time-varying parameter which is actually piecewise constant
but undergoes a jump at the switching instants. It is worth noticing that the jump in the
input matrix coefficients does not preclude the continuity of the state variables (σ1,σ2)
and it is not difficult to show that the state variables are indeed continuous functions [14].
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Moreover, the joint plant/multicontroller equilibrium state ξ(0) = ((σ(0))T , (x(0)
P )T)T is not

altered since the time-varying parameter enters only into matrix �e of the dynamics
(3.25). This guarantees that under the same assumption as in the previous case, the mul-
ticontroller enters directly from one mode to another without any undesirable transient
response.

Remarks 3.1. The derivation of the parameterization of a set of linear controllers done in
the continuous-time domain in this paper extends mutatis mutandis to the discrete-time
setting and the bumpless switching property, that is, the elimination of the switching
transients, keeps its full meaning in that setting. It should be stressed that simply making
the states of the control laws to be the same does not result in bumpless switching, the
further step taken in transforming (3.19) into (3.23) to realize an equivalent controller is
compulsory to achieve the bumpless switching property. It is this realization (3.23) which
makes the pending controllers behave virtually as constantly connected to the plant. By
the way, it is interesting to note that the resulting multicontroller system has an inherent
implicit observer property [15] in which the shared state σ of the multicontroller includes
an “observer state” for the plant. With hindsight, it is clear from this implicit observer
viewpoint that the plant state and the multi-controller state will always be dynamically
consistent since σ “tracks” in some way the plant state. If we regard the error signal as a
generalized plant output, then the N controllers outputs ui of (3.25) can be seen equiva-
lently as N state-feedback control laws with feedback gains �i, combined with a unique
“observer” producing state σ. This viewpoint corroborates the constant virtual connec-
tion of all controllers in the feedback loop.

4. Example

As a simple example illustrating the bumpless switching property of the proposed con-
trollers parameterization, consider the first-order linear plant with transfer function
G(s) = 1/(s+ 1) controlled by a switched-mode controller with two control modes. The
controllers are digitally implemented with a zero-order hold at sampling period
h= 0.01 second. The initial controller in the loop has discrete-transfer function C1(z)=
(z− 0.95)/(z− 1) and the control law switches at time t=10 seconds to the final controller
C2(z)= (z− 0.5)/(z− 1). The state-shared realization for these two controllers yields the
following multicontroller system (in discrete time) :

(
σ1(k+ 1)
σ2(k+ 1)

)
=
(

0.5 0
0 0.5

)(
σ1(k)
σ2(k)

)
+

(
1 0
−1 1

)(
e(k)
u(k)

)
(4.1)

and floating control signals given by
(
u1(k)
u2(k)

)
=
(

0.05 0.5
0.5 0.5

)(
σ1(k)
σ2(k)

)
+

(
1 0
1 0

)(
e(k)
u(k)

)
. (4.2)

The actual process input determined by the switching signal is given by u(k) = uσ(k)

with σ(k) ∈ {1,2}. Figures 4.1 and 4.2 show the process output, process input (actual
control), and pending controllers output signals for the two different implementations
of the switched-mode controller. Note that in the direct implementation (structure of
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Figure 4.1. Simulation results for the direct implementation of the multicontroller.

Figure 3.1), the control system experiences an undesirable transient which significantly
deteriorates the tracking performance after switching. The state-shared multicontroller
(structure of Figure 3.3) shows successful bumpless switching without any transients af-
ter switching and it is worth noticing how the pending controller output tracks the actual
process input.

5. Conclusion

In this paper, a characterization of the bump phenomenon in switched-mode systems has
been derived in terms of the mismatch between the joint plant/controller states before and
after mode switching. Based on this characterization, a state-space realization achieving
bumpless switching for a given multicontroller system has been proposed using a com-
mon memory obtained through a simple parameterization of all controllers. Besides the
bumpless transfer property of the realization, the dimension of the common memory,
that is, the number of states shared by the controllers, is independent of the cardinality of
the set of controllers. This fact is important when the number of controllers is large such
as in reconfigurable control for fault-tolerant systems or in multiple operating regime
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Figure 4.2. Simulation results for the state-shared multicontroller.

systems. Moreover, the common dynamics of the controllers, apart from being stable,
can be choosen arbitrarily and independent of the controlled plant. Note that in most
bumpless switching schemes, the controllers dynamics are augmented with observers or
models of the controlled plant which make these schemes hardly applicable to plant with
multiple models. The proposed bumpless switching solution which is independent of the
process model is therefore particularly indicated in controller reconfiguration following
dynamic changes in the controlled process. In addition to providing a parameterization
of all controllers, the canonical form of the controllers state equations also simplifies the
real-time implementation of the multicontroller.
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Ed., pp. 55–83, Masson & Cie, Paris, France, 1996.

[13] C.-T. Chen, Linear System Theory and Design, Saunders College, New York, NY, USA, 1984.
[14] R. Bellman and K. L. Cooke, Modern Elementary Differential Equations, Dover, New York, NY,

USA, 2nd edition, 1995.
[15] K. S. Walgama and J. Sternby, “Inherent observer property in a class of anti-windup compen-

sators,” International Journal of Control, vol. 52, no. 3, pp. 705–724, 1990.
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