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In the computation of turbulent flows via turbulence modeling, the treatment of the
convective terms is a key issue. In the present work, we present a numerical technique
for simulating two-dimensional incompressible turbulent flows. In particular, the per-
formance of the high Reynolds κ-ε model and a new high-order upwind scheme (adap-
tative QUICKEST by Kaibara et al. (2005)) is assessed for 2D confined and free-surface
incompressible turbulent flows. The model equations are solved with the fractional-step
projection method in primitive variables. Solutions are obtained by using an adaptation
of the front tracking GENSMAC (Tomé and McKee (1994)) methodology for calculating
fluid flows at high Reynolds numbers. The calculations are performed by using the 2D
version of the Freeflow simulation system (Castello et al. (2000)). A specific way of im-
plementing wall functions is also tested and assessed. The numerical procedure is tested
by solving three fluid flow problems, namely, turbulent flow over a backward-facing step,
turbulent boundary layer over a flat plate under zero-pressure gradients, and a turbulent
free jet impinging onto a flat surface. The numerical method is then applied to solve the
flow of a horizontal jet penetrating a quiescent fluid from an entry port beneath the free
surface.

Copyright © 2007 V. G. Ferreira et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

With the rapid advance of computer technology, numerical modeling has become an
important tool in the understanding of fluid dynamics phenomena. One of the challeng-
ing tasks is the computation of incompressible turbulent flows (mainly those with free
surfaces), which can, in principle, be carried out by the direct numerical integration of
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instantaneous Navier-Stokes equations. Unfortunately, due to the large computational ef-
fort involved, this technique has been restricted to flows at low Reynolds numbers. Practi-
cal calculations at the present time must therefore be based on the unsteady Reynolds av-
eraged Navier-Stokes (URANS) equations, with the high Reynolds κ-ε turbulence model.
However, the performance of this modeling decisively depends on the form that the non-
linear advective terms are approximated.

A wide variety of techniques for discretizing the nonlinear advective terms has been
proposed over the last 20 years, given that the combination of NVD (normalized variable
diagram) [1] and TVD (total variation diminishing) [2] is one of the most popular in the
CFD community. For instance, [3] proposed the VONOS (variable-order non-oscillatory
scheme), an NVD scheme which emerged, according to [4, 5], as an acceptable upwind-
ing tool for simulation of free surface flows. Reference [6] proposed a third-order accu-
rate and limited scheme named WACEB (weighted-average coefficient ensuring bound-
edness) TVD. Numerical results for scalar convection problems show that this scheme has
the same ability of QUICK in reducing numerical diffusion without introducing spuri-
ous extrema (oscillations). However, this scheme still has convergence problems for non-
Newtonian flows. As a remedy, [7] devised a high-resolution scheme called CUBISTA
(convergent and universally bounded interpolation scheme for treatment of advection)
TVD. The evaluation of the accuracy and convergence properties of the scheme was mea-
sured in two-dimensional cases by using linear and nonlinear problems and for Newto-
nian and non-Newtonian flows.

In the last years, a great effort has been made to develop high-order bounded advec-
tion schemes that combine the TVD and NVD formulations. Using this combination, re-
cently, [8] derived an upwind scheme for unsteady flow fields (called adaptative QUICK-
EST), which did a very good job in solving laminar incompressible free surface flows (see
[9] for details). The main motivation for the present work is to simulate incompress-
ible turbulent free surface flows at high Reynolds numbers. By using the standard κ-ε
turbulence model and the adaptative QUICKEST scheme, the present paper describes
an effective 2D finite difference methodology for the numerical solution of this class of
flows. The calculations are performed by the 2D version of the Freeflow simulation system
of [10].

The paper is organized as follows. First, the model equations are set out (Section 2).
The initial and boundary conditions are then presented (Section 3). The adaptative
QUICKEST scheme is described in Section 4. The numerical technique is given in Section
5, while the finite difference discretization is described in Section 6. Numerical results are
presented and discussed in Section 7. Conclusions are presented in Section 8.

2. Equation models

The flow regime of interest in this paper is modeled by the time-dependent, incom-
pressible, constant property 2D Reynolds averaged Navier-Stokes equations, mass con-
servation equation, and κ-ε model in the primitive variable formulation. In conservative
and nondimensional forms, these equations, omitting averaging symbols, can be written
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In the above equations, t is the time, u= u(x, y, t) and v = v(x, y, t) are, respectively, the
components in the x and y directions of the local time-averaged velocity vector field of
the fluid, κ= κ(x, y, t) is the local time-averaged turbulent kinetic energy of the fluctuat-
ing motion, ε = ε(x, y, t) is the turbulence dissipation rate of κ, pe = p + (2/3)(1/Re)κ is
the effective scalar pressure field divided by the density, and g = (gx,gy) is the accelera-

tion due to gravity. The nondimensional parameters Re=UL/ν and Fr=U/
√
L|g| denote

the associated Reynolds and Froude numbers, respectively, in which U is a characteristic
velocity scale and L is a length scale of the flow. The nondimensional turbulent viscos-
ity νt, turbulent shear stress production P, and turbulence time scale Tt are, respectively,
defined as

νt = CμκTt, (2.6)

P = νt
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Tt = κε−1, (2.8)



4 Mathematical Problems in Engineering

vi, j+1/2

ui−1/2, j ui+1/2, j

vi, j−1/2

φi, j

Figure 3.1. Computational cell showing where the variables are discretized. The variable φ can be pe,
κ, ε, or νt .

where the model constants, obtained from experimental results, are considered as Cμ =
0.09, C1ε = 1.44, C2ε = 1.92, σκ = 1.0, and σε = 1.3. Equations (2.1)–(2.8) have been
non-dimensionalized with the following scalings:

u= uU , v = vU , x = xL, y = yL, t = tLU−1, pe = peU2,

κ= κνUL−1, ε = ενU2L−2, νt = νtν, gx = gx|g|, g y = gy|g|,
(2.9)

where variables with a bar refer to their corresponding dimensional variables.

3. Initial and boundary conditions

Equations (2.1)–(2.5) are coupled nonlinear differential equations and, together with the
eddy viscosity model (2.6), are sufficient, in principle, to solve for the five unknowns u, v,
pe, κ, and ε when appropriate initial and boundary conditions are specified. In this work,
a staggered grid is used where the effective pressure, the turbulent kinetic energy, and
the dissipation rate are stored at the centre of a computational grid cell, while velocities
are stored at the cell edges. A typical cell showing the physical locations at which these
dependent variables are defined is illustrated in Figure 3.1. With this grid system, effective
pressure boundary conditions are not needed. The boundary and initial conditions have
been implemented as follows.

The initial conditions for the mean velocities and effective pressure are specified in the
same way as in the laminar case (see [4] or [9]), that is, these variables are prescribed.
It is difficult to specify initial conditions for the turbulent variables, since they must be
in agreement with the physics of the problem. Thus, for the problems considered in this
work, we prescribe the initial conditions for κ and ε, and hence νt, as functions of an
upstream turbulent intensity I = 8.0× 10−2. This specific intensity level is used because it
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is within the bounds of realistic values. In nondimensional form, the turbulent variables
can be written as

κ= IRe, ε = 0.33× 10−2(Re−1 κ3)1/2
. (3.1)

Four types of boundary conditions have been implemented, namely: inflow, outflow, free
surface, and rigid-wall boundaries. At the inflow, the velocities u and v are prescribed
while the values of κ and ε are estimated in such a way that they are consistent with
the initial conditions (3.1). At the outflow, the streamwise gradient for each variable is
required to be equal to zero. At a free surface, we consider the fluid to be moving into
(or out of) a passive atmosphere (zero-pressure) and, in the absence of surface tension
forces, the normal and tangential components of the stress must be continuous across the
free surface; hence on such a surface, we have (see, e.g., [11])

n · (τ ·n)= pext, (3.2)

m · (τ ·n)= 0. (3.3)

Here, n and m are, respectively, unit normal and tangential vectors to the surface, pext is
the external (atmospheric) pressure (assumed zero in this paper), and τ = τ(pe,νt,u) is
the Cauchy stress-tensor given by

τ =−peI + Re−1 (1 + νt
){∇u + (∇u)T

}
, (3.4)

where I denotes the identity tensor. Equations (3.2) and (3.3) are discretized by accurate
local finite difference approximations on the free surface, namely, from condition (3.2)
one determines the effective pressure; and from (3.3) one obtains the velocities at the free
surface. Due to the complexity of the dynamics of the turbulence near the free surface,
the values of the turbulent variables κ and ε at the boundary are difficult to specify. For
instance, it is not known how turbulence interacts with surface tension, and therefore,
it is difficult to specify the distribution of κ on an irregular moving boundary. So, as a
first approximation, we assume that the free surface is locally flat and the movement of
the fluid does not cause any discontinuities at the boundary. In summary, the turbulent
variables at the free surface are determined by imposing

∂κ

∂n
= 0,

∂ε

∂n
= 0. (3.5)

The derivatives in (3.5) are approximated by first-order (either forward or backward)
finite difference schemes.

The κ-ε model, as formulated in (2.4)-(2.5), cannot be applied as the calculation ap-
proaches a rigid wall. This is because the turbulent time scale in (2.5) exhibits a singular
nature near a wall, since the turbulent kinetic energy κ tends to zero there [12]. For this
reason, the wall function is employed in the near-wall region. In this case, the fundamen-
tal equation for determining the fictitious velocities and turbulent variables near a rigid
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wall is the total momentum flux τω given by [13]
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where u represents the mean velocity component tangential to the rigid wall, and u∗ is the
friction velocity. The values of κ and ε in the inertial sublayer are, respectively, prescribed
by the well-known relations
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where K = 0.41. In the viscous region close to the wall, we use the strategy of [14], that is,

κ= Re
u∗2

C1/2
μ

(
y+

y+
c

)2

, ε =
√

1
Re

κ3/2

l∗
, (3.8)

where y+ is defined as y+ = Reu∗y, and l∗ represents the length scale proposed by [15].
Neglecting the buffer layer of the turbulent boundary layer, the critical value of y+ (de-
noted by y+

c ) in (3.8) separates the viscous sublayer from the inertial sublayer.

3.1. Wall boundary conditions. The strategy adopted here to describe the solution of
the flow near a rigid wall is the wall function which describes the asymptotic behavior of
the turbulent variables near the wall. The main advantages of the wall function approach
are (a) the need to extend the calculation right down to the wall is avoided, a fact which
saves computing time and storage; and (b) it is not necessary to account for the viscous
effects in the turbulence model. In summary, the behavior of the mean velocity profiles
in the viscous and inertial sublayers is given by (see, e.g., [16, 17] or [18])

u+− y+ = 0, (3.9)

ln
(
Ey+)−Ku+ = 0, (3.10)

where u+ = u/u∗ and E = exp(KB); B is an empirical constant and is usually chosen to
correspond to a hydrodynamically smooth wall. One of the central questions in the ap-
plication of the wall functions (3.6)–(3.8) and (3.9)-(3.10) is the accurate determination
of the friction velocity, and hence the wall shear stress. This is determined from rela-
tion (3.9) or (3.10), depending on the local Reynolds number y+. The Newton-Raphson
method was used to obtain u∗ from (3.10), with u∗ = 11.60 as initial condition. This ini-
tial value was obtained from the numerical solution of the system (3.9)-(3.10) (see also
[19]). To begin with, we need to know the critical Reynolds number y+

c in (3.8). By ne-
glecting the transition sub-layer, the friction velocity is estimated in the following specific
way: with the tangential velocity u∗ known in the first grid cell adjacent to the wall, u∗

is updated according to the value of y+ given by (3.9). If y+ is less than y+
c , we use (3.9);

on the other hand, if it is not, we employ (3.10). The fictitious velocities are calculated by
the central-difference approximation of (3.6) for a known wall shear stress.
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Figure 4.1. Neighboring nodes D, U , and R of the f face.

4. Treatment of nonlinear advection terms

For the flow regime considered in this work, the momentum and turbulence transport
equations are dominated by convection, and it is well recognized that standard discretiza-
tion (i.e., QUICK, central difference, or Lax-Wendroff) for the nonlinear terms leads to
oscillatory solutions. In this paper, the discretization of all advective terms in transport
equations (2.1)-(2.2) and (2.4)-(2.5) is performed by using the adaptative QUICKEST
scheme of [8] (see also [9]). This high-order upwind technique is derived from the nor-
malized variable of [20] and by enforcing the total variation diminishing property of
[2, 21]. Consequently, it satisfies the CBC of [22]. The main idea in the derivation of this
scheme was to combine accuracy and monotonicity, while ensuring flexibility (it depends
on a free parameter). The adaptative QUICKEST scheme enjoyies the property that total
variation of the variables does not increase with time, thus spurious numerical oscilla-
tions are not generated. The numerical solution can be second- or third-order accurate
in the smooth parts of the solution, but only first-order near regions with large gradients.
In summary, a general interfacial flow property φ̂ f is implemented in the current Freeflow
code by the functional relationship

φ̂ f =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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1
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6

(
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)(
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)
, a≤ φ̂U ≤ b,

1− θ + θφ̂U , b < φ̂U < 1,

φ̂U , elsewhere,

(4.1)

where θ = Vf · δt/δx is the convective Courant number, Vf is a convective velocity, and

δx is the grid spacing, and φ̂() = (φ() − φR)/(φD − φR) is Leonard’s normalized variable
(see [1]). The subscripts D, U , and R referring to values at the downstream, upstream,
and remote-upstream locations are defined according to the sign of Vf at f face (see
Figure 4.1). The constants a and b in (4.1) are given by

a= 2− 3|θ|+ θ2

7− 6θ− 3|θ|+ 2θ2
, b = −4 + 6θ− 3|θ|+ θ2

−5 + 6θ− 3|θ|+ 2θ2
. (4.2)
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The corresponding flux limiter for the adaptative QUICKEST scheme is as follows (see
details in [9]):

ψ
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The implementation of this scheme will be presented later (see Section 6).

5. Numerical solution procedure

The governing equations (2.1)–(2.5) are solved in a partly segregated manner using an
extension of the GENSMAC methodology of [23] for turbulent flow fields. A detailed de-
scription of this technique is provided in [24]. Based on the predictor-corrector method
(see, e.g., [25]), the numerical solution procedure is an explicit finite difference, first- or
second-order accurate numerical method for calculation of free surface flows as well as
confined flows.

For calculations, a uniform Cartesian staggered grid system is used, where the effec-
tive pressure, the turbulent kinetic energy, and the dissipation rate are stored at the center
of a computational grid cell, while velocities are stored at the cell edges. For flows pos-
sessing free surface, this boundary generally moves, and therefore the domain of interest
deforms with time. In this case, the front-tracking MAC (marker and cell) method [26]
is adopted in Freeflow to determine the free surface location. In summary, the interface is
represented discretely by connected Lagrangian markers to form a front which lies within
and moves through an Eulerian mesh; as the front moves and deforms, interface points
are added/deleted and reconnected as necessary (for details, see [10]). To advance the
numerical solution in time, the projection method of [27] is employed (see also [25]).

6. Discretizations

The differential equations are discretized using the finite difference technique on a uni-
form staggered grid system. The temporal derivatives were discretized using the first-
order forward difference (Euler’s method), while the spatial derivatives were approxi-
mated by standard second-order central differences with the exception of the advection
terms (denoted here by CONV(·)), which are approximated by the adaptative QUICK-
EST scheme. The Poisson equation in discretized scheme (see [9]) is done by using the
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usual five-point Laplacian operator, and the corresponding symmetric-positive definite
linear system is solved by the conjugate-gradient method. In summary, fluid flow equa-
tions (2.1)–(2.5) take the following discretized form.
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with
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(iii) Mass conservation:
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The production of turbulence, the eddy viscosity, and the time scale are discretized, re-
spectively, as follows:
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δy2

(
vi, j+1/2− vi, j−1/2

)2
]

+
[

1
4δy

(
ui+1/2, j+1 +ui−1/2, j+1−ui+1/2, j−1−ui−1/2, j−1

)

+
1

4δx

(
vi+1, j+1/2 + vi+1, j−1/2− vi−1, j+1/2− vi−1, j−1/2

)]2}n
,

νnti, j = Cμ
(
κni, j
)2

εni, j
, Tn

ti, j =
κni, j
εni, j

.

(6.11)

For the nonlinear advection terms in the momentum equations (the advection terms of
κ and ε equations follow a similar procedure), the application of the adaptative QUICK-
EST scheme is as follows. For simplicity, only the discretization of the nonlinear terms in
u-component of the time-averaged Navier-Stokes equations will be presented. The dis-
cretization of the other nonlinear term is made in a similar way. In position (i+ 1/2, j) of
the mesh, this term can be approximated by the following conservative scheme:

(
∂(uu)
∂x

+
∂(uv)
∂y

)∣∣∣∣
i+1/2, j

≈ ui+1, jui+1, j −ui, jui, j
δx

+
vi+1/2, j+1/2ui+1/2, j+1/2− vi+1/2, j−1/2ui+1/2, j−1/2

δy
,

(6.12)

where the velocities ui+1, j , ui, j , vi+1/2, j+1/2 and vi+1/2, j−1/2 are obtained by averaging. For
instance, vi+1/2, j−1/2 is approximate by vi+1/2, j−1/2 ≈ 0.5(vi, j−1/2 + vi+1, j−1/2). The velocities
ui, j and ui+1, j are calculated (the other velocities follow similar procedures) by the follow-
ing.

(i) When ui, j > 0 and ûi−1/2, j = (ui−(1/2), j −ui−(3/2), j)/(ui+(1/2), j −ui−(3/2), j), the value
of ui, j is

ui, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ui−1/2, j if ûi−1/2, j �∈ [0,1],

(2− θ)ui−1/2, j − (1− θ)ui−3/2, j if 0 < ûi−1/2, j < a,

αDui+1/2, j +αUui−1/2, j −αRui−3/2, j if a≤ ûi−1/2, j ≤ b,

(1− θ)ui+1/2, j + θui−1/2, j if b < ûi−1/2, j < 1.

(6.13)



12 Mathematical Problems in Engineering

(ii) When ui, j < 0 and ûi+1/2, j = (ui+(1/2), j −ui+(3/2), j)/(ui−(1/2), j −ui+(3/2), j), the value
of ui, j is

ui, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ui+1/2, j if ûi+1/2, j �∈ [0,1],

(2− θ)ui+1/2, j − (1− θ)ui+3/2, j if 0 < ûi+1/2, j < a,

αDui−1/2, j +αUui+1/2, j −αRui+3/2, j if a≤ ûi+1/2, j ≤ b,

(1− θ)ui−1/2, j + θui+1/2, j if b < ûi+1/2, j < 1.

(6.14)

(iii) When ui+1, j > 0 and ûi+1/2, j = (ui+(1/2), j−ui−(1/2), j)/(ui+(3/2), j −ui−(1/2), j), the value
of ui+1, j is

ui+1, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ui+1/2, j if ûi+1/2, j �∈ [0,1],

(2− θ)ui+1/2, j − (1− θ)ui−1/2, j if 0 < ûi+1/2, j < a,

αDui+3/2, j +αUui+1/2, j −αRui−1/2, j if a≤ ûi+1/2, j ≤ b,

(1− θ)ui+3/2, j + θui+1/2, j if b < ûi+1/2, j < 1.

(6.15)

(iv) When ui+1, j < 0 and ûi+3/2, j = (ui+(3/2), j −ui+(5/2), j)/(ui+(1/2), j −ui+(5/2), j), the
value of ui+1, j is

ui+1, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ui+3/2, j if ûi+3/2, j �∈ [0,1],

(2− θ)ui+3/2, j − (1− θ)ui+5/2, j if 0 < ûi+3/2, j < a,

αDui+1/2, j +αUui+3/2, j −αRui+5/2, j if a≤ ûi+3/2, j ≤ b,

(1− θ)ui+1/2, j + θui+3/2, j if b < ûi+3/2, j < 1,

(6.16)

where

αD = 1
6

(
θ2−|θ|+ 2

)
, αU = 1

6

(− 2θ2 + 3|θ|+ 5
)
, αR = 1

6

(
1− θ2). (6.17)

The Courant number is calculated in the code by analyzing the direction in which
information propagates, that is, the sign of a previously calculated local normal averaged
velocity u at a face of the control volume, and by computing the expression θ = u · δt/δx
in each control volume.

7. Numerical tests

In order to validate the actual Freeflow code, incremented with the original κ-ε model
and adaptative QUICKEST scheme, we report now the numerical results for a turbulent
flow over a backward-facing step, the turbulent boundary layer over a flat surface, and a
turbulent jet impinging onto a flat surface. Also, as an example of application, we present
a turbulent planar jet penetrating into a pool.
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Table 7.1. Estimates for the reattachment length.

Mesh Adaptative QUICKEST CUBISTA WACEB VONOS

Coarse 6.86 7.13 7.10 6.12

Medium 6.03 6.10 6.06 5.76

Fine 5.50 5.51 5.50 5.42

Inflow

y

x

h

x1 Rigid wall

30h

2h Outflow

Figure 7.1. Configuration for turbulent flow over a backward-facing step problem.

7.1. Turbulent flow over a backward-facing step. The turbulent flow over a backward-
facing step is a standard test case, often used for validation of turbulence models. This
flow is computationally challenging, because both a primary and a secondary recircula-
tion eddy vertex occur. The problem configuration is illustrated in Figure 7.1. By using
the current Freeflow code with a fully developed parabolic velocity profile prescribed at
the inlet section, we simulate this flow at Re= 1.32× 105. This is based on the maximum
velocity Umax = 1.0 ms−1 at that section and the height of the step h= 0.1 m.

Computations were performed on three different meshes, namely, the coarse mesh
(200× 15 computational cells, δx = δy = 0.02 m); the medium mesh (400× 30 com-
putational cells, δx = δy = 0.01 m); and the fine mesh (800× 60 computational cells,
δx = δy = 0.005 m). Table 7.1 depicts values of the reattachment length x1 on the three
meshes, using four advection schemes, including the adaptative QUICKEST. By com-
paring these numerical results with experimental data of [28], which obtained value of
x1 = 7.1, one can see that our numerical results underpredict the experimental reattach-
ment point by 20%–25%. The CUBISTA scheme for the coarse mesh provides a value
greater than 7.1. The good results with WACEB on coarse meshes can be attributed to
the value of the y+. On the other hand, it can be seen that our numerical results are in
good agreement with the numerical result of [29], which found that x1 = 6.0. From this
same table, it should also be observed that WACEB, CUBISTA, and adaptative QUICK-
EST schemes provide good results, while the VONOS scheme gives much less satisfac-
tory results. We believe that most of this difference may be attributed to the fact that the
WACEB, CUBISTA, and adaptative QUICKEST schemes are TVD, whereas the VONOS
scheme is not.
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Table 7.2. Other estimates for the reattachment length.

Scheme HOAB STOIC SMART CLAM FOU

x1 5.405 5.396 5.377 5.357 4.607

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

u
(m

/s
)

1 1.2 1.4 1.6 1.8 2

x (m)

Mesh 200× 15
Mesh 400× 30

Mesh 800× 60
y = 0

Figure 7.2. Comparison on three meshes of u velocity component using the adaptative QUICKEST
scheme.

For simple comparison, Table 7.2 shows other estimates for the reattachment length
obtained by HOAB, STOIC, SMART, CLAM, and FOU schemes (see [30]). From this
table and Table 7.1, one can observe that the adaptative QUICKEST scheme provided a
consistent reattachment length. In addition, a convergence test of the numerical solution
obtained with the adaptative QUICKEST scheme on these three meshes was made. This
is illustrated in Figure 7.2, which shows how the reattachment length was estimated (the
change in the sign of the u-velocity profile adjacent to the lower bounding wall) in the
code.

One can see from this figure that both the velocity profile and the reattachment length
tend to converge to a solution near the numerical one in the fine mesh. For illustration,
Figures 7.3 and 7.4 present the pressure contours and v-component of the velocity field,
on the medium mesh, using adaptative QUICKEST scheme.

7.2. Turbulent flow past a flat plate. The interaction between the fluid and the bound-
ary wall is of great importance in turbulent flows. Due to the strong velocity gradients
occurring near the wall, a large amount of turbulence is generated. This turbulence plays
a very important role in physical phenomena as reattachment of separated regions. In
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−0.156 0.009 0.174 0.339 0.504 0.669 0.834 0.998

Figure 7.3. u-velocity component using the adaptative QUICKEST and Re= 1.32× 105.

0.049 −0.035 −0.021 −0.007 0.007 0.022 0.036 0.05

Figure 7.4. v-velocity component using the adaptative QUICKEST and Re= 1.32× 105.

this subsection, a two-dimensional turbulent boundary layer over a flat plate is simu-
lated according to the classical zero-pressure gradient theory. This is justified by the fact
that the plate is flat, and thus, the only contribution to the pressure gradient comes from
the product between the dynamic viscosity and the second derivative of the longitudi-
nal velocity with respect to the transversal coordinate which, in the present case, can be
neglected. Physically, in a zero-pressure gradient turbulent boundary layer, the point of
inflection is at the wall itself; there can be no flow separation [31].

This fluid flow problem has been extensively studied in the literature (see, e.g., [5]),
and numerous formulae have been proposed to estimate the coefficient of skin friction
(Cf ). In order to solve this problem, a uniform free stream boundary condition is im-
posed at the inlet, and the Reynolds number, based on length and velocity scales of unity,
is Re = 2.0× 106. Figure 7.5 compares the calculated dimensionless turbulent skin fric-
tion coefficient Cf = 2τw with the estimates given by Prandtl approximation, Power-law
theory, and the “exact” profile of White (see [18]). These figures display Cf against the
local Reynolds number Rex =U0x/ν at the (nondimensional) time t = 6.0 calculated for
the following three different-sized meshes, namely, the coarse mesh (20× 100 computa-
tional cells, δx = δy = 0.05 m); the medium mesh (40× 200 computational cells, δx =
δy = 0.025 m); and the fine mesh (80× 400 computational cells, δx = δy = 0.0125 m).
Additionally, the corresponding laminar result is also included for simple comparison.
As shown in Figures 7.5(a), 7.5(b), and 7.5(c), the numerical estimates are generally sat-
isfactory for Rex beyond 1.0× 106. It can also be observed from Figure 7.5(d) that when
the coarse mesh was twice refined, there appears to be convergence of the numerical so-
lution to a profile near the power-law theory and the “exact” White relation. On the other
hand, for Rex ≤ 1.0× 106, a systematic discrepancy existed and this may be due to the
uniform meshes used and/or the initial velocity profile not being sufficiently turbulent at
the entrance region.

7.3. Turbulent jet impinging onto a flat surface. A jet impinging normally onto a flat
rigid surface is a good example of a free surface flow, but is difficult to simulate because
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Figure 7.5. Comparison of the local skin friction on a flat plate for turbulent flow, showing several
theoretical estimates and those obtained by the present finite difference scheme on three meshes: (a)
coarse; (b) medium; (c) fine; and (d) shows comparison of the three numerical solutions.
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Outflow1 Outflow2
Free surface

L

h

Rigid wall

Figure 7.6. Configuration of a free jet impinging onto a rigid surface.

the free surface boundary conditions must be specified on an arbitrarily moving bound-
ary. This free surface flow in turbulent regime is also chosen as a representative test case
because there is (see [4, 32]) an approximated analytical solution for the total thickness
of the fluid layer flowing on the surface (see the illustration in Figure 7.6). In summary,
for a given volumetric flux Q through the inlet section of diameter L= 2a, the analytical
solution is

h(x)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

81(7A)1/4k

800

(
ν

Q

)1/4

(x+ l) if x ≥ x0,

a+
(

1− A

k

)
δ if x < x0,

(7.1)

where

δ(x)=
(

81
320(9A− 2)

)4/5

71/5k
(
aν

Q

)1/5

x4/5,

x0 = 320(9A− 2)
81× 71/4A5/4

aRe1/4,

l = 160(1− 2A)
9× 71/4A5/4

aRe1/4 .

(7.2)

In (7.1), A= 0.239 and k = 0.260. The problem configuration is illustrated in Figure 7.6.
By using three different meshes, namely, the coarse mesh (200× 50 computational

cells, δx = δy = 0.001 m); the medium mesh (400× 100 computational cells, δx = δy =
0.0005 m); and the fine mesh (800× 200 computational cells, δx = δy = 0.00025 m),
the Freeflow code, equipped with the adaptative QUICKEST advection scheme and κ-ε
model, run this moving free boundary problem at Reynolds number 5.0×104, which was
based on the maximum velocity Umax = 1.0 m/s and diameter of the inlet L= 0.01 m (or
volumetric flux Q = ν, Re = 0.01 m2/s). On these three meshes, a comparison is made
between the free surface height (the total thickness of the layer), obtained from our nu-
merical solutions and from the analytical viscous solution of Watson. This is displayed
in Figure 7.7 and its enlargement in Figure 7.8. One can see from these figures that the
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Figure 7.7. Comparison on three meshes between numerical solution and analytical solution of Wat-
son.
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Figure 7.8. Enlargement of a section of Figure 7.7.

numerical results on these meshes are similar, showing, in some regions, a small differ-
ence when compared to Watson’s solution. We believe that most of this difference may be
attributed to insufficient grid points, being used near the rigid wall.
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−0.002 0.101 0.203 0.305 0.408 0.51 0.612 0.715

Figure 7.9. Pressure field of a turbulent free jet using adaptative QUICKEST scheme at Re= 5.0× 104.

−1.154 −0.824 −0.494 −0.165 0.165 0.494 0.824 1.154

Figure 7.10. u-velocity component of a turbulent free jet using adaptative QUICKEST scheme at
Re= 5.0× 104.

For illustration, Figures 7.9–7.11 present at the time t = 1.0 the pressure and velocities
fields on the medium mesh using the adaptative QUICKEST scheme.

7.4. Application: a horizontal jet penetrating a quiescent fluid. We conclude this work
by presenting the numerical simulation of a horizontal jet penetrating a quiescent fluid
from an entry port at depth H = 6.0 m beneath the free surface. The purpose here is
to show that the actual Freeflow can simulate the largest eddies present in the flow and
their nonlinear interaction with a free surface. This free surface flow problem has also
been simulated by [5] using a classical upwind scheme. The geometrical configuration
and parameters for this free surface fluid flow are shown in Figure 7.12. In this numeri-
cal simulation, the associated Reynolds and Froude numbers are Re=DU0/ν= 5.0× 104

and Fr=U0/
√
gD ≈ 12.77, respectively. The mesh used in this test case is 100× 100 com-

putational cells (δx = δy = 0.010 m). The development of pressure and velocities distri-
butions, together with the free surface elevation at various times, are presented in Figures
7.13 through 7.15. In this case, the interaction with the free surface occurs only at the later
stages of the flow development. Initially, one can observe the growth of the instability of
the boundary layers between the entering jet and the stagnant fluid, and subsequently, the
formation of a pair of counter-rotating eddies. Later on, the first pair of eddies propagates
towards the free surface.

The result obtained in this simulation should be interpreted as representing the 2D
motion of one realization occurring at scales greater than the discretization scale. In other
words, both the free surface position and the velocity fields computed here may be re-
garded as the deterministic motion at these larger scales. Indeed, this simulation may be
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Figure 7.11. v-velocity component of a turbulent free jet using adaptative QUICKEST scheme at
Re= 5.0× 104.
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Figure 7.12. Geometry and parameters for flow of a penetrating planar jet in a pool: U0 = 2 ms−1 and
D = 0.05 m.

thought of URANS or as VLES (very large scale simulations), as opposed to the 3D, and
much more expensive, LES. Turbulent flow simulations using LES and DNS approaches
have been performed by other authors, but are mostly restricted to very low (or negligi-
ble) Froude numbers.

8. Conclusions

In this work, a finite difference numerical technique for simulating 2D incompressible
turbulent flows was described. The Freeflow simulation system coupled with the original
high Reynolds κ-ε turbulence model and the high-order adaptative QUICKEST advec-
tion scheme has been applied to simulate three problems, namely, turbulent flow over
a backward-facing step, the turbulent boundary layer over a flat surface (zero-pressure
gradient case), and a turbulent free jet impinging onto a flat rigid wall. According to the
computed results, the new version of the Freeflow code can, in fact, predict both confined
and free surface turbulent flows with satisfactory accuracy. In order to illustrate the ro-
bustness and applicability of the code to compute the interactions between a free surface
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Figure 7.13. Evolution of the pressure contours of a jet in a fluid portion.
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Figure 7.14. Evolution of the u-velocity contours of a jet in a fluid portion.
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Figure 7.15. Evolution of the v-velocity contours of a jet in a fluid portion.
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and vortical structures at high Froude numbers, the numerical method was applied to
solve the flow of a horizontal jet penetrating a quiescent fluid from an entry port beneath
the free surface.

Particularly, the best upwind schemes emerging from this study were WACEB, CU-
BISTA, and adaptative QUICKEST. The VONOS scheme presented poor results in the
case of the internal flow over a backward-facing step (the exact fact can be seen in Table
7.1), and we believe that this is because it is not TVD; in another words, VONOS does not
guarantee convergence. Although not shown here, the computed results using traditional
high-order schemes (e.g., central difference, QUICK, and Lax-Wendroff) were corrupted
by numerical instabilities. For the problems of a turbulent flow past a flat plate and a free
jet impinging normally onto flat rigid wall, the adaptative QUICKEST scheme presented
similar results to WACEB and CUBISTA schemes.

The price to pay when using the adaptative QUICKEST is that the CPU time is greater
than or equal to the CPU time required by WACEB and CUBISTA. However, the adap-
tative QUICKEST is more flexible and more widely applicable than the others, since it is
based on the local Courant number.

All the results present in this work are consistent with the previous numerical results of
[5], indicating that the current Freeflow code is also able to predict turbulent confined and
free surface fluid flows with adequate accuracy. And we believe that these results could be
improved by incorporating more physics in the modeling. For this to be realized, the
authors are considering adaptations for the renormalization group method (RNG) and
the realizable κ-ε model.
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