
MODELLING AND OPTIMIZATION OF COMPUTER
NETWORK TRAFFIC CONTROLLERS

N. U. AHMED, BO LI, AND LUIS OROZCO-BARBOSA

Received 28 February 2005

During the past years, there has been increasing interest in the design and development
of network traffic controllers capable of ensuring the QoS requirements of a wide range
of applications. In this paper, we construct a dynamic model for the token-bucket algo-
rithm: a traffic controller widely used in various QoS-aware protocol architectures. Based
on our previous work, we use a system approach to develop a formal model of the traffic
controller. This model serves as a basis to formally specify and evaluate the operation of
the token-bucket algorithm. Then we develop an optimization algorithm based on a dy-
namic programming and genetic algorithm approach. We conduct an extensive campaign
of numerical experiments allowing us to gain insight on the operation of the controller
and evaluate the benefits of using a genetic algorithm approach to speed up the optimiza-
tion process. Our results show that the use of the genetic algorithm proves particularly
useful in reducing the computation time required to optimize the operation of a system
consisting of multiple token-bucket-regulated sources.

1. Introduction

During the past years, there has been increasing interest in the definition of simple but
yet effective traffic control schemes able to ensure the grade of service required by a wide
variety of applications. By effective, it is understood that the control mechanism should
also ensure a proper level of utilization of the network resources, a fundamental condition
to ensure the profitability of operation.

In this paper, we focus our efforts on the study of the token bucket (TB): a traffic
controller widely used in various QoS-aware protocol architectures [12]. A token bucket
is associated with a traffic source in order to regulate the rate at which the source may
send its traffic into the network. In its simplest form, a token bucket is characterized by
a bucket whose capacity is expressed in tokens with a token corresponding to a number
of bytes. A token generation rate determines the rate at which tokens are generated and
placed in the bucket. If upon a packet arrival, enough tokens are available, the token
bucket is decreased accordingly to the packet size, the packet is then classified as belonging
to the conforming traffic and sent into the network. Otherwise, the packet is discarded,

Copyright © 2005 N. U. Ahmed et al.
Mathematical Problems in Engineering 2005:6 (2005) 617–640
DOI: 10.1155/MPE.2005.617

http://dx.doi.org/10.1155/S1024123X05502175

618 Computer network traffic controllers

that is, no buffers are provided to temporally hold the incoming packets. When the source
rate is low or inactive, new tokens can be saved up in the bucket. If the bucket becomes
full, the new generated tokens are simply discarded.

The token-bucket mechanism has been studied widely in the literature. In recent years,
various authors have used the token-bucket model to characterize the traffic generated by
different types of sources, such as video and voice. In [7], Lombaedo et al. have used the
token-bucket model to characterize the traffic generated by prerecorded MPEG video.
The main objective of their work has been to provide an analytical methodology to com-
pute the traffic specifications used by RSVP: the signaling protocols of the IntServ pro-
tocol architecture. In [11], Procissi et al. have also used the token bucket to characterize
traffic exhibiting long-range dependence (LRD). Their numerical results show the effec-
tiveness of their analytical approach for the proper sizing of the token-bucket parame-
ters for LRD traffic. In [3], Bruni and Scoglio have also used the token-bucket model
to optimize the traffic generation rate of video sources when satisfying the token-bucket
controls. In [4], Bruno et al. have estimated the token-bucket parameters for voice over
IP traffic. In [13], Tang and Tai have conducted a network traffic characterization using
the token-bucket algorithm. Besides the bufferless token-bucket model, the authors have
also analyzed the operation of a token bucket using a buffer to hold the incoming source
packets.

In this paper, we undertake the modelling and optimization of the token-bucket algo-
rithm. Our token-bucket model differs from most previous studies in two major points.
First, rather than characterizing a particular traffic type, we focus on the modelling of the
token-bucket algorithm. Therefore we make no assumptions whatsoever on the nature of
the traffic sources. Most studies in the past [1, 12, 15, 18] have been conducted assuming
a particular type of application (e.g., video or voice) or traffic statistics (e.g., ON/OFF,
LRD dependence). Second, rather than focusing on a single token bucket, our study on
optimization looks into a system consisting of multiple token buckets. The interaction
among multiple token-bucket sources is considered by explicitly including in our models
the use of a shared resource, that is, a multiplexor. Furthermore, we propose the use of
a dynamic programming/genetic algorithm approach for the optimization process. The
use of the genetic algorithm has proved useful to considerably reduce the search process,
particularly as the number of token buckets increases.

The paper is organized as follows. Section 2 introduces the basic notation and the dy-
namic model of the token bucket including the shared resources. In Section 3, we define
the objective function and provide the details of the dynamic programming/genetic algo-
rithm approach proposed for the optimization of a network consisting of multiple token
buckets. In Section 4, we conduct a set of numerical experiments to illustrate the effec-
tiveness of the proposed approach. In Section 5, we analyze the benefits of the proposed
methodology in terms of computation time reduction.

2. Traffic model and system model

In our study, we present a dynamic model based on the basic philosophy of IP networks.
This model includes some improvement of the previous system model developed in [1].
Here we present a new methodology to solve the optimal control problem in computer

N. U. Ahmed et al. 619

tNtN−1t5t4t3t2t1t0

Time line

Si
ze

of
pa

ck
et

· · ·

Figure 2.1. Traffic model.

communication network. Before describing the system model, let us define the following
symbols which are used throughout the paper.

(1) {x∧ y} =Min{x, y}, {x∨ y} =Max{x, y}, x, y ∈R.
(2) For X ,Y ∈Rn the components of the vector Z ≡ {X ∧Y} are given by zi ≡ xi∧ yi,

i= 1,2, . . . ,n, where X = {xi, i= 1,2, . . . ,n} and Y = {yi, i= 1,2, . . . ,n}. Similarly
for Z ≡ X ∨Y we write zi ≡ xi∨ yi.

(3)

I(s)=

1 if the predicate S is true,

0 otherwise.
(2.1)

2.1. Traffic model. There are various types of services which are carried out in the net-
work, such as data, voice, and video. The traffic generated by these services can be the
constant bit rate (CBR) traffic or variable bit rate (VBR) traffic. The traffic model con-
sidered here remains the same as in the previous work [1]. We build up our traffic model
with VBR which is shown on Figure 2.1. The incoming traffic is denoted by {v(tk−1), k =
1,2, . . . ,N}. Since during each time interval [tk−1, tk) at most one packet may arrive,
v(tk−1) then represents the length or the size of the packet.

The VBR traffic can be very bursty; therefore the bandwidth allocation to the traffic
is hard to determine. The peak rate allocation would result in the waste of network re-
sources and may even lead to congestion, while the mean rate or lower than the mean rate
allocation would result in losses and the QoS (quality of service) may not be guaranteed.

2.2. System model. We consider that the system involves n traffic sources, and that each
source is assigned to a TB that controls the traffic rate. Figure 2.2 shows the system model.
The TB model is modified to take into account the capacity ci, of the input link i, where
i= 1,2, . . . ,n. This is the link between the token bucket and the multiplexor. We use c to
denote the vector of capacities of the input links, where c = (ci, i= 1,2, . . . ,n).

The system model is formally given by the following vector difference equation:

ρ
(
tk
)= ρ

(
tk−1

)
+
{
u
(
tk−1

)∧ [T − ρ
(
tk−1

)]}
− v
(
tk−1

)
I
(
v
(
tk−1

)≤ {[ρ(tk−1
)

+
[
u
(
tk−1

)∧ (T − ρ
(
tk−1

))]]∧ cτ
})

,
(2.2)

620 Computer network traffic controllers

Link rate (c) to multiplexor

1

2

...

n

Transmission rate (C) to network

Multiplexor (buffer size Q)

n traffic source n token buckets

Figure 2.2. System model.

where the vector ρ(tk) = (ρi(tk), i = 1,2, . . . ,n) denotes the status of token occupancy of
all the token buckets at time tk, that is, ρi(tk) is the number of tokens in the ith TB at time
tk, u(tk−1) is also a vector (ui(tk−1), i = 1,2, . . . ,n), which denotes the incoming tokens
to each TB at the start of the time interval [tk−1, tk). The vector T = (Ti, i = 1,2, . . . ,n)
denotes the size (maximum capacity) of all the TBs, v(tk−1)= (vi(tk−1), i= 1,2, . . . ,n) is a
vector denoting the size of the arriving packets from each source during the time interval
[tk−1, tk), and τ is the length of the time interval.

The conforming traffic (i.e., the traffic matching with the available tokens in the token
banks) from each of the TBs is then given by

gi
(
tk
)= vi

(
tk
)
I
{
vi
(
tk
)≤ [ρi(tk)+

(
ui
(
tk
)∧ (Ti− ρi

(
tk
)))]∧ ciτ

}
. (2.3)

Clearly this means that the nonconforming traffic, denoted by ri(tk), is given by

ri
(
tk
)= vi

(
tk
)− gi

(
tk
)
. (2.4)

In this study, we assume that the (traffic) sources share the same multiplexor in an
access node at the edge of the network. The multiplexor collects all the sources in its buffer
before they are launched on to the outgoing link depending on the available bandwidth or
capacity at the time. Thus, to complete the dynamic model of the whole system, one must
also include the temporal variation of the queue at the multiplexor. For simplicity we
may assume that the bandwidth of the link is piecewise constant on each of the intervals
[tk−1, tk) and it is denoted by C(tk−1), and the multiplexor has finite buffer sizes Q. Let the
size of the queue, q(tk), waiting for service at the multiplexor at time tk denote the state
of the multiplexor. The dynamics of the multiplexor queue is then given by the following

N. U. Ahmed et al. 621

(information) balance equation:

q
(
tk
)= {[q(tk−1

)−C
(
tk−1

)
τ
]∨ 0

}

+

{[n∑
i=1

gi
(
tk−1

)]∧ [Q− ([q(tk−1
)−C

(
tk−1

)
τ
]∨ 0

)]}
.

(2.5)

The first term on the right-hand side of the expression (2.5) describes the leftover traffic
in the queue at time tk after the traffic has been injected into the network. The second
term represents all the conforming traffic accepted by the multiplexor during the same
period of time. If the network capacity is large enough to serve all the traffic in the queue
at time tk−1, the state of the queue or the multiplexor is given by all the incoming traffic
accepted. But in case the network cannot serve all the waiting traffic, the unserved traffic
is stored in the queue. If the buffer with size Q does not have enough space to store all the
unserved traffic, the excess is discarded.

Because of the limitation of the buffer size and the output link capacity, some traffic
may be dropped at the multiplexor. Thus the traffic losses at the multiplexor is described
by

L
(
tk
)=

[n∑
i=1

gi
(
tk
)]−

{[n∑
i=1

gi
(
tk
)]∧ [Q− ([q(tk)−Cτ

]∨ 0
)]}

. (2.6)

The term {[∑n
i=1 gi(tk)]∧ [Q− ([q(tk)−Cτ]∨ 0)]} represents the part of conforming

traffic accepted by the multiplexor. If the buffer space, Q, is large enough to accept all the
conforming traffic, no multiplexor losses would occur at time tk. Otherwise, some part of
the conforming traffic must be dropped.

According to (2.2) and (2.5), we may formally write the abstract model which will be
used later in our algorithm and computation as follows. Let X = (ρq) ∈ Rn+1 denote the
state of the system consisting of n token banks and one multiplexor. Then the system
dynamics can be described compactly by the following system of difference equations:

X(k+ 1)= F
(
k,X(k),u(k)

)
, k = 0,1,2, . . . , (2.7)

where F(k,X(k),u(k))∈Rn+1 is the state transition function. It represents all the expres-
sions on the right-hand side of the system of token buckets given by (2.2) and those of
the multiplexor given by (2.5). We will denote the components of this vector F(k,X(k),
U(k)) by Fi(k,ρ(k),u(k)), i = 1,2, . . . ,n+ 1. Let N0 denote the set of all nonnegative in-
tegers and Nk

0 denote the Cartesian product of k copies of N0. It is important to note
that

F :N0×Nn+1
0 ×Nn

0 −→Nn+1
0 (2.8)

and consequently our system is governed by a vector difference equation in the state space
Nn+1

0 .

622 Computer network traffic controllers

3. Optimization of system performance

The basic objective of any computer communication network is to transfer data (repre-
sented in various formats) from point to point promptly, efficiently, and reliably without
failure. Before we can perform any optimization, we must define an appropriate objec-
tive functional that is reflective of these attributes. In view of the basic objectives, it is
important to include in the functional all the possible losses that may occur in the net-
work. We have seen that losses occur at the TBs and also at the multiplexor. In addition
to these losses, there are delays in service due to the waiting time at the multiplexor. All
these factors are included in the following objective functional:

J(u)=
K∑
k=0

α
(
tk
)
L
(
tk
)

+
K∑
k=0

n∑
i=1

βi
(
tk
)
ri
(
tk
)

+
K∑
k=0

γ
(
tk
)
q
(
tk
)
. (3.1)

The first term represents the weighted cell or traffic losses at the multiplexor. The sec-
ond term gives the sum of weighted losses at the TBs and the last term represents the
weighted cost of waiting time. The parameters α(tk), βi(tk), γ(tk), i = 1,2, . . . ,n are the
weights to which different values can be assigned according to different scenarios and
concerns. Note that, the objective functional is a function of u, which is the control vec-
tor. Our goal is to find an optimal control u that minimizes the cost function (3.1). We
may recall that by the control u we mean the token supply to each of the individual TBs
during each of the intervals of time [tk−1, tk) over the entire period of operation.

Optimal control theory, such as the principle of dynamic programming or the mini-
mum principle of Pontryagin, can be used to minimize the cost functional. In this paper,
we use the principle of dynamic programming, introduced by Bellman [2], combined
with a genetic algorithm to solve the optimization problem. Because of the recursive na-
ture of our system model, the problem can be broken up into simpler subproblems easily.
In order to reduce the search time for control values in each subproblem of dynamic
programming, we use genetic algorithm to find the global optima. By combining the
power of both the dynamic programming and the genetic algorithm, we can determine
the optimal control values effectively without using excessive iterations involving all the
admissible control values. In fact genetic algorithm partially improves the performance
of dynamic programming.

3.1. Principle of dynamic programming for discrete time optimization. Consider the
system governed by the state equation with X(k) denoting the state at time k and u(k) the
control:

X(k+ 1)≡ F
(
k,X(k),u(k)

)
, k = 0,1,2, . . . ,N − 1,

X(0)= X0.
(3.2)

The controls are constrained to belong to a specified set �ad called the class of admis-
sible controls. The cost functional is given by

J(u)≡
N−1∑
k=0

�
(
k,X(k),u(k)

)
+W

(
N ,X(N)

)
, (3.3)

N. U. Ahmed et al. 623

where the first term represents the running cost and the last term determines the terminal
cost. The objective is to find a control policy from the admissible class �ad that minimizes
the functional J . We formulate this as a dynamic programming problem. Given the state
X(r) at time r, we may define

J
(
r,X(r),u

)≡ N−1∑
k=r

�
(
k,X(k),u(k)

)
+W

(
N ,X(N)

)
(3.4)

as the cost of operating the system from time r starting from state X(r) and using the
control policy u∈�ad.

Now we may define

V
(
r,X(r)

)≡ inf
{
J
(
r,X(r),u

)
, u∈�ad

}
(3.5)

as the value function. Clearly this gives the minimal cost to run the system starting from
state X(r) at time r till the end of the period N . Using the basic arguments of dynamic
programming one can readily prove that the value function V must satisfy the following
recursive equation:

V
(
k,x(k)

)≡ Inf
u∈�ad

{
�
(
k,x(k),u(k)

)
+V

(
k+ 1,F

(
k,x(k),u(k)

))
, k = 0, . . . ,N − 1

}
,

V
(
N ,x(N)

)≡W
(
N ,x(N)

)
.

(3.6)

This is known as the Bellman equation of dynamic programming. To solve this equation,
we can use Lagrange multipliers [2, 9], or most easily a quadratic programming algorithm
[2, 9]. However, since our system evolves in the lattice Nn+1

0 , we have to consider integer
constraints. Some algorithms have been used, such as iterative dynamic programming
(IDP) [8]. In our work, due to the high dimension of the problem [2, 9], the state and
control sets are spread over a very large range of multiple integers. Thus we consider the
use of genetic algorithms [5] which should allow us to find the optimal solution without
having to explore all the possible solutions.

3.2. Dynamic programming equation for token-bucket mechanism. Note that, in our
system, there are n traffic sources that result in n states associated with token buckets and
one associated with the multiplexor queue giving n+ 1 state variables. We use X(k) to
represent the state vector where k is the stage variable that keeps track of the stage index.
The control u(k) in dynamic programming is defined as the vector of token generation
rates. Because n TBs are considered, each TB is controlled by its own token generation
policy. Thus u(k)∈Nn

0 is a n vector as well.
To solve the optimal control problem from time t0 to tN , we divide the problem into

multiple stages indexed from 0 to N . Let k = 0,1, . . . ,N be the stage variable. Each stage
takes one time interval [tk, tk+1). Therefore, stage k = 0 represents time interval [t0, t1), . . . ,
k =N − 1 represents [tN−1, tN), and k =N represents tN , respectively.

624 Computer network traffic controllers

ρ0 ρ1 ρN−2 ρN−1 ρN

q0 q1 qN−2 qN−1 qN

u0 un uN−2 uN−1

Fρ(ρ0, u0)

Fq(q0, u0)

Fρ(ρN−2, uN−2)

Fq(qN−2, uN−2)

Fρ(ρN−2, uN−2)

Fq(qN−2, uN−2)

l0 ln lN−2 lN−1

Stage 0 Stage n Stage N − 2 Stage N − 1 Stage N· · · · · ·

Figure 3.1. Multistage process of token-bucket control problem.

Our task is to study the high-dimensional integer optimization problem using the dis-
crete time dynamic programming as discussed in the previous section. Accordingly, the
complete set of equations required to solve the problem consists of the Bellman equation,
the cost functional, and the state equation. These are all collected at one position for the
convenience of the reader as follows:

V
(
k,X(k)

)≡ inf
u∈�ad

{
�(k) +V

(
k+ 1,F

(
k,X(k),u(k)

))}
, V

(
N ,X(N)

)= 0, (3.7)

�(k)= α(k)L(k) +
n∑
i=1

β(k)ri(k) + γ(k)q(k), (3.8)

X(k)≡ (ρ(k),q(k)
)
, F ≡ (Fρ,Fq

)
, X(k+ 1)= F

(
k,X(k),u(k)

)
, (3.9)

Fρ
(
k,ρ(k),u(k)

)≡ ρ
(
tk
)

+u
(
tk
)∧ (T − ρ

(
tk
))

− v
(
tk
)
I
(
v
(
tk
)≤ [ρ(tk)+u

(
tk
)∧ (T − ρ

(
tk
))]∧ cτ

)
,

(3.10)

Fq
(
k,ρ(k),q(k),u(k)

)≡ {(q(tk)−Cτ
)∨ 0

}

+

[n∑
i=1

gi
(
tk
)]∧ [Q− (q(tk)−Cτ

)∨ 0
]
.

(3.11)

3.3. Solution of the dynamic programming equation. By using the dynamic program-
ming equation (DPE) (3.7) along with the terminal condition, we solve our optimal traf-
fic control problem step by step. This is a sequential approach which eventually leads to
the optimal control policy u∗. Before describing the computational sequence, we discuss
how the optimal value can be obtained by dynamic programming. In our network traffic
control system, the multistage process is shown in Figure 3.1 as follows.

N. U. Ahmed et al. 625

The rectangle represents the transition function that contains two operations Fρ and
Fq where ρ and q denote the state variables indicating the states of the TBs and the multi-
plexor with u denoting the decision variable representing the token supply. As shown in
Figure 3.1, the output of one stage is the input of the next one. To find the minimum cost
(equivalently the value) during time [t0, tN], we must find the optimal control value u∗

which minimizes the cost of the whole process from stage 0 to stage N giving V(0,X(0)).
It is clear from the DPE (3.7) that the optimum cost V(0,X(0)) is the sum of �(0) and
V(1,X(1)). Thus to compute V(0,X(0)) we must know V(1,X(1)) before we can find
the optimal u∗(0) that minimizes the cost to go from X(0) giving V(0,X(0)). This is
true for every stage. Hence the DPE must be solved backward in time starting from the
last stage. At the terminal time N , V(N ,X(N)) =W(N ,X(N)) for a given function W .
To minimize the terminal cost one must choose u(N − 1) that minimizes the functional
W(N ,F(N − 1,X(N − 1),u(N − 1))). Clearly the optimal u(N − 1) depends on the state
at stage N − 1 and so it may be denoted by u(N − 1,X(n− 1)). This is continued till the
initial stage is reached. If the terminal cost is zero, this process begins from stage N − 1.
The whole process is clearly illustrated in Figures 3.2 and 3.3.

3.4. Reduction of the search time using a genetic algorithm. The high-dimensional na-
ture of the token-bucket control system makes the number of combinations of states
very large. The search space for the control values for each state at each stage is also
large. For each TB, the admissible control values are 0,1, . . . , (Ti− ρi(tk)). Thus there are
(Ti − ρi(tk) + 1) choices for the ith token bank at time tk. If there are n TBs, the total
number of admissible control values is given by

n∏
i=1

(
Ti− ρi

(
tk
)

+ 1
)
. (3.12)

For 3 TBs with the same maximum capacity 3000, the total number of admissible controls
would be [(1500− 0) + 1]3 = 3381754501. Obviously, to find an optimal value from such
a large set is not easy. A genetic algorithm may be used to efficiently solve this problem.

Genetic algorithm works very well on combinatorial problems. They are less suscepti-
ble to falling into local extrema than other search methods such as gradient search, ran-
dom search. This is due to the fact that the genetic algorithm traverses the search space
using the genotype rather than the phenotype [17]. However, GAs tend to be compu-
tationally more intensive than the latter ones. A genetic algorithm is a search procedure
that optimizes a certain objective function by maintaining a population of candidate so-
lutions. It employs some operations that are inspired by genetics to generate a new pop-
ulation with better fitness from the previous one. A typical GA should consist of a popu-
lation, chromosome, fitness, crossover operator, and mutation operator. For the detailed
description of those components, the reader may refer to [5].

In our implementation, to avoid the loss of the best individuals and speed up the search
process, we use the steady-state GA to solve the optimal traffic control problem. Different
from simple GA, steady state GA only replaces a few individuals in each generation. The
number or the percentage of replacement can be user specified. This type of replacement
is often referred to as overlapping populations [17].

626 Computer network traffic controllers

Start

Initialization

Flowchart 1

T = (T1, T2, T3)
Q = Q′
k = N

V(N,X(N)) = 0

J(N) = V(N,X(N))

Save
J(N),
to the table which
is named “Ta”

k = N − 1

Interpretation of the
symbols

T : a vector stores the max
capacities of the TBs,
Q: the max capacity of the
queue in multiplexor,
k: time index,
N : the final time,
X : a vector stores the
states of the TBs and
multiplexor,
u: a vector stores the
token generation rate of
TBs,
where T1, T2, T2, Q′, and N
are given.

Read traffic at time k

The first value of all combinations
of the element in X(k)

Find the admissible u(k)
u(k) = {0, . . . , T − ρ(k)}

Run genetic algorithm to find the
optimal control vector u∗(k, X(k))

which minimizes V(k, X(k))
refer to Section 3.3

V(k, X(k)) ≡
inf

u∈�ad

{l(k) + V(k + 1, F(k, X(k), u∗(k)))}

J(u∗, k) = V(k, X(k))

Save
J(u∗, k)
X(k)

u∗(k, X(k))

to the table “Ta”

More
combinations

of X(k)?

The next value
of all

combinations
of X(k)

k = 0

Go to the
flowchart 2

k = k − 1

Yes

Yes

No

No

Figure 3.2. Optimal control token-bucket algorithm flowchart (part 1).

For the control problem, the search space is the entire set of admissible control vectors
u. A population is composed of a small group of selections from the whole control set.
Each individual (chromosome) within a population represents a combination of each
control value of each TB. If there are n TBs, each individual contains n genes, each gene
maps one control value of one TB. The formation of chromosome and the formation
of population are shown in Figure 3.4. The fitness is calculated by the value function.

N. U. Ahmed et al. 627

Flowchart 2

Follow flowchart F1

X∗(0) = X′

where X′ are given

Look up the table “Ta” to find
u∗(k) = u(k, X∗(k))

corresponding to the optimal states

X∗(k)

Save u∗(k)

X∗(k + 1) = F(k, X∗(k), u∗(k))

k = N − 1

k = k + 1
Output:

Optimal cost J∗

Optimal vector u∗

End

YesNo

Figure 3.3. Optimal control token-bucket algorithm flowchart (part 2).

Before concluding this section, we present an outline of the steady-state genetic algorithm
[13, 16].

(1) Start. Generate random population of M chromosomes (n vectors of admissible
u).

(2) Clone. Copy the previous population to be the temporary population of the next
generation.

(3) Replace. Replace some of the individuals by repeating the following steps until the
user specified number of replacements or percentage of replacement is reached.
(3.1) Select. Select two parent chromosomes from the population according to

their fitness (the better fitness, the bigger chance to be selected).
(3.2) Crossover. With a crossover probability cross over the parents to form a new

offspring (children).
(3.3) Mutate. With a mutation probability, mutate new offspring at each locus

(position in chromosome).

628 Computer network traffic controllers

Chromosome

Gene 1 Gene 2 Gene n

Control value of TB1 Control value of TB2 Control value of TBN

Population

Chromosome

Chromosome

Chromosome

Chromosome

· · ·

· · ·

· · ·
· · ·
· · ·

· · ·

...

Figure 3.4. Formation of genome and population.

(3.4) Return. Place new offspring into the temporary population in the new gen-
eration.

(3.5) Destroy. Destroy the worst chromosomes to keep the specified population
size.

(4) Generate new population. Use newly generated population for a further run of
algorithm.

(5) Test. If the end condition is reached, stop, and return the best solution from the
current population, else go to step 2.

The above algorithm has been implemented using the C++ programming language.
We have made use of the Galib genetic algorithm package [10], written by Matthew Wall
at the Massachusetts Institute of Technology. The source code was downloaded from [10].

For illustration, we consider two traffic sources. The traffic from each source provides
the bit rates statistics (video frame sizes) of a traffic trace. After running the program,
a set of optimal control strategies u∗, which represents the number of tokens generated
during each stage, is obtained and stored.

4. Numerical results

In this section, we undertake the experimental evaluation of the algorithm previously in-
troduced. Because the dynamic programming is computationally very intensive, we con-
sider a scenario comprised by only two traffic sources policed by 2 token buckets.

4.1. Definitions of some measures of network efficiency. Before describing our numer-
ical experiments and their analysis, we define the main performance metrics of interest.
These metrics are key in the analysis of the network performance. We define the network
utilization η, as follows:

η =
∑n

i=1

∑K
k=0 vi

(
tk
)− [∑K

k=0L
(
tk
)

+
∑n

i=1

∑K
k=0 ri

(
tk
)]

C
(
tK − t0

) . (4.1)

N. U. Ahmed et al. 629

The network average throughput is given by

Υ= Cη =
∑n

i=1

∑K
k=0 vi

(
tk
)− [∑K

k=0L
(
tk
)

+
∑n

i=1

∑K
k=0 ri

(
tk
)]

(
tK − t0

)

= 1
tK − t0

K∑
k=0

Υ
(
tk
)

= 1
tK − t0

K∑
k=0

{[n∑
i=1

gi
(
tk
)]∧ [Q− ([q(tk)−Cτ

]∨ 0
)]}

,

(4.2)

where Υ(tk) denotes the throughput during the time interval [tk−1, tk).

4.2. Specification of the traffic traces and system setup. Multimedia services tend to be
highly demanding in terms of network resources. In the near future, a major part of the
traffic will be produced by multimedia services, such as voice and video. In particular,
traffic flows generated by video applications have the properties of high peak rate and
strong variability: two features presenting serious challenges to the provisioning of QoS
guarantees.

The traces used in our experiments correspond to the traffic statistics of two MPEG-1
sequences encoded using the Berkeley MPEG-encoder (version 1.3). Each group of pic-
tures (GoP) contains 12 frames with a frame rate of 24 frames/s. Traces 1 and 2 repre-
sent the traffic trace of 7 seconds of the movies “Mr. Bean,” and “The Simpsons,” re-
spectively. Both video traces have been encoded according to the video frame pattern
IBBPBBPBBPBB. According to the MPEG-1 encoding scheme, the I-frames are encoded
with a moderate compression ratio, P-frames have a higher compression ratio than I-
frames, and B-frames have the highest compression ratio [3]. The traffic traces for both
video streams are shown in Figure 4.1.

From the figure the GoP pattern is clearly identified. An I-frame appears at a regular
interval of one every 12 frames. The video traffic statistics are given in Table 4.1.

For the transmission of the video data through the network, we assume the use of the
UDP/IP protocol stack. Each frame is divided into one or more packets with varying sizes
between 64 bytes to 1500 bytes. Without loss of generality, we further consider that one
token takes on 100 bytes of traffic.

Throughout the experiment, relative weights are assigned to the different losses as fol-
lows:

(i) α(ti)= 10, weight given to the multiplexor losses;
(ii) β(ti)= 5, weight assigned to the losses at the TB;

(iii) γ(ti)= 1, weight given to the waiting losses.
Under the scenario considered herein, by assigning more weight to the losses at the

multiplexor, we are considering it preferable to reject the traffic at the TB (the entry point
to the network) than to have to drop the packets in excess at the multiplexor. This is in
line with the IETF philosophy that once the (conforming) traffic has been admitted into
the network, enough resources have to be guaranteed for its transmission. We also con-
sider the tradeoff between the losses at the TBs and the waiting losses. If the multiplexor
has enough space to accept more traffic, the traffic may be accepted even though it may

630 Computer network traffic controllers

16614412210078563412

Frame number

0
0.5

1
1.5

2
2.5

3

M
bp

s

(a)

16614412210078563412

Frame number

0

0.5

1

1.5

2

2.5

3

M
bp

s

(b)

Figure 4.1. MPEG-1 traffic traces (a) 1 and (b) 2.

Table 4.1. Summary of MPEG-1 traffic traces specification.

Traffic trace Peak rate (Pi) Average rate (Mi) Standard deviation (Si)

Trace 1 2.54 Mbps 0.759 Mbps 0.5784 Mbps

Trace 2 2.104 Mbps 0.696 Mbps 0.477 Mbps

experience at times longer delays. Therefore, the weight assigned to the losses at the TB is
larger than the weight given to the delay caused by the waiting losses. It is understood that
depending on the application and policy implemented in a particular setup, the relative
weights will have to be set up accordingly.

Results analysis. We have conducted a set of experiments to observe the dependence of
the cost function on different control strategies. The total cost computed by (3.1), total
losses at the TBs, losses at the multiplexer, and the waiting losses, corresponding to the
optimal control, will be compared with those corresponding to some other open loop
controls with fixed token generation rates. More importantly, traces of the conforming
traffic, bucket occupancy, and token generation rates will allow us to understand the op-
eration of the token-bucket mechanism. By studying these traces, we should be able to

N. U. Ahmed et al. 631

0

1000

2000

3000

4000

5000

C
os

t

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

N
et

w
or

k
u

ti
liz

at
io

n
(%

)

Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5 Strategy 6

40 592 36 520 34 058 35 855 47 360 30 099

28 570 21 975 15 465 9885 0 11 360

0 0 0 2230 16 330 0

12 022 14 545 18 593 23 740 31 030 18 739

52.13% 61.55% 70.85% 77.23% 81.28% 76.72%

J(u)

TB losses

Multiplexor losses

Waiting losses

Network utilization (%)

Figure 4.2. Dependence of cost on control strategy (C = 1.456 Mbps).

gain insight in the mode of operation of all the control strategies under consideration.
The system configurations are specified as follows.

(i) Ti = 2000 bytes, i= 1,2: the token bucket has been set large enough to be able to
accommodate the maximum packet length.

(ii) C =∑2
i=1Mi = 1.456 and 2.184 Mbps: these two values have been chosen to eval-

uate a system configuration overloaded or heavily loaded.
(iii) ci = 2.56 Mbps: the rate of the link joining the TB to the multiplexor is assumed

large enough to deliver the conforming traffic at the rate it is being generated.
(iv) Q = 4000 bytes: the multiplexor has been dimensioned to accommodate up to

two 1500-byte packets.
(v) τ = 4.63 milliseconds: this interval corresponds to the arrival of a packet, since

frames are generated at a rate of 24 frames per second, we assume that a video
frame is segmented into up to nine packets.

(vi) ρi(0)= Ti: the token buckets are assumed to be initially full.
The following cases are studied.
(1) Open loop controls without optimization.

(i) Strategy 1: ui(tk)= 0.7×Mi.
(ii) Strategy 2: ui(tk)=Mi.

(iii) Strategy 3: ui(tk)= 1.3×Mi.
(iv) Strategy 4: ui(tk)= 1.6×Mi.
(v) Strategy 5: ui(tk)= Pi. (peak rate of the ith traffic).

(2) Optimal control.
(vi) Strategy 6: with variable bit rate control.

Numerical results are shown in Figures 4.2, 4.3, and 4.4.

632 Computer network traffic controllers

0

1000

2000

3000

4000

5000

C
os

t

0%

10%

20%

30%

40%

50%

60%

70%

N
et

w
or

k
u

ti
liz

at
io

n
(%

)

Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5 Strategy 6

38 289 33 561 29 036 25 369 25 212 20 952

28 570 21 975 15 465 9885 0 3445

0 0 0 0 3060 0

9719 11 586 13 571 15 484 22 152 17 507

34.75% 41.03% 47.23% 52.55% 60.50% 58.68%

J(u)

TB losses

Multiplexor losses

Waiting losses

Network utilization (%)

Figure 4.3. Dependence of cost on control strategy (C = 2.184 Mbps).

Figures 4.2 and 4.3 show that despite the output link capacity increase, strategies 1, 2,
and 3 exhibit the same performance, that is, the TB losses cannot be reduced by simply
increasing the output link capacity, C. In the case of C = 1.456 Mbps, strategy 5, which
corresponds to the open loop control with a fixed token generation rate equal to the traf-
fic’s peak rate, provides the worst performance of all. Even in the case when the channel
rate is increased to C = 2.184 Mbps, this strategy is so aggressive that still some packets
are lost at the multiplexor. In applications, such as video communications, losses may
result in low quality of the video at the receiving end or more delay due to lost packet
retransmission. Long waiting time of the packet at the multiplexor may also cause unac-
ceptable delay of video frames. In some applications, such as packetized voice, long delays
may considerably affect the quality of service of the end application. In this case, it may be
better to drop the packets in excess. It is clear that strategies 1 and 2 are too conservative
resulting in a high number of packets being dropped at the TB. By optimizing the oper-
ation of the overall system, strategy 6 balances the packet losses while ensuring a proper
level of utilization.

Figure 4.4 depicts the optimal token generation rates and traffic rates for both TBs.
We observe that the token generation rates follow the same pattern as the traffic traces. In
situations when both sources exhibit higher rates at the same time, the token generation
rates are limited by the output channel rate. For instance, from the figure we see that at the
large spike around frame 50, the rates of both sources add up to about 4 Mbps. However,
the token generation of both sources are clearly limited by the channel output rate. For
both channel rates, the token generation rate of source 1 is lower than the corresponding
traffic rate. This will obviously translate into packets that will have to be discarded at the
token bucket.

N. U. Ahmed et al. 633

16614412210078563412

Frame number

0

0.5

1

1.5

2

2.5

3

M
bp

s

Traffic rate (Mbps)
Optimal token rate (C = 2.184)
Optimal token rate (C = 1.456)

(a)

16614412210078563412

Frame number

0

0.5

1
1.5

2

2.5

3

M
bp

s

Traffic rate (Mbps)
Optimal token rate (C = 2.184)
Optimal token rate (C = 1.456)

(b)

Figure 4.4. Traffic rate versus optimal token generation rates: (a) TB1 and (b) TB2.

Figure 4.4 also shows that in the case when one of the sources transmits at a much
higher rate than the other one, the token generation rate of the high activity source will
follow accordingly. In the mean time, the token generation rate of the low activity source
may not be able to generate the required tokens to transmit all its packets. For instance,
at frame 109, the traffic rate of source 1 exceeds the 2 Mbps while source 2 is transmitting
at a rate of about 0.4 Mbps. As seen from the figures, the token generation rate of source
1 is slightly higher than 2 Mbps, while the token generation rate of source 2 shows a
significant discrepancy with respect to the source rate.

Figure 4.5 provides the traces of the incoming traffic, together with the conforming
traffic resulting when applying strategies 2 (token generation rate = mean) and 6 (the
optimal strategy). For reference purposes, the figures also show the mean rate of the input
traffic. As expected, it is clear that by fixing the token generation rate equal to the mean
rate of the sources, there is considerable waste of resources. In the case of the optimal

634 Computer network traffic controllers

16614412210078563412

Frame number

0
2
4
6
8

10
12
14

Fr
am

e
si

ze
(b

yt
es

)

×103

Traffic frames
Conforming traffic (u = optimal)
Conforming traffic (u = mean)
Fixed control rate (u = mean)

(a)

16614412210078563412

Frame number

0
2
4
6
8

10
12
14

Fr
am

e
si

ze
(b

yt
es

)

×103

Traffic frames
Conforming traffic (u = optimal)
Conforming traffic (u = mean)
Fixed control rate (u = mean)

(b)

Figure 4.5. Incoming traffic versus conforming traffics (a) TB1 and (b) TB2 (fixed u =mean traffic).

strategy, the resources are dynamically distributed. We notice however that at some points
of time, the rate of the conforming traffic exhibits very low values. This happens at time
instants when one source transmits at a much higher rate than the other one. For instance,
at frame 109, there is a considerable discrepancy between the actual incoming traffic rate
and the rate of the conforming traffic. This results from the fact that the optimization
has been done for the overall system as a whole. From Figure 4.4 we have seen that the
token generation rate of source 2 exhibits this same discrepancy with respect to the input
traffic rate. Once again, a satisfactory solution to this unfair condition will depend on
the application or policy in place. For instance, for the results from the particular setup

N. U. Ahmed et al. 635

16614412210078563412

Frame number

0
2
4
6
8

10
12
14

Fr
am

e
si

ze
(b

yt
es

)

×103

Traffic frames
Conforming traffic (u = optimal)
Conforming traffic (u = 1.3×mean)
Fixed control rate (u = 1.3×mean)

(a)

16614412210078563412

Frame number

0
2
4
6
8

10
12
14

Fr
am

e
si

ze
(b

yt
es

)

×103

Traffic frames
Conforming traffic (u = optimal)
Conforming traffic (u = 1.3×mean)
Fixed control rate (u = 1.3×mean)

(b)

Figure 4.6. Incoming traffic versus conforming traffics (a) TB1 and (b) TB2 (fixed u = 1.3× mean
traffic).

considered herein, we see that the sources take turns in gaining a bigger share of the
resources, that is, channel bandwidth.

From Figure 4.5 we see that there are situations when the conforming traffic gets shut
down. For instance, at frame 121, the conforming traffic of source 2 is completely shut
down, and this is true despite that there are tokens being generated during this frame
at its corresponding token bucket (refer to TB2 in Figure 4.4). However, since the packet
length being used can be as large as 1500 bytes, there may not be enough tokens present
at the token bucket to take on the whole packet. According to our model, in this case, the
whole packet is discarded at the token bucket. In the figure, there are several instances

636 Computer network traffic controllers

16614412210078563412

Frame number

0
2
4
6
8

10
12
14

Fr
am

e
si

ze
(b

yt
es

)

×103

Traffic frames
Conforming traffic (u = optimal)
Conforming traffic (u = mean)
Fixed control rate (u = mean)

(a)

16614412210078563412

Frame number

0
2
4
6
8

10
12
14

Fr
am

e
si

ze
(b

yt
es

)

×103

Traffic frames
Conforming traffic (u = optimal)
Conforming traffic (u = mean)
Fixed control rate (u = mean)

(b)

Figure 4.7. Incoming traffic versus conforming traffics (a) TB1 and (b) TB2 (fixed u =mean traffic).

where this situation arises for both sources. Figure 4.6 shows similar results as Figure 4.5
except that in this case, the token generation rate has been fixed to 1.3 times the mean of
the input traffic rate. From the figure, it is clear that setting the token generation rate at a
higher rate may help during period where the rate of a source remains high during a long
period of time. For instance, during the frames 64 to 72, source 2 exhibits a high degree
of activity. In the case when the token generation rate is set to 1.3 times the mean, the
conforming traffic exhibits at some points even higher values than the ones obtained for
the optimal case.

Figures 4.7 and 4.8 show the traces of the conforming traffic and sources for the case
when the capacity of the link, C = 2.184 Mbps. In Figure 4.7 there are still some instances

N. U. Ahmed et al. 637

16614412210078563412

Frame number

0
2
4
6
8

10
12
14

Fr
am

e
si

ze
(b

yt
es

)

×103

Traffic frames
Conforming traffic (u = optimal)
Conforming traffic (u = 1.6×mean)
Fixed control rate (u = 1.6×mean)

(a)

16614412210078563412

Frame number

0
2
4
6
8

10
12
14

Fr
am

e
si

ze
(b

yt
es

)

×103

Traffic frames
Conforming traffic (u = optimal)
Conforming traffic (u = 1.6×mean)
Fixed control rate (u = 1.6×mean)

(b)

Figure 4.8. Incoming traffic versus conforming traffics (a) TB1 and (b) TB2 (fixed u = 1.3× mean
traffic).

when the conforming traffic is completely shut down. However, overall, strategy 6 is able
to take advantage of the extra capacity reducing considerably the overall losses while
maintaining a good level of utilization. Furthermore, during period of high activity, it
is able to make use of the extra capacity. For instance, during the frames 64 to 72, the
conforming traffic corresponding to source 2 follows very closely the pattern of the in-
coming traffic. In the case of fixed token generation, even a token generation rate of up to
1.6 times the mean incoming traffic rate is not able to cope with the demand during this
period of time as effectively as the optimal case (see Figure 4.8).

638 Computer network traffic controllers

23 000

25 000

27 000

29 000

31 000

33 000

35 000

37 000

C
os

t
fu

n
ct

io
n
J

Buffer capacity (Q) 2500 bytes 4000 bytes 4500 bytes 5500 bytes

35 500 32 590 32 590 32 599

32 337 28 360 28 360 28 360

29 569 24 243 24 237 24 233

C = 1.456 Mbps

C = 1.758 Mbps

C = 2.184 Mbps

Figure 4.9. Dependence of cost J on Q and C.

We now study the effect of some of the network parameters over the cost functions
for the optimal control. In this set of experiments, we change the values of the buffer
size (queue capacity) and the values of the output link service rate C, the values of the
parameters and the corresponding costs are summarized in Figure 4.9. In Figure 4.9, Mi

is the incoming traffic mean bit rate of ith source, where i= 1,2. All the other parameters
remain the same as in the previous set of experiments.

From Figure 4.9, as expected, increasing the output capacity C decreases the cost.
However, increasing the buffer size Q beyond a certain size does not help to improve
the system performance. Except for the case when the buffer size is set to be 2500 bytes,
all other buffer sizes show similar cost values for a given output capacity rate. This is not
surprising if we realize that the token-bucket size has been set to 2000 bytes, allowing the
sources to transmit up to 2000 bytes back to back. Therefore a minimum buffer size of
4000 has to be provided to accommodate the conforming traffic. Furthermore, it is im-
portant to point out that the waiting losses do not play a major role as the multiplexor
buffer is increased. This is due to the fact that the amount of conforming traffic present
in the multiplexor at a given time will be limited by size of the token buckets.

Our results provide us with the basic guidelines towards the design of adaptive control
mechanism capable of better distributing the network resources and fulfilling the needs
of a wide range of applications.

5. Conclusion

The optimization of the token-bucket control mechanism we discussed in this paper al-
lows us to gain insight into the operation of the token-bucket algorithm. The numerical
results and the system analysis demonstrate the effectiveness of dynamic programming,
genetic algorithm, and our system model in the study of the operation and performance
of the token bucket. They also set the guidelines for the design of the system parameters,

N. U. Ahmed et al. 639

tradeoff over losses, delay and network utilization. Our future work will focus on the
following points: (1) enhance the dynamic model to take into account issues, such as
fairness, particular application requirements, and packet dropping policies; (2) design of
an optimal feedback control strategy based on the lessons learnt herein; (3) improve the
computation and memory requirements of the optimization algorithm presented in this
paper. In order to further reduce the running time, we will be considering the use of par-
allel computing. Memory requirements is another issue that will have to be addressed. So
far, we have not found a method to reduce the memory allocation. We may explore the
“check point” theory [3, 14].

Acknowledgment

This work was partially supported by the National Science and Engineering Research
Council of Canada under Grant A7109.

References

[1] N. U. Ahmed, Q. Wang, and L. Orozco Barbosa, Systems approach to modeling the token bucket
algorithm in computer networks, Math. Probl. Eng. 8 (2002), no. 3, 265–279.

[2] R. Bellman, Dynamic Programming, Princeton University Press, New Jersey, 1957.
[3] C. Bruni and C. Scoglio, An optimal rate control algorithm for guaranteed services in broadband

networks, Comput. Networks 37 (2001), no. 3-4, 331–344.
[4] R. Bruno, R. G. Garroppo, and S. Giordano, Estimation of token bucket parameters of VoIP

traffic, Proc. IEEE Conference on High Performance Switching and Routing, Heidelberg,
2000, pp. 353–356.

[5] D. A. Coley, An Introduction to Genetic Algorithms for Scientists and Engineers, World Scientific,
New Jersey, 1999.

[6] J. A. Grice, R. Hughey, and D. Speck, Reduced space sequence alignment, Comput. Appl. Biosci.
13 (1997), no. 1, 45–53.

[7] A. Lombaedo, G. Schembra, and G. Morabito, Traffic specifications for the transmission of stored
MPEG video on the Internet, IEEE Trans. Multimedia 3 (2001), no. 1, 5–17.

[8] R. Luus, Iterative dynamic programming: from curiosity to a practical optimization procedure,
Control and Intell. Syst. 26 (1998), no. 1, 1–8.

[9] G. L. Nemhauser, Introduction to Dynamic Programming, John Wiley & Sons, New York, 1966.
[10] M. Obitko, Introduction to Genetic Algorithms, 1998, http://cs.felk.cvut.cz/∼xobitko/ga/.
[11] G. Procissi, A. Garg, M. Gerla, and M. Y. Sanadidi, Token bucket characterization of long-range

dependent traffic, Comput. Commun. 25 (2002), no. 11-12, 1009–1017.
[12] A. S. Tanenbaum, Computer Networks, 3rd ed., Prentice-Hall PTR, New Jersey, 1996.
[13] P. P. Tang and T.-Y. C. Tai, Network traffic characterization using token bucket model, Proc. 18th

Annual Joint Conference of the IEEE Computer and Communications Societies (INFO-
COM ’99), vol. 1, New York, 1999, pp. 51–62.

[14] C. Tarnas and R. Hughey, Reduced space hidden Markov model training, Bioinformatics 14
(1998), no. 5, 401–406.

[15] C. Wahida and N. U. Ahmed, Congestion control using dynamic routing and flow control, Sto-
chastic Anal. Appl. 10 (1992), no. 2, 123–142.

[16] M. Wall, A C++ Library of Genetic Algorithm Components, http://lancet.mit.edu/ga/.
[17] , Introduction to Genetic Algorithms, http://lancet.mit.edu/∼mbwall/presentations/

IntroToGAs/.

http://cs.felk.cvut.cz/~xobitko/ga/
http://lancet.mit.edu/ga/
http://lancet.mit.edu/~mbwall/presentations/IntroToGAs/
http://lancet.mit.edu/~mbwall/presentations/IntroToGAs/

640 Computer network traffic controllers

[18] N. Yin and M. G. Hluchyj, Analysis of the leaky bucket algorithm for on-off data sources, Global
Telecommunications Conference (Globecom ’91), vol. 1, Arizona, 1991, pp. 254–260.

N. U. Ahmed: School of Information Technology and Engineering, University of Ottawa, Ottawa,
ON, Canada K1N 6N5

E-mail address: ahmed@site.uottawa.ca

Bo Li: School of Information Technology and Engineering, University of Ottawa, Ottawa, ON,
Canada K1N 6N5

E-mail address: lydia-lee8@hotmail.com

Luis Orozco-Barbosa: School of Information Technology and Engineering, University of Ottawa,
Ottawa, ON, Canada K1N 6N5

E-mail address: lorozco@info-ab.uclm.es

mailto:ahmed@site.uottawa.ca
mailto:lydia-lee8@hotmail.com
mailto:lorozco@info-ab.uclm.es

Mathematical Problems in Engineering

Special Issue on

Time-Dependent Billiards

Call for Papers
This subject has been extensively studied in the past years
for one-, two-, and three-dimensional space. Additionally,
such dynamical systems can exhibit a very important and still
unexplained phenomenon, called as the Fermi acceleration
phenomenon. Basically, the phenomenon of Fermi accelera-
tion (FA) is a process in which a classical particle can acquire
unbounded energy from collisions with a heavy moving wall.
This phenomenon was originally proposed by Enrico Fermi
in 1949 as a possible explanation of the origin of the large
energies of the cosmic particles. His original model was
then modified and considered under different approaches
and using many versions. Moreover, applications of FA
have been of a large broad interest in many different fields
of science including plasma physics, astrophysics, atomic
physics, optics, and time-dependent billiard problems and
they are useful for controlling chaos in Engineering and
dynamical systems exhibiting chaos (both conservative and
dissipative chaos).

We intend to publish in this special issue papers reporting
research on time-dependent billiards. The topic includes
both conservative and dissipative dynamics. Papers dis-
cussing dynamical properties, statistical and mathematical
results, stability investigation of the phase space structure,
the phenomenon of Fermi acceleration, conditions for
having suppression of Fermi acceleration, and computational
and numerical methods for exploring these structures and
applications are welcome.

To be acceptable for publication in the special issue of
Mathematical Problems in Engineering, papers must make
significant, original, and correct contributions to one or
more of the topics above mentioned. Mathematical papers
regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in
Engineering manuscript format described at http://www
.hindawi.com/journals/mpe/. Prospective authors should
submit an electronic copy of their complete manuscript
through the journal Manuscript Tracking System at http://
mts.hindawi.com/ according to the following timetable:

Manuscript Due March 1, 2009

First Round of Reviews June 1, 2009

Publication Date September 1, 2009

Guest Editors

Edson Denis Leonel, Department of Statistics, Applied
Mathematics and Computing, Institute of Geosciences and
Exact Sciences, State University of São Paulo at Rio Claro,
Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP,
Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State
University, Vorob’evy Gory, Moscow 119992, Russia;
loskutov@chaos.phys.msu.ru

Hindawi Publishing Corporation
http://www.hindawi.com

http://www.hindawi.com/journals/mpe/
http://www.hindawi.com/journals/mpe/
http://mts.hindawi.com/
http://mts.hindawi.com/

	1Call for Papers-4pt
	Guest Editors

