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A statistical approach for the treatment of turbulence data generated by computer simu-
lations is presented. A model for compressible flows at large Reynolds numbers and low
Mach numbers is used for simulating a backward-facing step airflow. A scaling analy-
sis has justified the commonly used assumption that the internal energy transport due
to turbulent velocity fluctuations and the work done by the pressure field are the only
relevant mechanisms needed to model subgrid-scale flows. From the numerical simula-
tions, the temporal series of velocities are collected for ten different positions in the flow
domain, and are statistically treated. The statistical approach is based on probability av-
erages of the flow quantities evaluated over several realizations of the simulated flow. We
look at how long of a time average is necessary to obtain well-converged statistical results.
For this end, we evaluate the mean-square difference between the time average and an
ensemble average as the measure of convergence. This is an interesting question since the
validity of the ergodic hypothesis is implicitly assumed in every turbulent flow simula-
tion and its analysis. The ergodicity deviations from the numerical simulations are com-
pared with theoretical predictions given by scaling arguments. A very good agreement is
observed. Results for velocity fluctuations, normalized autocorrelation functions, power
spectra, probability density distributions, as well as skewness and flatness coefficients are
also presented.

Copyright © 2007 T. F. Oliveira et al. This is an open access article distributed under the
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1. Introduction

In spite of considerable progress in computer technology, numerical methods, and turbu-
lence modeling during the last several decades, reliable prediction of complex turbulent
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flows at high Reynolds number remains an elusive target. Turbulent flows and, in partic-
ular, wall-bounded flows exhibit wide ranges of spatial and temporal scales that increase
with Reynolds number. Tsherefore, direct numerical simulation (DNS) is limited to rel-
atively low Reynolds numbers, as the number of grid points required for DNS increases
proportionally to Re9/4 [1]. Smaller timesteps result in an extra 3/4 power for the total
cost scaling as Re3. Due to the limitations of DNS, great expectations have been placed on
large eddy simulation (LES) [2]. Large eddy simulation is an important technique in the
study of turbulent flows. In LES, the governing equations are spatially averaged allowing
the large-scale motion to be solved. On the other hand, from this averaging process, the
so-called subgrid terms arise, requiring constitutive models to their evaluation [3]. LES
requires less computational effort than direct numerical simulations, which attempts to
solve all scales present in the turbulent flow [4]. Other important characteristic is the
unsteady feature of LES. This implies that a statistical treatment is needed in order to
permit an accurate characterization of the simulated turbulent flow. In addition, several
theoretical studies on small-scale two-dimensional nonlocal turbulence, where the inter-
actions of small scales with the large vortices dominate in the small-scale dynamics, have
been developed in the current literature [5]. Bouris and Bergeles [6] have found that the
two-dimensional large eddy simulation using a fine grid resolution, especially in the near
wall region, gives a good representation of the quasi-two-dimensional mechanisms of the
flow since they are directly simulated instead of being modeled as with statistical turbu-
lence models. In addition, the two-dimensional LES performed by them has proven to be
much better than any of the Reynolds-averaged Navier-Stokes (RANS) models when the
major two-dimensional mechanisms of the flow and the statistical turbulence quantities
are examined.

In a general case, a formal statistical treatment is based on probability averages eval-
uated over an ensemble of several realizations of the same process, which defines a sto-
chastic set. For an ergodic process, the probability average can be replaced by a temporal
average, and the statistical analysis is more feasible. Nevertheless, when the turbulence
is dominated by large and coherent structures, typically strongly correlated, the ergodic
hypothesis cannot be assumed and only a probability or statistical average (i.e., ensemble
averages) should be used to describe correctly the statistical quantities of the flow [7, 8].
In an LES context, the total time of simulation needs to be long enough to ensure the
ergodicity of the process and to get converging statistics.

The main goal of this paper is to perform a statistical treatment of turbulent velocity
signals resulting from numerical simulations, in particular, large eddy numerical simu-
lations (LESs). The large eddy simulations are performed for the limit of high Reynolds
number (Re) and low Mach number (Ma) compressible flows. The scalings show the rela-
tive importance of the subgrid terms when the flow obeys the Re� 1 and Ma� 1 limits.
A scaling analysis is also developed in order to estimate the deviation ε between the time
average and probability average associated with the ergodicity hypothesis. In addition,
from the turbulent flow over a backward-facing step simulated a long time, behavior
analysis is carried out in order to quantify the integral scales for ten different positions on
the flow domain. Based on this correlation time, a stochastic set is built and a statistical
analysis is performed. The velocity time series of the flow are analyzed statistically using
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the formal probability average approach and confronted with the statistics given by the
conventional time average analysis. The deviation between the two approaches is charac-
terized by the ergodic parameter ε. We look at how long of a time average is necessary to
obtain well-converged statistical results, and evaluate the mean-square difference between
the time average and an ensemble average as the measure of convergence. Certainly this is
an interesting question since the validity of the ergodic hypothesis is implicitly assumed
in every turbulent flow simulation and its analysis. Turbulent intensities, skewness and
flatness factors are also examined. All statistical quantities investigated are calculated us-
ing the probability average approach and the associated error bars are always evaluated.
More recently, an extension of the ideas and of the method explored in this paper has
been investigated experimentally for a three-dimensional flow [9].

2. Flow governing equations

2.1. Average equations. Let us consider a generic flow property that can be a function of
space and time φ(x, t). The spatial average φ(x, t) is defined as

φ(x, t)=
∫
Ω
φ(r, t)G(x− r)dr, (2.1)

where x is the position vector, r is the displacement vector regarding x, and Ω denotes
the volume of r-space over which the integral is taken (i.e., space average). The function
G(x− r) is a filter function G :R3 → [0,1] and satisfies

lim
|x−r|→∞

G(x− r)= 0,
∫
Ω
G(x− r)dr= 1. (2.2)

This averaging process still regards the linearity and the commutability with the spatial
and temporal derivatives

φ+ψ = φ+ψ,
∂φ

∂s
= ∂φ

∂s
, (2.3)

where s= x, t. The properties (2.3) are derived from the continuity of φ and the properties
of the filter function presented in (2.2) [10]. Now, a density-weighted average process is
more appropriat for compressible models. This process corresponds to the well-known
Favre filtered [11], defined as

φ̃ = ρφ

ρ
, (2.4)

where ρ is the density of the fluid. Note that according to (2.4), ρφ = ρφ̃. This identity is
largely applied for averaging the governing equations shown below. The averaged mass
and momentum balance equations written using index notation in the three-dimensional
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Euclidian space are given, respectively, by

∂ρ

∂t
+

∂

∂xi

(
ρũi

)= 0, (2.5)

∂

∂t

(
ρũi

)
+

∂

∂xj

(
ρũiuj

)=− ∂p
∂xi

+
∂

∂xj

(
2μSi j

)
, (2.6)

where

Si j =
(
Dij − 1

3
∂uk
∂xk

δi j

)
, Dij = 1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.7)

Here, ui are the components of the velocity vector u, p is the pressure, μ is the dynamical
viscosity coefficient, Dij are the components of the strain-rate tensor D, and the symbol
δi j (the Kroenecker delta) denotes the components of the identity tensor. Now, since the
velocity covariance is defined as σu = ũiuj − ũiũ j , the averaged product of velocities that
appears in the second term on the left-hand side of (2.6) can be written as ũiuj = ũiũ j +
σu. So, the averaged momentum equation written in the indicial notation becomes

∂

∂t

(
ρũi

)
+

∂

∂xj

(
ρũiũ j

)=− ∂p
∂xi

+
∂

∂xj

(
2μSi j

)− ∂

∂xj

(
ρσu

)
. (2.8)

Defining the tensor Σi j ≡−ρσu, a modified Cauchy equation can be written as follows:

ρ
Dũ
Dt

=∇·T. (2.9)

Note that we have used the Favre filtered velocity for the material derivative, D/Dt =
∂/∂t+ u ·∇, namely ρDu/Dt = ρDũ/Dt, with the constitutive equation for the stress ten-
sor given by

T=−pI + 2μ
[

D− 1
3

(∇·u)I
]

+Σ, (2.10)

where I is the identity tensor. In this formulation, Σ represents the momentum transport
by velocities fluctuations in the subgrid scales. The same averaging process is applied to
the energy equation leading to

∂

∂t

(
ρẽT

)
+

∂

∂xj

(
ρũ j ẽT

)=− ∂

∂xj

(
pũj

)
+

∂

∂xj

(
2μS̃i j ũi

)− ∂q j
∂xj

− ∂

∂xj

[
ρ
(ujeT − ũ j ẽT)]︸ ︷︷ ︸

I

− ∂

∂xj

(
puj − pũj

)
︸ ︷︷ ︸

II

+
∂

∂xj
2μ
(
Si jui− S̃i j ũi

)
︸ ︷︷ ︸

III

,

(2.11)

where qi are the components of the heat flux vector q, given by the Fourier constitutive
equation q=−kD∇�. Here, � denotes temperature, kD is the thermal conductivity, and
eT is the total energy, namely, eT = e+ u ·u/2, with e being the internal energy. The terms
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on the right-hand side of (2.11) identified by II and III represent the work done by the
shear stress in the subgrid scale, whereas term I is the convective transport of total energy.
Term I can be decomposed into two contributions as expressed below:

ρ
(ujeT − ũ j ẽT)= ρ(ũ je− ũ j ẽ)︸ ︷︷ ︸

IV

+
ρ

2

(
ũ jukuk − ũ jukuk)︸ ︷︷ ︸

V

. (2.12)

Using the equation of state for perfect gases, terms II and IV are directly related by the
following expression:

puj − pũj = (γ− 1)
(
ρeuj − ρeũ j

)= (γ− 1)ρ
(
ẽu j − ẽũ j

)
. (2.13)

In (2.13), γ = cp/cv, where cp and cv are the specific heat at constant pressure and vol-
ume, respectively. Adding terms II and IV , the vector Qj that represents the transport of
internal energy in the subgrid scales is defined, namely,

Qj = γρ
(
ẽu j − ẽũ j

)
. (2.14)

For instance, the terms III , V and the vector Qj , resulting from the averaging process of
energy equation, need to be modeled in a general case.

2.2. Scaling analysis. Before discussing a model for the subgrid terms, some scaling anal-
ysis will be performed in order to evaluate the relative importance of each subgrid contri-
bution. The scales of the large eddies are set by the geometry and the speed of the stirring
mechanism, while cut-off scales of the small eddies are determined by the action of vis-
cosity. Here, one concentrates on the small scales for a flow with large eddies of given
velocity, length, and time scales U
 , 
, T
 . The important Kolmogorov microscale for the
smallest eddies is based on a further assumption that the smallest eddies depend only on
the rate at which energy is put into the large eddies, that is, on one particular combination
of U
 , 
. The friction only acts on the smallest scale and the energy is supplied only at the
large scale. The rate of dissipation ε = 2νD′ : D′ is measured per unit of mass, and can
be related to the macroscales by assuming that a significant fraction of the kinetic energy
per unit of mass k = (1/2)u′ ·u′ in the large eddies is dissipated in the turnover time of
the large eddies, that is, per unit time,

ρε = ρU2



T

, therefore, ε = U3






. (2.15)

Now, the dimensions of this dissipations per unit mass ε are L2T−3, while the dimensions
of the kinematic viscosity ν are L2T−1. Hence, by a simple dimensional analysis, we obtain
the velocity, length, time, and strain-rate scalings of the Kolmogorov microscale: Uk =
(νε)1/4, 
k = (ν3/ε)1/4, Tk = (ν/ε)1/2, and Sk = (ε/ν)1/2 [12]. Introducing the Reynolds
number of the large-scale eddies Re=U

/ν, one obtains

Uk

U

= Re−1/4, 
k = 
Re−3/4, Tk = T
 Re−1/2, Sk = S
 Re1/2 . (2.16)
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The Kolmogorov microscale for the smallest eddies depends on the velocity and length
scales of the large eddies in the combination ε =U
/
. Note that the turnover time of the
smallest eddies Tk is shorter than the turnover time of the large eddies T
 by the factor
Re−1/2. Hence, mixing takes place faster and more efficiently on small scales than on large
scales. Large-scale mixing, however, is described by the Taylor diffusivity DT = U

. So,
for a container of height H , the time for eddy diffusion is then H2/DT = T
H2/
2 [12].

A second microscale, the Taylor microscale, uses a different combination to yield a
slightly large scale. The Taylor microscale λT can be thought of as the boundary layer
thickness on the edge of a large eddy, that is,

λT = (νt)1/2 (2.17)

with t being the turnover time of the large eddies T
 = 
/U
 . Hence, using the Reynolds
number of the large eddies we can show that λT = (ν
/U
)1/2 = 
Re−1/2.

Now, we turn to the scaling of the turbulence energy equation (2.11). First, note that
the vector Qj can be expressed in terms of the temperature in the subgrid scale, namely,

Qj = γρ
(
ẽu j − ũ j ẽ

)= ρcp(�̃uj −�̃ũ j). (2.18)

This diffusion mechanism is promoted by the velocity fluctuation transport in this scale.
In such case, a typical scale of these velocity fluctuations is given by U
 =

√
u′ ·u′, where

u′ = u− ũ. The temperature fluctuations scale like U2

 . Then, a typical scale for the vector

Qj is given by

Qj ∼

ρ

(γ− 1)� c
2U3


 , (2.19)

where R is the gas constant given by Carnot’s relation R= cp− cv.
The important velocity gradient occurs at the smallest scales as mentioned above.

Therefore, S̃i j ∼ (ε/ν)1/2
∼ (Uk/
k) ∼ Re1/2U
/
, and consequently

μ
(
Si jui− S̃i j ũi

)
∼

ρνU2





Re1/2 . (2.20)

It should be important to note that using the Taylor microscale to evaluate S̃i j ∼ U
/λT
leads to the same result given in (2.20) since λT = 
Re−1/2 as mentioned before, and again
S̃i j ∼ Re1/2U
/
.

The scaling of the term V in terms of the large eddies is given by

ρ
(
ũ jukuk − ũ jukuk)∼ ρ

(
U

)3
. (2.21)
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Now, it is possible to determine the scaling for the ratio of the terms III/Qj and V/Qj ,
respectively,

∣∣∣∣∣
(
Si jui− S̃i j ũi

)
Qj

∣∣∣∣∣∼ Re−1/2,

∣∣∣∣∣
ρ
(
ũ jukuk − ũ jukuk)

Qj

∣∣∣∣∣∼

(
Ma
Re

)2

,

(2.22)

where Re = 
U
/ν is the Reynolds number, Ma = U
/c is the Mach number, and c is the
speed of the sound. The resulting scaling indicates that for high Reynolds and low Mach
numbers typically for the values of these parameters investigated in the present paper,
the work done by shear stress and the kinetic energy transport done by subgrid eddies
are very small in comparison to the transport of internal energy Qj . The scalings are sup-
ported by Knight et al. [13], who have evaluated subgrid terms directly by their numerical
simulation. After this dimensional analysis, we can say that the only two terms to be mod-
eled for the limit Re� 1 and Ma� 1 are the subgrid stress tensor Σi j and the subgrid
internal energy transport vector Qj .

2.3. Constitutive relations for the remaining subgrid terms. The constitutive equation
used to describe the subgrid stress tensor is the well-known Smagorinsky model [14],

Σ= 2μtD̃, (2.23)

where the nonlocal turbulent viscosity μt is calculated under conditions of inertial equi-
librium subrange of turbulence [12], namely,

μt = ρ
(
CSΔλ

)2˜̇γ. (2.24)

Here ˜̇γ is the average shear rate defined as ˜̇γ = (2D̃ : D̃)1/2
∼ ε/k. The filter width Δλ ∼

k3/2/ε is set equal to 2δg , where δg is the grid spacing. It is an indication that the smallest
eddies are represented by two grid points. Note that μt ∼ k2/ε. The factor CS is known
as Smagorinsky’s constant. Several values have been proposed for this constant ranging
from 0.1 to 0.2 [15, 16]. In the present work, one has used CS = 0.20, as suggested by
Deardorff [16]. Thus, the model for the subgrid stress tensor takes the form

Σ= 2ρ
(
CSΔλ

)2˜̇γD̃. (2.25)

The subgrid internal energy transport tensor Qj is related to the diffusion of temper-
ature in the subgrid scales due to velocities fluctuations and may be modeled as being a
diffusive heat transport given by a nonlocal Fourier law in the form

Qj =−kt ∂�̃
∂xj

, (2.26)
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with the nonlocal turbulent heat conductivity kt written in terms of a turbulent Prandtl
number Prt [17],

kt =
cp
Prt

μt. (2.27)

For the edge of a turbulent boundary layer, Prt = 0.6 [18] and this value has been used in
the simulations. The set of governing equations is made nondimensionalized by using a
characteristic length and velocity 
 and U
 , respectively, and the properties of the nondis-
turbed flow. From this point through all over the work, we will omit any superscript
notation and assume that all properties are dimensionless averaged quantities. The set
of dimensionless governing equations simulated consists of the continuity, written such
as in (2.5), and the momentum and energy-averaged equations given in dimensionless
terms by

∂

∂t

(
ρui

)
+

∂

∂xj

(
ρujui

)=− ∂

∂xi
+

1
Re

∂

∂xj

[
2
(
μ+μt

)
Si j
]
,

∂

∂t

(
ρeT

)
+

∂

∂xi

(
ρeTui

)=− ∂

∂xi

(
pui

)
+

1
Re

∂

∂xi

(
2μSi j

)

+
1

(γ− 1)PrMa2 Re
∂

∂xi

[(
k+ kt

) ∂�
∂xi

]
,

(2.28)

where Pr is the Prandtl number, Pr= cpμ/kD.

3. Statistical analysis

As mentioned before, the main goal of this work is to treat statistically turbulent velocity
signals either from numerical simulations or experimental observations. An important
question addressed here is to look at how long of a time average is necessary to obtain
well-converged statistical results. Indeed, we have looked at the difference between the
time average and an ensemble average as the measure of this convergence.

The flow is considered as a stochastic process given by the family of functions u =
u(t,α), where α= 1, . . . ,N are the realizations of the process according to Figure 3.1, and
in the present context, u= u(t,α) denotes the velocity of the flow. By stationary we mean
that the form of the probability distribution functions does not depend on a shift of the
time origin. More precisely, we say that a random process is stationary when the probabil-
ity distribution of the stochastic processes u(t,α) and u(to + t,α) are the same for any to.
For a stationary random process then, we may, in principle at least, determine the various
probability distributions from the observations of u(t) for one realization of the system
over a long period of time T . This time being much longer than the integral scale Θ (i.e.,
velocity fluctuation correlation time). This long-time record can be cut up into pieces
of length Tλ (where Tλ is much longer than any periodicities occurring in the process),
and these pieces may be treated as observations of different realizations of the system in
an ensemble of similarly prepared systems. We will restrict the discussion to fluctuating
quantities that are statistically steady, so that their mean values and variance are not func-
tion of time. Only under this condition does the idea of a time average make sense. In a
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u

t

α

u(t,5)

u(t,4)

u(t,3)

u(t,2)

u(t,1)

Figure 3.1. Ensemble of the stochastic process u(t,α). Each temporal series αi denotes one realization
(or experiment) in a given point of the flow domain. The plot illustrates realizations of the flow.

typical laboratory situation, the fluctuating velocity u(t,α) should be the streamwise ve-
locity component measured in a wind tunnel behind a cube. In particular, the relative
amount of time that u(t,α) spends at various levels is measured.

The underlying assumption here is the so-called ergodic hypothesis which states that
for a stationary random process, a large number of observations made on a single system
atN arbitrary instants of time have the same statistical properties as observingN arbitrar-
ily chosen systems at the same time from an ensemble of similar systems. In dealing with
general stochastic process, there are two types of mean values that can be evaluated. One
is the probability average obtained by a number sufficiently larger (N) of observations
at some fixed time t, denoting this average by 〈u(t)〉, and the other is the time average
made for a function u(t), denoting this average by u. The requirement that a time average
should converge to a mean value, that is, that the error should become smaller as the in-
tegration time T increases, and that the mean value found this way should always be the
same, is the ergodicity [19]. This point is discussed in more details in Section 3.2.

In the case of an ergodic stationary random process, both averages yield the same
result, provided that the function u is finite and continuous in mean square [20]. The
time average u over a sufficiently long realization αo (i.e., for time much longer than the
velocity fluctuation correlation time) of the flow is defined as [21]

u= lim
T→∞

1
T

∫ to+T

to
u(t)dt. (3.1)

The use of time averages corresponds to the typical laboratory situation, in which mea-
surements are taken at fixed locations in a statistically steady, but often inhomogeneous,
flow field. For a time average to make sense, the integral (3.1) has to be independent of
to. In other words, the mean flow has to be stationary ∂u/∂t = 0, and consequently the
mean value of the velocity fluctuations, u′ = u(t)− u, itself is zero by definition. Here,
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the averaging time T needed to measure mean values depends on the accuracy desired as
discussed in Section 3.2.

Now, whether each realization has the same probability to occur, a statistical (or prob-
ability) average is defined as being [22]

〈
u(t)

〉= lim
N→∞

1
N

N∑
α=1

u(t,α). (3.2)

A fluctuation about the probability average is defined as being u′(t,α)= u(t,α)−〈u(t)〉.
The variance (or the turbulent kinetic energy (1/2)〈u′(t)2〉) is calculated from the prob-
ability average

〈
u′2(t)

〉= lim
N→∞

1
N

N∑
α=1

[
u(α, t)− 〈u(t)

〉]2
(3.3)

as being the probability average of the square of the velocity fluctuation. While the time
average of the square of the velocity fluctuations is given by

u′2 = lim
T→∞

1
T

∫ to+T

to
u′2(t)dt. (3.4)

3.1. Correlation function and the spectral density. The random processes that do occur
often in flow applications are those where u′(t) and u′(t′) will be correlated at least for
small values of τ = |t′ − t|. There are two more functions associated with a continuous
stationary random process that is central to a statistical description. These two functions
are the velocity fluctuation autocorrelation function and the spectral density. The nor-
malized velocity fluctuation autocorrelation function of a continuous stationary random
process is defined as [23]

R(t, t′)=
〈
u′(t)u′(t′)

〉
〈
u′(t)2

〉 . (3.5)

Now, since a shift in the origin of time does not affect any of the statistical properties of
a stationary random process, the probability density functions simplify from f (u′, t) and
g(u′t, t;u′t′ , t′) to f (u′) and g(u′t,u′t′ , t− t′), respectively. Here, f (u′, t)du′ is called the
first probability distribution and g(u′t, t;u′t′ , t′)du′tdu′t′ , the second probability distri-
bution, is the joint probability of finding u′(α, t) between u′t and u′t + du′t at time t and
between u′t′ and u′t′ + du′t′ at time t′. In this particular case, when both the probability
average and the normalized autocorrelation function do not vary with a shift in the ori-
gin of time, we simply write 〈u〉, 〈u′2〉, and R(τ) and the process is said to be statistically
stationary, with the time shift τ = t′ − t.

The other central function for the statistical analysis here is the spectral density of u′.
It is well known that the variance of the process 〈u′2〉 corresponds to the average power
dissipated in the interval (−T ,T). Then

〈
u′2
〉= 1

2π

∫∞
−∞

E(ω)dω, (3.6)
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where E(ω) is the power spectrum of u′(t). Thus, E(ω)dω/2π is the average power dis-
sipated with frequencies between ω and ω+dω. The velocity fluctuation autocorrelation
function and the spectral density are connected by the Wiener-Khintchine theorem which
states that [7]

Cτ(τ)= 〈u′(t+ τ)u′(t)
〉= 1

2π

∫∞
−∞

E(ω)eiωτdω,

E(ω)=
∫∞
−∞

Cτ(τ)e−iωτdτ.
(3.7)

Note that the autocorrelation function is related with the autocorrelation coefficient by
the variance, that is, Cτ(τ)= 〈u′2〉R(τ). Thus, according to the above theorem, the corre-
lation function and the spectral density are simply Fourier transforms of each other.

3.2. Ergodicity. As stated before in this work, we look at how long of a time average is
necessary to obtain well-converged statistical results. For this end, we need to evaluate the
mean-square difference between the time average and an ensemble average as the measure
of convergence. This is an interesting question since the validity of the ergodic hypothesis
is implicitly assumed in every turbulent flow simulation and its analysis. Thus, using the
definition of correlation function given in (3.5), one obtains [7, 24]

σ2(T)= (u− 〈u(t)
〉)2 = u′2

T2

∫∫ T
0
R(t′ − t)dtdt′ 2

〈
u′2
〉

T

∫ T
0

(
1− τ

T

)
R(τ)dτ. (3.8)

Equation (3.8) is an important result that relates the correlation function with the vari-
ance σ2. Note that if T →∞ leads to σ2 → 0, this implies the ergodicity condition. Thus,
the mean value of the fluctuating quantity can be determined by a time average with ac-
curacy defined by the size of the integral time scale Θ. In fact, this is the requirement
that a time average should converge to a mean value with the error becoming smaller as
the integration time T increases. An ergodic variable not only becomes uncorrelated with
itself at large time step, but it also becomes statistically independent of itself. An equation
like (3.8) may be also used to evaluate the mean-square error of the difference between
the average value of u(t) in the laboratory (evolving finite integration time) and the true
mean value (requiring integration over an infinitely long time). Usually, in a process in
which the correlation function decays rapidly for a relatively short time τ, the ergodic
condition is verified. In particular, for a turbulence in which the correlation function has
the same exponential decay of the one corresponding to a random walk process, we have

R(τ) ∼ e−τ/Θ, (3.9)

where Θ is a correlation time associated to an interval in which the events are weakly
correlated. For large time intervals compared to Θ, the flow u(t) becomes statistically in-
dependent of itself, so thatΘ is a measure for the time interval over which u(t) remembers
its past history.

In a Markovian diffusion process, the variance in the displacement from the starting
position increases linearly in time. The coefficient of the linear growth is defined to be
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the diffusivity of the random walk Γ= (1/2)d/dt(〈x2(t)〉). Again, the symbol 〈·〉 denotes
an average over several experiments.

Now, proceeding formally, Taylor’s calculation of the eddy diffusivity in turbulence is
given by

Γ= d

dt

(
1
2

〈
x2(t)

〉)= 〈x(t)ẋ(t)
〉=

∫ t
0

〈
ẋ(t′)ẋ(t)

〉
dt′. (3.10)

The diffusivity attains its constant value only after several correlation times. Thus,
Γ = 〈u′2〉Θ, with 〈u′2〉 being the mean square of the velocity fluctuations and Θ being
the integral time scale,

Θ=
∫∞

0

〈
ẋ(τ)ẋ(0)

〉
dτ〈

u′2
〉 =

∫∞
0
R(τ)dτ. (3.11)

By the present analysis, we can show that when the above integral fails to converge, due to
the slow decay of the velocity fluctuations autocorrelation, the diffusion becomes anoma-
lous with 〈x2(t)〉∼ tn, with n = 1 [25, 26]. This behavior is characteristic in large-scale
region of the turbulent flow investigated where these scales are strongly correlated, and
the turbulence does not loose its memory. It is instructive to remind the reader that the
velocity correlation needs to be computed as seen by a particle moving with the fluid, and
hence Θ is called the Lagrangian integral-correlation time. The length scale 
 introduced
in Section 2 as the size of the eddies can now be defined as 
 = u′Θ, that is, the distance
one would move at (〈u′2〉)1/2 (i.e., the root mean square of the velocity fluctuation or
simply the RMS) during the correlation time Θ.

Now, the magnitude of the error associated with the nonergodicity (i.e., the conver-
gence of time average) of the process is defined as being

ε= σ

〈u〉 . (3.12)

Considering an exponential decay for the correlation function, the integral in (3.8) may
be performed to give an estimation of ε, namely,

ε2
∼

2
〈
u′2
〉
Θ

T〈u〉2
= 2I2Θ

T
, (3.13)

where I = √〈u′2〉/〈u〉 is the turbulence intensity of the flow that is a measure of the rela-
tive importance between the velocity fluctuation and the mean flow. It is clear from (3.13)
that the convergence of the time average to a mean value can be determined to any accu-
racy desired if the integral scale Θ is finite. In particular, (3.13) gives a good estimation of
the long time T needed to verify the ergodicity of the flow. The time average should also
be used as a correct approach to describe the process from a statistical point of view. In
this work, the result expressed in (3.13) is tested by direct evaluations of the variance σ2.

As mentioned before, an important quantity to quantify flow memory is the Taylor
time scale [23]. Using a Taylor series to expand u′(t + τ) in a neighborhood of t and
supposing the process to be stationary, the correlation function based on an ensemble
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average may be written as

R(τ)=
〈
u′(t)u′(t+ τ)

〉
〈
u′2
〉 = 1− τ2

2!
1〈
u′2
〉
〈(

∂u′

∂t

)2
〉

+O
(
τ3), (3.14)

or

R(τ) ∼ 1− τ2

λ2
T

, where λT =
[

2
〈
u′2
〉

〈
(∂u′/∂t)2

〉
]1/2

. (3.15)

From (2.17) and (3.15), it is clear that λT is a short time scale of the correlation process.
So, using a second-degree polynomial function in order to fit the correlation function for
short times, λT may be estimated. Typically, the Taylor scale is larger than a dissipative
time scale, but is not related to the integral scale observed in the macroscopic flow, that
is, 
2

k/ν� λT � 
/U
 , where 
k is the Kolmogorov dissipative length scale as defined in
Section 2. Effectively, the Taylor scale is a memory characteristic time of the flow. If t is
the present time, we can say that the flow has a strong dependence on the events that
occur in the interval (t− λT , t).

4. Numerical simulations

We now briefly summarize the sequence of steps that is necessary to perform our nu-
merical simulations. Large eddy simulations admittedly require denser grids and more
computer time than Reynolds averaged approaches, but in certain cases, such as the one
under consideration here, it seems that the Reynolds averaged approaches fail to predict
important statistical aspects of the flow. The purpose of this section is to provide an ac-
curate simulation of the turbulent flow past a backward-facing step using a large eddy
simulation in two dimensions. We have therefore obtained information on the statistics
of the flow from the velocity time series generated from the simulations according to
the procedure described in Section 3. We will show that certain region of the flow corre-
sponding to the formation of coherent large-scale structure cannot be described by the
well-converging time average approach.

The flow investigated was numerically simulated under a two-dimensional large eddy
fashion. We use a finite-volume method on a two-dimensional Eulerian grid to solve hy-
drodynamic and energy equations of the flow in Cartesian coordinate for a structured
mesh with colocalized variables. The governing equations are solved simultaneously. The
Reynolds and Mach numbers based on the step height were Re = 38000 and Ma = 0.03,
respectively. Figure 4.1 shows the flow domain and the location of the analyzed points in
the flow and typical streamlines of the mean turbulent field. The streamwise and span-
wise lengths of the computational domain were 20H and 2.5H , respectively. The filtered
governing equations described in Section 2 were discretized by using the explicit Mac-
Cormack method written for a finite volume formulation [27]. The numerical method
uses a standard explicit predictor-corrector Euler algorithm to carry the temporal march.
The set of governing equations was discretized using forward first-order differences in
the predictor steps and backward first order differences in the corrector steps. In both



14 Mathematical Problems in Engineering

1

2

3

y/
H

5 10 15 20

x/H

1 2 3 4 5 6 7 8 9 10

Figure 4.1. Flow domain and the indication of the velocity probes’ position inside (probes 1–4) and
outside (probes 5–10) the recirculating bubble. The probes are equally spaced with Δ(x/H)= 1.5 from
x/H = 6.5 (probe 1) to x/H = 20 (probe 10). The height of all probes is y/H = 0.5, with H = 5.08 cm
and U∞ = 11.63 m/s.

steps, the strain rate and the temperature gradient components were evaluated at the fi-
nite volume faces by central differences. We summarize next the basic procedure of the
discretization process.

4.1. Discrete approximation of the balance equations. The general framework for the
filtered balance equations described in Section 2 can be written in the form of the follow-
ing vector equation:

∂U
∂t

+∇·Π= 0, (4.1)

where Π= Eê1 + Fê2, and the vectors U, E, and F are defined in the same way as given by
Anderson et al. [28],

U=

⎡
⎢⎢⎢⎣
ρ
ρu1

ρu2

ρeT

⎤
⎥⎥⎥⎦ ,

E=

⎡
⎢⎢⎢⎢⎢⎢⎣

ρu1

ρu2
1 + p−C1

(
μ+μt

)
S11

ρu1u2−C1
(
μ+μt

)
S12

ρu1eT + pu1−C1
(
μS11

)
u1−C1

(
μS12

)
u2C2

(
k+ kt

)
∂�/∂x1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

F=

⎡
⎢⎢⎢⎢⎢⎢⎣

ρu2

ρu2u1−C1
(
μ+μt

)
S21

ρu2
2 + p−C1

(
μ+μt

)
S22

ρu2eT + pu2−C1
(
μS21

)
u−C1

(
μS22

)
u2−C2

(
k+ kt

)
∂�/∂x2

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(4.2)

Here the subscripts 1 and 2 in the above vectors denote the components x1 and x2 of a
flow quantity, ê1 and ê2 are the unit basis vectors in directions 1 and 2, respectively, and
the parameters C1 = 2Re−1 and C2 = [(γ− 1)PrMa2 Re]−1.
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Figure 4.2. A two-dimensional sketch of the computational structured quadrangular grid used in the
numerical simulations. The notation used is shown in the figure.

Now, consider that the flow domain Ω is subdivided inN� small regions called control
volumes, so that Ω=⋃N�

i=1 �i. The volume average of the quantity U over a single control
volume � is defined as being Û= (1/�)

∫
� UdS. Now, integrating (4.1) over � and using

the divergence theorem with the volume average definition, it is found that

∂Û
∂t
=− 1

�

∫
�
Π ·nd�, (4.3)

where � is the contour of the elementary region � and n is a unit vector directed out-
ward from the enclosed control volume. The flow domain Ω was discretized by using
quadrangular control volumes in a structural mesh as illustrated in Figure 4.2. The sur-
face integral (4.3) is evaluated by line integrals over the edges of the control volumes. The
value of Π on an elementary volume edge is taken as being the volume average of Π over
one of the control volumes bounded by this edge. In particular, it is considered that Π̂ is
always constant with respect to the integral over �, so that

∫
�Π · nd� ≈∑4

β=1 Π̂β ·�β,
where �β is a vector normal to the edge β with absolute value equal to the length of this
edge. Under this condition, (4.3) reduces to the following approximation:

∂Û
∂t
≈− 1

�

4∑
β=1

Π̂β ·�β. (4.4)

Since Π̂ is a function of Û, (4.4) can be solved by an Euler method. In the MacCormack
method, a predictor-corrector algorithm corresponding to a second-order Runge-Kutta
procedure is applied. In the predictor step, the vector Π̂ was taken as being equal to the
vector of the control volume downstream to the edge, whereas in the corrector step, Π̂was
associated to the volume upstream to the same edge. For instance, following the notation
in Figure 4.2, consider the discrete quantity evaluated on the edge i+ 1/2. At the predictor
step, Π is calculated in terms of the quantities of the volume (i+ 1, j). Subsequently, for
the same edge, at the corrector step, Π is calculated in terms of the quantities of the vol-
ume (i, j). The components of the velocity gradient tensor and the temperature gradient
on the faces of the control volume were evaluated by central difference. For instance, on
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the edge i+ 1/2, the term ∂u1/∂x1 is approximated by

∂u1

∂x1
≈ u1(i+ 1, j)−u1(i, j)
x1(i+ 1, j)− x1(i, j)

, (4.5)

where x1(i, j) and x1(i+ 1, j) denote the center coordinates of the control volumes (i, j)
and (i+ 1, j), respectively.

The compressible formulation of the flow allows the use of a state equation for the
pressure. Consequently, additional velocity-pressure coupling algorithm was not
required. This numerical procedure leads to a second-order precision discretization in
both space and time derivatives. The accuracy and robustness of the numerical method
are defined in the context of the classical MacCormack method described in details by
[27]. No extra upwinding feature was implemented and the method is stable if the CFL
number (i.e., Courant-Friedricks-Lewey number) is less than unity for all grid volumes,
where CFL = Δx/(u+ cs) with u and cs being the largest velocity norm and the largest
sound velocity at the volume boundary, respectively, and Δx is the local grid spacing [28].
In the present simulation, CFL≈ 0.7, which has provided a stable condition for all sim-
ulations. The initial transient, corresponding to 608 flows through (i.e., 106 iterations),
that is, 2.3 seconds of physical time, was neglected. The typical convective time scale of
the flow H/U∞ ≈ 0.1 second and the longest simulation time was approximately 21 sec-
onds. This wide interval was necessary because the velocity signal was fragmented into
smaller temporal series when defining the stochastic set.

An equally spaced Cartesian grid was used to discretize the flow domain and to resolve
the velocity, pressure, and temperature fields of the flow. The spatial resolution employed
was 36 volumes/cube edge. This resolution was sufficient to resolve the turbulent length
scales of interest. Additionally, a 100H stretched grid region was generated with 188 vol-
umes in the streamwise direction, downstream of the regular grid. This region was nec-
essary to dissipate the turbulent structures and provide a smooth condition at the outgo-
ing section of the domain. The computations were carried out for a typical rectangular
grid with (90× 1088) control volumes. A uniform velocity profile at the inlet section was
imposed with no turbulence intensity (i.e., laminar flow). No slip boundary conditions
were employed in the spanwise and normal directions. The initial condition is formed
by stagnated fluid with constant pressure and temperature. The dimensionless time step
used was approximately Δt = 5× 10−3. The simulation time was T = 48800H/U∞. The
velocity samples at probe positions were stored in intervals of 25Δt. In postprocessing al-
gorithm, the velocity time series have been used to compute the various statistical results
to be presented next. The time separation between two sequential data fields was large
enough compared to the integral time scale of the turbulent fluctuation Θ for the data
fields to be considered are nearly independent realizations of the flow. The flow statistics
have been obtained by or ensemble averaging over all stored data fields. The simulations
all were carried out on a PC of 2.0 GHz processor and 1.0 GB of physical memory. The
total CPU time required to perform the 2D LES simulation was about 27 days.

Figure 4.3 shows a typical evolution of the instantaneous vorticity field around the
cube given by our two-dimensional LES. A complex turbulent wake downstream the cube
is seen, with large-scale vortices of different intensities interacting along the wake. In this



T. F. Oliveira et al. 17

Rotz: �5 �3.6 �2.1 �0.7 0.7 2.1 3.6 5

Figure 4.3. A typical time evolution of the instantaneous vorticity field obtained in the present work
by using two-dimensional LES. From top to bottom, the associated dimensionless times are tU∞/H =
448.3, 474.7, 501.1, and 527.5. The color scale indicates the vorticity intensity, increasing from left
(blue) to right (red). The label Rotz means the component “z” of the vorticity or rotational of the
velocity field (perpendicular to the plane of the flow).

region, the velocity signals were collected in order to build the stochastic set to be ana-
lyzed. In addition, we can see the flow separation and that a reattachment occurs more
suddenly. The converged solutions were checked against the experimental results for the
average reattachment point position given by Eaton and Johnston [29]. This is a typi-
cal parameter that has been commonly used to validate numerical simulations. The test
simulation was carried out on the same conditions of the experimental setup, including
flow domain geometry, thermodynamic properties of the fluid, and the imposed flow.
Figure 4.4 depicts the dimensionless component of the average velocity in x-direction as
a function of the position x/H . A very good agreement is seen between the reattachment
length xR/H = 12.94 predicted by the present numerical simulations and xR/H = 12.95
measured experimentally [29]. The error was less than 1%. Halving the grid size pro-
duced a change that was not greater than 1% in this computed quantity.

The first step for the statistical characterization of the flow was to define the stochastic
set in the probes positions. In order to build a stochastic process from the numerical sim-
ulations, a large temporal series was dropped into smaller temporal series corresponding
to the realizations of the process. The resulting temporal series were then independent
events of the turbulent flow, since the time scales involved were long enough for a com-
plete decay of the correlation function. So, the velocity fluctuations become statistically
independent with respect to events that have occurred in their past history. This proce-
dure was equivalent to start a new simulation from a different initial condition which is
uncorrelated with the past one. The dimensionless integral time scale ΘU∞/H may be
determined by direct integration of the velocity fluctuation normalized autocorrelation
function (3.11). In this work, however, we have estimated this parameter by direct in-
spection of the velocity fluctuation autocorrelation function as being approximately two
times the time for the full decay of the autocorrelation function. This of course overesti-
mates the integral scale value of the correlation time, but it corresponds to a suitable time
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Figure 4.4. Dimensionless average velocity in the x-direction as a function of the dimensionless po-
sition x/H (solid line). The vertical dashed line indicates the reattachment length (xR/H = 12.5)
measured experimentally [29], whereas the arrow in the plot indicates the reattachment length
(xR/H = 12.4) given by the present work for CFL= 0.7 and CS = 0.27.

scale which guaranteed the statistical independence of the set of realizations constructed
from the original velocity signal.

5. Results and discussions

Figures 5.1(a) and 5.1(b) show the normalized velocity fluctuation autocorrelation func-
tion as a function of the nondimensional time for probes in two different dimensionless
positions x = 4H and x = 8H . The standard errors are calculated in terms of the standard
deviation of the normalized autocorrelation function values which result from the sta-
tistics over the set of realizations, at each fixed time. The same procedure was applied to
evaluate all values of error bars presented in this work. We can see a remarkable differ-
ence between the integral time scales for the probes 4 and 8 located inside and outside the
recirculating bubble, respectively, as illustrated in Figure 4.1. While for the probe 4 (see
Figure 5.1(a)), the dimensionless integral time scale was estimated to be ΘU∞/H ≈ 500,
in probe 8 the corresponding time scale was ΘU∞/H ≈ 10 as displayed in Figure 5.1(b).
The temporal series in the probe positions were divided into smaller time intervals cor-
responding to different independent experiments. Table 5.1 shows the length of these in-
tervals ΘU∞/H and the number of realizations associated with each probe. By this pro-
cedure, the statistics of the flow were performed in terms of the probability averages.
Figures 5.2(a), 5.2(b), 5.3(a), and 5.3(b) give the nondimensional average velocity in the
x-direction (streamwise) and its associated root mean square statistics for the probes 4
and 8, respectively. We can see temporal oscillations in the values of the mean velocity
fluctuation and velocity fluctuations that are more intense in the probe 4. These oscil-
lations are a direct consequence of the difference between the temporal and probabil-
ity averages, which is related to a nonergodic behavior of the turbulence in a region of
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Figure 5.1. The normalized velocity fluctuation autocorrelation function (streamwise component)
plotted as a function of the dimensionless time. The numerical results were obtained from LES. (a)
Probe 4; (b) probe 8. The insert in the plot shown in (b) gives an estimation of the Taylor microscale
λT by using the parabolic fit (3.15). Attempt to different time scales used in the plots. The error bars
are also shown in both plots.

large-scale structures located in the transition shear layer region of the flow. Actually, the
probes 4 and 5 are located in a place which appears to be more critical for the ergodicity
than probes 1, 2, 3 that are exactly inside the recirculating region. Inside this region, the
fluid parcels seem to describe approximately a rigid body rotation since the important
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Table 5.1. The values of the integral time scale and number of realizations for each probe.

Probe ΘU∞/H Number of realizations

1, 2, 3 100 40

4, 5 500 9

6 200 20

7, 8, 9, 10 10 100

mechanism known as vortex stretching is absent in two-dimensional flows. The probes 4
and 5 (mainly probe 4) on the other hand are located in a transition shear layer region
where the fluid particles are subject to stronger velocity gradients, and the complex inter-
actions of smaller scales with intermediate scales cannot be neglected. The coherence of
the turbulent eddies in the shear layer is much increased if no three-dimensional insta-
bilities are present (as it is the present case). The intensity of the coherent vortices grows
via an inverse energy cascade, and eventually they start producing significant feedback
on turbulence. Despite many achievements in numerical simulations of two-dimensional
turbulence, the underlying physical mechanism of turbulent vortex interactions still re-
mains unclear.

The mean-square difference between the probability average and the time average gives
a direct measurement of the error ε, defined in (3.12). This error can also be estimated
by the simple relation proposed in (3.13). Table 5.2 shows the values of the predicted
and the ergodic deviation errors for each probe in the turbulent flow. The purpose of
relation (3.13) is to give an estimation of the order of magnitude of the error introduced
when a probability average is replaced by a temporal average. The results presented in
Table 5.2 show a good agreement between the scaling based on an exponential decay of
the autocorrelation function and the ergodic deviation error calculated numerically by
using (3.12) with the autocorrelation sample computed from the numerical simulations.
It is seen that for those points far outside from the recirculating bubble the turbulence
behaves close to a random walk. On the other hand, the results also indicates that for
those points inside and around the recirculating bubble, the ergodic deviation can be
very high such as that found for the probe 4. So, the time average does not produce a
meaningful statistics.

For the case of the probes 4 and 5, an exponential decay does not fit the real decay
behavior of the normalized correlation function. It indicates that the turbulence in this
region may have a quite different behavior of a typical random walk process. The dis-
persion process of momentum transport by velocity fluctuations seems to characterize
an anomalous diffusion in the way described in Section 3. In that case, the integral in
(3.8) must be evaluated numerically. The probe 4 shows a strong nonergodic property,
suggesting that in this region a time average approach fails in describing the local tur-
bulence. It is possible to infer that the probes in the neighboring or inserted into the
recirculation bubble shown in Figure 4.1 have presented a significant deviation from the
ergodicity. Consequently, the flow in this regions persists strongly correlated for a long
time as shown in Table 5.2. It means that large turbulent structures dominate the flow in
the recirculation bubble. In contrast in probes 7 to 10, the turbulence is characterized by
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Figure 5.2. Dimensionless mean streamwise velocity as a function of the dimensionless time. (a) Nu-
merical results of LES for probe 4, and (b) probe 8. Both plots show the error bars.

structures of smaller scales with short memory intervals and behavior closer to random
fluctuations and a normal diffusion. In this case, a time average could be used to describe
precisely the flow. From the plots in Figures 5.1(a) and 5.1(b), it is possible to evaluate
the correlation degree of the flow process. In probes 4 and 5, the correlation functions
decay very slowly with respect to the other ones. Their shapes are also different and an
exponential or parabolic fit seems to be not appropriated anymore. For all other probes,
an exponential fit was used to determine the finite time-scale integral as a measure of



22 Mathematical Problems in Engineering

�0.5

0

0.5

1

1.5

√ �

u

�

2

�

/U

�

0 50 100

tU�/H

(a)

�0.5

0

0.5

1

1.5

√ �

u

�

2

�

/U

�

0 10 20 30 40

tU�/H

(b)

Figure 5.3. Dimensionless root mean square (RMS) as a function of the dimensionless time obtained
from the LES (a) at probe 4 and (b) probe 8. The error bars are also shown in both plots.

the turbulence memory, corresponding to the time over which the velocity fluctuation is
correlated with itself (i.e., the velocity fluctuation correlation time).

In addition, the two-dimensional power spectra relative to the probes 4 and 8 are pre-
sented in Figures 5.4(a) and 5.4(b), respectively. The details of the spectra calculations
were mentioned in Section 3.1. The error bars are also considered in the plots. In these
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Table 5.2. Comparison between the ergodic deviation error ε predicted by relation (3.13) and its
value directly evaluating from the large eddy numerical simulation data by calculating the mean-
square difference between the time and probability averages.

Probe x/H Computed error (%) Predicted error (%)

1 6.5 16 20

2 8 12 20

3 9.5 14 20

4 11 4975 3400

5 12.5 24 13

6 14 10 10

7 15.5 3 3

8 17 3 3

9 18.5 4 3

10 20 3 3

plots, the abscissa is the logarithm of the nondimensional frequency, whereas the ordinate
is defined so that the area beneath a logarithmic plot of E(ω) is proportional to the mean
square of the fluctuating signal. Both spectra show that turbulence energy at small scales
is decreased, while it is increased at large scales. In particular, one can see that the spectra
of present two-dimensional simulations seem to change shape for moderate nondimen-
sional frequencies ranging form 0.1 to 1. In the case of probe 4 located in the interface
of the recirculating bubble as shown in Figure 4.1, we see that the energy cascade is char-
acterized by a −3 spectral exponent which is different from the famous ω−5/3 valid for
three-dimensional small scales of a local turbulence. The decay turbulence with ω−5/3 is
observed only at higher frequency (smaller scales) as a result of the subgrid model used
in numerical simulations which has been based on the Kolmogorov inertial equilibrium
subrange of turbulence described in Section 2.3. The interval of the ω−5/3 spectrum is
shown in both inserts of the mentioned figures. The presence of a spectrum interval with
an ω−3 decay may be attributed to the mechanism of the inverse cascade which arises
in two-dimensional turbulence inside the recirculating bubble. The resulting spectrum
of probe 8 located outside the recirculating bubble (Figure 5.4(b)) exhibits virtually the
same characteristics shown in the plot in Figure 5.4(a). However, the decay turbulence
given by this spectrum is closer to ω−4 than to ω−3. So, outside the recirculating region
it is found that the turbulence decay corresponding to intermediate scales with dimen-
sionless frequencies ranging form 1 to 10 gets steeper than−3. Most of these results seem
to be in qualitatively agreement with the predictions given by the dimensional analysis of
two-dimensional turbulent flow presented by Nazarenko and Laval [5].

The probability density functions associated with the turbulent velocity fluctuations in
probes 4 and 8 are shown in Figures 5.5(a) and 5.5(b), respectively. The non-Gaussian de-
viation of the distribution function is clearly noticeable in probe 4, whereas in probe 8, the
behavior of the probability density function is closer to a normal distribution. In partic-
ular, the behavior of the statistical distribution is quantified by the skewness and flatness



24 Mathematical Problems in Engineering

10�9

10�5

10�1

103

E
(ω

)/
(U

�

H
)

10�2 10�1 100 101 102 103

ωU
�
/H

20 60

10�5

10�7

10�9

(a)

10�8

10�4

100

E
(ω

)/
(U

�

H
)

10�1 100 101

ωU
�
/H

20 40

10�4

10�6

10�8

(b)

Figure 5.4. Dimensionless power spectra for the streamwise direction as a function of the dimension-
less frequency for (a) probe 4 and (b) probe 8. The results were obtained from LES. Dashed line in
(a) represents a decayment of the spectra with (ωU∞/H)−3, whereas the dashed line in (b) represents
a spectrum with (ωU∞/H)−4. The inserts in the plots (a) and (b) show the Kolmogorov frequency
decay (ωU∞/H)−5/3 for the smaller scale. The error bars are shown in both plots of the figure.

factors, defined as ϕ= 〈u′(t)3〉/ξ3 and κ = 〈u′(t)4〉/ξ4, where ξ2 = 〈u′(t)2〉, respectively.
These factors and the turbulence intensities for each probe are listed in Table 5.3. It is
well known that a normal distribution has ϕ = 0 and κ = 3. It is possible to infer that
all processes display some non-Gaussian behavior. The turbulent intensity at probe 4 has
the order of 2× 104%, whereas between others, the greater value of this parameter has
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Figure 5.5. Probability density function. (a) Probe 4 and (b) probe 8. The solid line shows the stan-
dard Gaussian process. The error bars are shown in both plots.

the order of 102% (see, e.g., probe 1, Table 5.3). This characteristic is an indication of the
strong nonergodic property of the velocity fluctuations in probe 4. The interval of confi-
dence represented by the error bars shown in the plots and by the associated errors to the
quantities in Table 5.3 is relatively large. It suggests that for a complete characterization
of these parameters, more realizations are required, and consequently it would demand
additional computational effort in order to simulate much larger time intervals.
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Table 5.3. The values of the turbulence intensities, skewness and flatness factors for each probe.

Probe x/H Turbulence intensity (%) ϕ κ

1 6.5 113± 38 −0.3± 0.6 2.7± 0.8

2 8 77± 26 −0.2± 0.5 2.7± 0.5

3 9.5 82± 16 0.2± 0.3 2.7± 0.5

4 11 (2.1± 0.4)× 104 0.5± 0.3 2.6± 0.6

5 12.5 88± 16 0.0± 0.3 2.3± 0.3

6 14 43± 6 −0.3± 0.3 2.5± 0.2

7 15.5 37± 4 −0.5± 0.4 2.9± 0.7

8 17 37± 4 −0.2± 0.5 2.9± 0.5

9 18.5 39± 3 0± 0.3 2.8± 0.4

10 20 41± 3 0± 0.2 2.7± 0.4

6. Concluding remark

In this paper, a rigorous statistical approach for the treatment of turbulent velocity fluc-
tuations has been presented. We have looked at how long of a time average is necessary
to obtain well-converged statistical results. For this end, we evaluate the mean-square
difference between the time average and an ensemble average as the measure of conver-
gence. From the numerical simulations, ten different points in the flow domain have been
statistically treated using a probabilistic approach. The realizations of the statistical en-
semble were defined by the cut up of a long-time velocity record into pieces of length
much longer than the characteristic correlation time of the velocity fluctuations. Based
on the velocity fluctuations correlation time, a statistical analysis of long time has been
performed. The ergodicity assumption of the turbulence was investigated. The devia-
tion ε of this criterium was evaluated and compared with theoretical predictions given
by scaling arguments. The results have suggested that the deviation due to ergodicity as-
sumption may be used as a criterion in order to predict the upper boundary simulation
time required to have a convergence of the statistical characterization of the flow. We
have found from the two-dimensional large eddy simulations that inside and outside a
recirculating region, the turbulence decaying corresponding to intermediate scales (with
dimensionless frequencies ranging form 1 to 10) gets steeper than the classical scaling
ω−5/3 spectrum. We found ω−3 and ω−4 for a point inside and another outside the re-
circulating bubble, respectively. The decaying turbulence like ω−5/3 was seen only at the
smaller scales attributed to the subgrid model used which was based on the Kolmogorov
inertial equilibrium subrange of the turbulence. Probability functions, skewness and flat-
ness coefficients have shown a deviation from the Gaussian behavior at all investigated
positions. We have seen that the break of flow ergodicity property of the flow is directly
related with the large-scale structures of the turbulence. In this flow regime, the inte-
gral time scale required to define the most commonly used time average is almost always
unpredictable.
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As future works, it would be important to think about developing more robust three-
dimensional LES to test the ergodicity of turbulent flows in the presence of vortex-
stretching and multistructure interactions. Two-dimensional LES calculations are clearly
inferior to three-dimensional ones since certain important features of three-dimensional
turbulence (vortex stretching) are not resolved. Moreover, two-dimensional large-scale
structures are subject to three-dimensional instability which results in counter-rotation
vortices. Behind this, there is a question of how the nonlocal interactions of large-scale
vortices with intermediate and small-scale structures in three-dimensional turbulence
affect the local ergodicity of the flow. Clearly, this fundamental topic requires further
attention.
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