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Long-term mission identification and model validation for in-flight manipulator control
system in almost zero gravity with hostile space environment are extremely important
for robotic applications. In this paper, a robot joint mathematical model is developed
where several nonlinearities have been taken into account. In order to identify all the
required system parameters, an integrated identification strategy is derived. This strat-
egy makes use of a robust version of least-squares procedure (LS) for getting the initial
conditions and a general nonlinear optimization method (MCS—multilevel coordinate
search—algorithm) to estimate the nonlinear parameters. The approach is applied to the
intelligent robot joint (IRJ) experiment that was developed at DLR for utilization op-
portunity on the International Space Station (ISS). The results using real and simulated
measurements have shown that the developed algorithm and strategy have remarkable
features in identifying all the parameters with good accuracy.

Copyright © 2007 Adenilson R. da Silva et al. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Modeling and simulation of the dynamic behavior in a microgravity environment is
mandatory for mission success. Not only the reduced gravity is severely changing the
dynamic behavior, but also often much more strongly, it is the outer space environment
that impacts on physical parameters like joint, structural damping, stiffness in gears and
limb structures. That hostile environment is mainly due to big temperature oscillations,
solar irradiation, eclipse phases, and hard space radiation. These influences affect pre-
dominantly the material, the lubrication properties of space manipulators [1], and other
servomechanisms, especially in long-term mission applications. As a result, it is desired
a proper knowledge of the time-dependent variances of material behavior in terms of
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their relevant physical parameters which in turn affects the governing differential equa-
tions of motion. Space technology demonstration experiments are required to validate
the proposed strategies and algorithms for physical parameter identification. The effect
of reduced gravity, temperature [2], and the expected physical parameter change due to
material degradation act severely on the proper joint nonlinear dynamic modeling pro-
cess. These variation especially effects the backlash, friction, stiffness, and control of space
manipulators systems. In-flight systems parameters identification, both online and offline
versions as well as dynamic model validation are, therefore, a very important pre-requisite
to increased confidence in the modeling process.

Slow motion of any mechanical machine has been found to exhibit a highly non-linear
friction [3] behavior like: stribeck effect, stick-slip [4], periodic cycle alternating motion,
arrest, and so forth. It is well known that the friction and stiffness effect can strongly af-
fect the performance of the robot arm control system, thus, the entire mission success may
directly depend on the accuracy of the modeling. In order to obtain a good description
of the system, especially in low velocity operation, the nonlinear friction models should
be taken into account. However, the identification of nonlinear parameters is extremely
difficult to deal with due to the problems of local minima, initial condition, computa-
tion time, and so forth. Previous works [3] have reported algorithms that have run time
of several days. Such algorithms are almost impracticable if the identification procedure
must be performed more than one time, as is the case for space applications, where one
is interested in monitoring the parameters time-varying behavior. In this work, a bal-
ance between complexity and accuracy is made in order to have a model that accurately
describes the friction and stiffness behavior, but also allowing the identification process
to be practicable. A friction model that takes into account both, low and high velocity
effects, has been derived. The identification strategy uses two versions of LS to identify
the parameters, which are linearly dependent upon the measurements. For the nonlinear
parameters, a nonlinear global optimization algorithm based on multilevel coordinate
search (MCS) [5] has shown a good compromise between accuracy and computation
time.

2. Experiment description

The IRJ experiment (Figure 2.1) developed at DLR—Institute of Robotics and Mecha-
tronics, has served as an experimental setup. The design and construction of IRJ incor-
porate new features like no bulk wiring on the joint and also a number of sensors that
monitor the joint performance. The joints are based on special light-weight harmonic
drive (HD) gears, while measuring with high precision all relevant state variables: (a)
on the input side, motor angular position and speed via an analogous hall sensor, and
commanded electric current, (b) on the output side, off-drive position by using opto-
electronics, and a torque measurement device based on strain gauge systems. The sensors
used give a high degree of intelligence to the joint. In some tests, two accelerometers have
been also attached on the top of the link to measure the acceleration in radial and tan-
gential directions. The motors used are inland brushless DC type, which were redesigned
by DLR to provide hollow axes where all cabling are fed through. DLR has also developed
a lightweight small robot system with a total weight of less than 20 kg and a length of
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Figure 2.1. IRJ experimental setup of two joint configurations for identification purposes.

Figure 2.2. Prototype of DLR lightweight robot.

1.50 m (Figure 2.2). This design allows a very favorable payload to total weight ratio of
about 1 : 3 to almost 1 : 2, compared to conventional industrial robots of more than 1 : 20.

This new design makes the robot very attractive for space-based demonstration mis-
sions as on ISS. Currently, there are some studies underway to contemplate about the
space experimental use and possible accommodation opportunities at the ISS. However,
if not the entire robot system is likely to be operational in the ISS early opportunity uti-
lization phase, the IRJ experiment more probably is expected to get ready for experimen-
tal usage. The IRJ experiment will consist of a combination of two of such intelligent
rotary joints. The two axes are kinematically combined in order to build up a roll-pitch
configuration (Figure 2.2).
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3. Joint dynamics modeling

The main emphasis of the intended space-based identification experiments is directed
towards obtaining modeling confidence by proper knowledge of the time-varying joint
dynamics parameters, mainly viscous damping, friction/stiction effects, and elasticity
within the gears, all of those expecting to be of strongly nonlinear nature. Therefore,
the following investigations have been restricted to the modeling and understanding of
the nonlinear dynamics of one single intelligent joint. More complex models have already
been elaborated for a two-joint configuration and also multibody models have been de-
veloped for the seven joint configurations, that is, the entire robotic system, using multi-
body [1] software code for model generation and simulation. Appropriate identification
algorithms have been studied [6, 7] and others are still being developed and are underway
for these multidegree of freedom systems.

The mathematical model to be used in the identification process is based on Newton’s
laws that are used to determine the dynamic force interactions and to derive the equations
of motions of the joint. Here, only the main steps of the derivation are focused, a detailed
description of the modeling is found in [6].

In the joints in the IRJ experiment, the wave generator (wg) is driven by a motor
mounted to the circular spline (cs) and the flexspline is attached to the ground. The out-
put is driven by the circular spline. Damping torques, both at the input and output side,
have been considered. According to Figures 3.1 and 3.2, while making use only of the
pitch (θ) rotary joint, the equations of motion for the IRJ can be described by

Jinθ̈in = Tm−Td in−Twg,

Joutθ̈out = Tcs−Td out−Td fscs +Tload,
(3.1)

where Tm = KmIa is the applied motor torque with motor constant Km and electric cur-
rent Ia. Jin and Jout are the input and output inertia, θin and θout the respective angular
positions. The elasticity within the HD gear is given by the stiffness torque Tstiff with
Twg = Tstiff +Td wg on the input side of the gear and Tcs = (N + 1)Twg. N is the gear re-
duction.

The various damping torques are denoted by Td, attributed with appropriate indices.
The applied load on the link (Figure 2.1) side is due to gravity and is given by Tload =
̂Tg sinθout with the load amplitude ̂Tg .

Based upon the HD manufacturer’s catalog values, this gear type typically exhibits
the well-known nonlinear behavior. Usually, the dependency between applied torque and
the relative angular position Δθ (θin− θout) is given by a combination of piecewise linear
functions, Tstiff = f (Δθ), depending upon the operational range of the gear. For the iden-
tification algorithm to be developed further, it is necessary to replace this piecewise linear
behavior by a continuous curve. As a first approach, it has been proved sufficient to apply
a third-order polynomial to represent the stiffness torque given by

Tstiff = k1Δθ + k2(Δθ)3 (3.2)

with coefficients k1 and k2 to be adjusted.
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Figure 3.1. Dynamic representation of the intelligent robotic joint (IRJ).

Moreover, regarding the mechanical nature of the torque measurement system with
strain gauges attached to spokes and rings, it may be worthwhile to account also for some
compliance in that system. This is necessary to model it as a further spring, being serially
connected to the HD gear spring. In total, this would result in a combined softer spring,
and can be considered within new stiffness constants k1 and k2 that now would enter as
unknown parameters within the identification algorithm.

According to experimental results of many authors [3, 6], the damping torques Td that
appear on the input side, the output side, and inside the HD gear are assumed to capture
two facets of damping behavior, namely Tvisc and Tfric. These are a viscous and a dry
friction or Coulomb-type part. Thus, total damping torques is written as

Td = Tvisc +Tfric, (3.3)

the viscous part can be strongly nonlinear with a cubic relationship in the angular veloc-
ity,

Tvisc = b1θ̇ + b2θ̇
3 (3.4)

with the linearly depending coefficients b1 and b2. For the dry friction, a modified classi-
cal Coulomb friction model is required. This is necessary to account for the well-known
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Figure 3.2. Harmonic drive gear model (wave generator wg, circular cs, and flexible fs spline).

Stribeck effects. This observes the fact that for low velocities, the friction torque is nor-
mally decreasing continuously with increasing velocity, not in a discontinuous manner.
Another problem that arise in using the classical Coulomb friction model is the discon-
tinuity at zero velocity. In order to account both problems, Stribeck effects and zero dis-
continuity, an empirical mathematical model has been adopted,

Tfric =
∣

∣TN

∣

∣ ·
(

μ · tanh
(

θ̇i
ω1

)

+
θ̇i
ω2
· e−|ω/ωS|δS

)

, (3.5)

where TN is the normal torque, μ is the friction coefficient, ωS is the Stribeck velocity,
i= in,out, δS is the exponential parameter that is commonly taken either as 0.5, 1 or even
2. Another possibility is to let δS to be identified by the nonlinear part of the algorithm
together with ω1 and ω2.

According to [8], periodic variations in the frictional torque might appear in the HD
operation. Thus, we have introduced periodic variations in the frictional torque on the
HD output,

Tcyclic = Acyclic sin
(

θout + γcyclic
)

. (3.6)

As this relationship indicates, frictional torque fluctuations of amplitude Acyclic complete
one cycle every time the flexspline makes one complete rotation relative to the circular
spline. To match this model to experimental observations, a phase shift of γcyclic is also
included. In order to obtain a linear dependency of the two parameters, this relationship
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can be easily transformed to

Tcyclic =A1 sinθout +A2 cosθout (3.7)

with the new linearly depending parametersA1 = Acyclic cosγcyclic andA2 =Acyclic sinγcyclic,
from where Acyclic and γcyclic can be recovered.

It is self-evident that not all of the envisaged damping torques given in (3.1) are ex-
pected to capture both types, that is, viscous damping and dry friction parts. Where ap-
propriate, only linear viscous damping is considered in order to keep the amount of pa-
rameters to be identified at a minimum, as well as the complexity of the joint dynamic
model. It has to be kept in mind that the final manipulator configuration consists of seven
kinematic degrees of freedom, which otherwise would drive the amount of parameters in-
tensively high. Recalling the given kinematic constraints, the various torques in (3.1) can
now be formulated in terms of the input and output positions, θin and θout, and their
respective velocities

Jinθ̈in = KmIa−Td in
(

θ̇in,θin
)−Td wg

(

θ̇in− (N + 1)θ̇out
)−Tstiff

(

θin− (N + 1)θout
)

,

Joutθ̈out = (N + 1) · [Tstiff
(

θin− (N + 1)θout
)

+Td wg
(

θ̇in− (N + 1)θ̇out
)]−Td out

(

θ̇out
)

−Td fscs
(

θout, θ̇out
)

+ ̂Tg sinθout.
(3.8)

The damping dependent on the position that appears in Td in is related to Dahl effect [4].
It is necessary to include a position-dependent term also on the input side in order to get
good agreement between dynamic model and measured data.

4. Identification model and strategy

In order to identify the dynamic parameters of the robotic joint, (3.8) have been taken as
the dynamic model representation for the identification process. The problem of identi-
fying, especially rigid body dynamics parameters of a robot, has been extensively studied
and a vast amount of literature can be found [9–11]. However, these methods have a
common idea: the robot is moved along a selected trajectory while the joint motion and
torques are measured. Then, the parameters are offline estimated using a standard offline
LS-based technique. In addition, most of these works have used an industrial robot as
a test bed. The strategy and algorithm proposed in this paper should guarantee to cope
with several requirements, like online procedure, ability to track time-variant parame-
ters, possibility to identify parameters with nonlinear dependency with respect to the
measurements in fast way at low-computational cost.

For the algorithm development, (3.8) are rewritten in order to set up a linear combi-
nation of the unknown parameters, given by the vector Θ, and the known information,
given by the measurement vector φ. The parameters that appear in vector Θ are identified
by an RLS with variable forgetting [7] factor and the parameters ω1 and ω2 which appear
inside the matrix φ are identified by the MCS algorithm. The measured signals are θin
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and Ia on the input side, θout, θ̈out, and Tout on the output side. The respective veloci-
ties θ̇in and θout and the acceleration signal θ̈in are calculated numerically while regarding
filtering techniques to remedy bad measurement signals.

The following specific torque functional relationships have been considered for the
dynamic model:

Td in = binθ̇in +
∣

∣TN

∣

∣ ·μ tanh·
(

θ̇in

ω1

)

+
∣

∣TN

∣

∣ · θ̇in

ω2
· e−|θ̇in/ωS|δS + binDθin, (4.1)

Tstiff = k1
(

θin− (N + 1)θout
)

+ k2
(

θin− (N + 1)θout
)3 = k1Δθ + k2(Δθ)3, (4.2)

Td fscs = bfscs1sign
(

θ̇out
)

+A1 sinθout +A2 cosθout, (4.3)

Td out = bout1θ̇out, (4.4)

where Twg = Tn wg = Tcs/(N + 1) = Tout/(N + 1). Then, the identification model in the
linear regression format can be described by

Yk = φ ·ΘT , (4.5)

where

Yk =
[

y1

y2

]

=
⎡

⎣

Jinθ̈in−KmIa

Joutθ̈out− ̂Tg sinθout

⎤

⎦=
⎡

⎣

Jinθ̈in−KmIa

Tout

⎤

⎦ ,

φ=
⎡

⎢

⎣

−Δθ −Δθ3 − tanh
(

θ̇in

ω1

)

−θ̇in · e−|θ̇in/ωS| −θ̇in −θin 0 0 0 0

Δθ Δθ3 0 0 0 0 −θ̇out −sign
(

θ̇out
)−sin

(

θout
)−cos

(

θout
)

⎤

⎥

⎦,

Θ=
[

k1 k2 C1 C2 bin binD bout boutC A1 A2

]T
.

(4.6)

C1 = |TN | ·μ and C2 = |TN |/ω2. The exponential coefficient δS has been set to 1.
Using the model given by (4.5), a prediction of Y is given by

̂Yk = φ · ̂ΘT . (4.7)

For a given discrete measurement time tk, the predicted error to be minimized in LS sense
is

εk = Yk − ̂Yk. (4.8)

Using the singular value decomposition (SVD) approach, the excitation level and linear
combination in the information matrix is verified:

φ=UΣVT , Σ= diag
(

σ1,σ2, . . . ,σm
)

(4.9)

with U and V being the isometric matrices. If some states are not well excited or there
exist some linear combination in the φ matrix, the related singular value σi will have small
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magnitude, close to machine precision. After testing the matrix φ, the initial condition for
the recursive algorithm is obtained by standard batch least squares estimation:

̂Θinitial =
(

φTφ
)−1

φTYk (4.10)

and by applying (4.9), one obtains

̂Θinitial =VΣ−TUTYk. (4.11)

Once the initial conditions are obtained, the recursive identification is carried out by
using the algorithm described in [7].

5. Nonlinear optimization: multilevel coordinate search (MCS) algorithm

Two parameters in (4.1) have nonlinear dependency with respect to measurement data;
therefore, they cannot be identified by the RLS approach. There exist several methods
that can be used; local minimizer or global one. The local minimizer requires a good
starting point and sometimes they deliver only a mathematical solution for the problem.
In these cases, the parameters have no longer physical meaning. Most of the global al-
gorithms have very hard computational load, making the identification process almost
impracticable. In this paper, the MCS algorithm has been used in combination with RLS
approach.

The MCS algorithm has a very interesting combination of local and global search of
the minimum. Here, we will point out only the basic ideas of the algorithm, the interested
reader is directed to the work of Huyer and Neumaier [5].

Consider the bound-constrained optimization problem

min f (x), x ∈ [u,v], (5.1)

with finite or infinite bounds

[u,v] := {x ∈ Rn | ui ≤ xi ≤ vi, i= 1, . . . ,n
}

. (5.2)

With u and v being n-dimensional vectors with components in R := R∪ {−∞,∞} and
ui < vi for i = 1, . . . ,n, that is, only points with finite components are regarded of a box
[u,v] whereas its bounds can be infinite. If all the bounds are set to infinity, an uncon-
strained optimization problem is obtained.

The MCS algorithm tries to find the minimizer by splitting the search space into
smaller boxes. These boxes contain a distinguished point, the so-called base point, whose
function value is known. In splitting the boxes, a nonuniform procedure is used. Parts
where low values of the function are expected are carefully examined. In order to speed
up the computation procedure, the MCS algorithm combines global search (splitting the
boxes with large parts) and local search (splitting the boxes with good function values).
This gives a good balance between convergence to the global minimum and computation
time.

The nonlinear algorithm requires an index of performance (IP) to be minimized.
There exists several ways to define IP criteria. In this work, two criteria have been tested:
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a quadratic function of the error,

IP= 1
2

[y− ŷ][y− ŷ]T (5.3)

and the absolute value of the error,

IP= ‖y− ŷ‖, (5.4)

where y is the plant output (friction torque) and ŷ the estimation of y by considering the
optimal linear parameters (LS estimation), and ‖ · ‖means the Euclidian norm of ε.

6. Integrated algorithm LS: MCS

For solving the identification problem characterized by (4.5), an integrated algorithm us-
ing LS and MCS approach is derived. The proposed strategy is divided in two different
operational modes: a starting procedure and a normal mode. In the starting procedure,
the measurements are collected and stored in a batch with a preselected length. The batch
of measurements is continuously updated, this work is like a moving window of measure-
ments. Given an initial guess for the nonlinear parameters (in our case, ω1 and ωS), the
parameters with linear dependency with respect to measurements (thereafter called just
as linear parameters) are estimated by the LS part. Then the linear parameters are passed
to MCS algorithm in order to estimate the nonlinear ones. This process is repeated un-
til the convergence criteria are completely fulfilled, namely the norms of the errors are
smaller than selected threshold (δ and δΘmin ). When convergence criteria are fulfilled, the
online identification algorithm for the linear parameters is started, and the non-linear
parameters are assumed constant for the period where the norm of the errors is smaller
than δ. If the error increases, the nonlinear parameters are updated by using the MCS al-
gorithm. Using this procedure, for our example, the space of search in the identification
problem is reduced from 10 to 2 for the nonlinear algorithm. This drastically reduces the
computation time and the efficiency of the MCS algorithm in finding the global mini-
mum. Thus, the integrated algorithm has an online update for the linear parameters and
a random update for the nonlinear parameters.

The integrated algorithm can be summarized in the following steps.
(i) Initial procedure:

(1) input: u, v (boundaries for ω1 and ω2), ω1initial and ω2initial ; While Nerr = ‖y−
ŷ‖ > δ and ΔΘ= (Θk −Θk−1) > δΘmin ;

(2) collect the measurements;
(3) compute φ;
(4) check rank of φ (SVD);
(5) estimate the ΘL (LS part);
(6) estimate the Θ̆NL (Θ̆NL means global optimizer in the box described by

[u,v]) coefficient (MCS algorithm);
(7) evaluate Nerr and ΔΘ;
(8) if Nerr < δ and ΔΘ < δΘmin , stop and keep Θ.
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Figure 6.1. Schematic representation of the integrated identification algorithm.

(ii) Normal mode:
(9) using Θ, start the online algorithm;

(10) check Nerr;
(11) if Nerr > δ, call MCS algorithm and using the latest measurement window,

evaluate the new Θ̆NL coefficient;
else Θ̆NL is still the minimum (no change in the non-linear parameters);

(12) takes the next measurement.
Working in this way, the proposed algorithm can track in real time variations
in the linear parameters and update the nonlinear parameters only when some
corrections are required. The schematic diagram of the integrated algorithm is
shown in Figure 6.1.

7. Results

The proposed strategy and algorithms have been tested in two different situations: first,
using only the measured information from IRJ; second, a jump inΘNL has been simulated
in order to check the ability of the algorithm in tracking time variations in ΘNL. Besides,
in order to have a normalized system, the data and parameters values of the motor side
have been translated to link side, meaning that the gear reduction is 1. (N = 1).

7.1. Case 1: using measured data from IRJ. In this test, the measurements are taken from
IRJ with time length of one minute. Figure 7.1, in the upper part shows the motor posi-
tion and velocity by using a triangular trajectory and on the bottom, the link acceleration.
In order to have better resolution, only 20 seconds of measurements are shown.

Using (4.5) as a model and the integrated algorithm, all parameters which appear in Θ
have been identified. After 13 seconds collecting data, the matrix φ gets full rank and the
starting procedure is completed. The nonlinear parameters are identified by using MCS
algorithm and the linear ones are identified by a batch LS. Figure 7.2 shows the conver-
gence process of the non-linear parameters. It can be noted that after few interactions, the
convergence criterion has been fulfilled and the nonlinear optimization has been stopped.
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Figure 7.1. Measurements from IRJ.
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Figure 7.2. Nonlinear parameters identified by MCS algorithm.
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Figure 7.3. Linear parameters identified by RLS part—stiffness and nonlinear damping.

In the plots, there is a period where all parameters have zero value, this period corre-
sponds to the initialization procedure where there is no online identification. The mea-
surements are collected and an analysis in matrix φ is performed sequentially with the
nonlinear and batch estimation. The stiffness coefficients and the nonlinear damping are
shown in Figure 7.3. The dashed lines are constant values obtained by an offline proce-
dure using all the data available. It can be noted that all the parameters converge to the
offline estimation showing the good convergence and robustness of the RLS algorithm.
As expected, the parameter related to the cubic stiffness has low rate of convergence. This
fact is early observed in the singular values of the information matrix. The related singular
value has the smallest magnitude meaning that this parameter is very difficult to identify.
Despite of its small excitation, the cubic stiffness parameter converges to the expected
mean value (offline estimation).
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Figure 7.4. Linear parameters identified by RLS part—viscous damping.

Figures 7.4 and 7.5 show the rest of the parameters, which appear in vector Θ. It can be
noted that all parameters have stable behavior converging to their expected mean values
obtained by full batch identification.

Finally, Figure 7.6 shows the statistical performance of the identification process. It
can be observed that the algorithm has good ability in tracking the reference signal. Most
of the errors lies below 5%, the peak of the errors (20%) occurs due to the nature of the
trajectory (Figure 7.1) used. In the point where the velocity changes the sign, there exists
a peak in the torque and the algorithm cannot predict this high torque immediately.

7.2. Case 2: simulation of time-variant parameters. In order to test the integrated linear
and nonlinear identification procedure in case of time-variant parameters, a mixed data
set has been used: the angular velocity has been taken from the experiment setup and the
friction torque is calculated by setting the values of the parameters in (4.1). The parameter
δs has been set to 1 and the other values used are shown in Table 7.1.
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Figure 7.5. Linear parameters identified by RLS part—periodic damping and phase.
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Figure 7.6. Estimation error.
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Table 7.1. Offline estimation for the parameters.

Parameters Value Parameters Value

bin 76 Nm.s.rad−1 |TN | ·ω−1
2 590 Nm.s2.rad−2

binD 40 Nm.rad−1 ω1 0.0616 rad.s−1

|TN | ·μ 25 Nm ωS 0.1312 rad.s−1
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Figure 7.7. Simulation of time-variant systems—linear parameters.

By using these values, a simulated friction torque (Td in) has been obtained to be used
in the test of the algorithm. In order to simulate time variant system, the parameters have
experimented variations at instant 16 seconds and 32 seconds in the linear and nonlinear
ones, respectively. At time 16 seconds, the plant output Td in has been recalculated and a
jump of 50% in the linear parameters has been set. Immediately, the RLS algorithm is able
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Figure 7.8. Simulation of time-variant systems—nonlinear parameters.

to notice the changes in the parameters, and from that it can estimete the new parameters
values, as shown in Figure 7.7. At this time, the correction in the linear parameters is
sufficient to keep the error smaller than the threshold δ. Therefore, the MCS algorithm
has been not activated. The dashed-dot lines represent the parameters values before the
jump and the dot lines the values after the jump.

Figure 7.7 shows that after the initialization procedure, the parameters identified by
the RLS part have fast convergence to the nominal values. The jump in the linear pa-
rameters is compensated avoiding the nonlinear optimization. When the nonlinear pa-
rameters are changed, the linear ones are affected (peaks in Figure 7.7), but according
the convergence in the nonlinear one is reached, the linear parameters approach to the
correct values.

At instant t = 32 seconds, the nonlinear parameters have been changed by 20% of their
initial values. Then, the norm of error increases and the corrections in the linear pa-
rameters are not sufficient to decrease it. Thus, the MCS is activated and the nonlinear
parameters are recalculated. When the norm of the error decreases, the nonlinear opti-
mization is stopped and only the fast (RLS) part of the algorithm is running. Figure 7.8
shows the behavior of the nonlinear parameters, it can be noted that the algorithm has
fast convergence in both situation: in the initialization and when are recalculated. Due to
fast corrections in the linear parameters, change in these parameters does not affect the
nonlinear ones. On the other hand, the linear parameters are affected when corrections
in the nonlinear ones are required. This occurs because the corrections in the non-linear
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parameters are not so fast. Due to this feature, the procedure presented here has very low-
computational load allowing one to track time-variant systems, which contain nonlinear
parameters.

8. Conclusions

In this work, the complete model of the robotic joint has been derived. The obtained
model takes into account several nonlinearities; as for the stiffness as well as in the friction
model. The typical nonlinear behavior of the friction at low velocity has been taken into
account. An integrated (independent linear and nonlinear parts) identification algorithm
has been derived and tested by using data from IRJ experiment and also a mixed data to
simulate time-variant systems.

The results have shown that strategy presented gives excellent precision at very low-
computational cost; the integrated algorithm is more than 20 times faster than the com-
pletely nonlinear counterpart (if all the parameters is to be identified by MCS algorithm
alone). This allows an online identification for almost all of the measurement period,
except for a short period, when an update in the nonlinear parameters is necessary; the
online identification was not possible. The ability in tracking time-variant parameters has
been also tested by using simulated data and the results have shown a fast and accurate
response to the variations in both set of parameters: linear and nonlinear ones. Another
very important feature of the proposed approach is that there is no necessity of initial
guess for all the parameters; they are automatically adjusted by the initialization proce-
dure. It is only required to set the boundary for the nonlinear parameters, even though
this is not a requirement but save computation time.
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Bernd Schäfer: Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen,
82234 Wessling, Germany
Email address: bernd.schaefer@dlr.de

mailto:adenilson.silva@dss.inpe.br
mailto:gadelha@dem.inpe.br
mailto:bernd.schaefer@dlr.de


Mathematical Problems in Engineering

Special Issue on

Time-Dependent Billiards

Call for Papers
This subject has been extensively studied in the past years
for one-, two-, and three-dimensional space. Additionally,
such dynamical systems can exhibit a very important and still
unexplained phenomenon, called as the Fermi acceleration
phenomenon. Basically, the phenomenon of Fermi accelera-
tion (FA) is a process in which a classical particle can acquire
unbounded energy from collisions with a heavy moving wall.
This phenomenon was originally proposed by Enrico Fermi
in 1949 as a possible explanation of the origin of the large
energies of the cosmic particles. His original model was
then modified and considered under different approaches
and using many versions. Moreover, applications of FA
have been of a large broad interest in many different fields
of science including plasma physics, astrophysics, atomic
physics, optics, and time-dependent billiard problems and
they are useful for controlling chaos in Engineering and
dynamical systems exhibiting chaos (both conservative and
dissipative chaos).

We intend to publish in this special issue papers reporting
research on time-dependent billiards. The topic includes
both conservative and dissipative dynamics. Papers dis-
cussing dynamical properties, statistical and mathematical
results, stability investigation of the phase space structure,
the phenomenon of Fermi acceleration, conditions for
having suppression of Fermi acceleration, and computational
and numerical methods for exploring these structures and
applications are welcome.

To be acceptable for publication in the special issue of
Mathematical Problems in Engineering, papers must make
significant, original, and correct contributions to one or
more of the topics above mentioned. Mathematical papers
regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in
Engineering manuscript format described at http://www
.hindawi.com/journals/mpe/. Prospective authors should
submit an electronic copy of their complete manuscript
through the journal Manuscript Tracking System at http://
mts.hindawi.com/ according to the following timetable:

Manuscript Due March 1, 2009

First Round of Reviews June 1, 2009

Publication Date September 1, 2009

Guest Editors

Edson Denis Leonel, Department of Statistics, Applied
Mathematics and Computing, Institute of Geosciences and
Exact Sciences, State University of São Paulo at Rio Claro,
Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP,
Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State
University, Vorob’evy Gory, Moscow 119992, Russia;
loskutov@chaos.phys.msu.ru

Hindawi Publishing Corporation
http://www.hindawi.com

http://www.hindawi.com/journals/mpe/
http://www.hindawi.com/journals/mpe/
http://mts.hindawi.com/
http://mts.hindawi.com/

	1Call for Papers-4pt
	Guest Editors

