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We deal with the study of momentum and heat transfer characteristics in a second-grade
rotating flow past a porous plate. The analysis is performed when the suction velocity
normal to the plate, as well as the external flow velocity, varies periodically with time. The
plate is assumed at a higher temperature than the fluid. Analytic solutions for velocity,
skin friction, and temperature are derived. The effects of various parameters of physical
interest on the velocity, skin friction, and temperature are shown and discussed in detail.

1. Introduction

The study of non-Newtonian fluids has attracted much attention, because of their prac-
tical applications in engineering and industry particularly in extraction of crude oil from
petroleum products, food processing, and construction engineering. Due to complexity
of fluids, various models have been proposed. The equations of motion of non-
Newtonian fluids are highly nonlinear and one order higher than the Navier-Stokes equa-
tions. Finding accurate analytic solutions to such equations is not easy. There is a partic-
ular class of non-Newtonian fluids namely the second-grade fluids for which one can
reasonably hope to obtain an analytic solution. Important studies of second-grade fluids
in various contexts have been given in the references [1, 3, 6, 7, 9, 10, 11, 12, 13, 17, 19,
20, 21, 22, 24].

Since the pioneering work of Lighthill [16] there has been a considerable amount of
research undertaken on the time-dependent flow problems dealing with the response of
the boundary layer to external unsteady fluctuations about a mean value. Important con-
tributions to the topic with constant and variable suction include the work of Stuart [25],
Messiha [18], Kelley [15], Soundalgekar and Puri [23], and Hayat et al. [8].

Despite the above studies, no attention has been given to the study of the simultane-
ous effects of the rotation and heat transfer characteristics on the non-Newtonian flow
with variable suction. Such work seems to be important and useful for gaining our ba-
sic understanding of such flow and partly for possible applications to geophysical and
astrophysical problems. Also, heat transfer plays an important role during the handling
and processing of non-Newtonian fluids. The understanding of heat transfer in boundary
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layer flows of non-Newtonian fluids is of importance in many engineering applications
such as the design of thrust bearings and radial diffusers, transpiration cooling, drag re-
duction, thermal recovery of oils, and so forth. The primary purpose of the present paper
is to make an investigation of the combined effects of rotation, and heat transfer char-
acteristics on the flow of a second-grade fluid past a porous plate with variable suction.
This work is concerned with a boundary value problem in a rotating flow. The analyti-
cal solution of the velocity field, skin-friction, and temperature distribution is obtained.
Special attention is given to finding the analytical solutions and to describe the physical
nature. Finally, in order to see the variations of different emerging parameters, the graphs
are sketched and discussed.

2. Mathematical formulation

Let us consider an incompressible second-grade fluid past a porous plate. The plate and
the fluid rotate in unison with an angular velocity Ω about the z′-axis normal to the plate.
The plate is located at z′ = 0 having temperature T0. The flow far away from the plate is
uniform and temperature of the fluid is T∞.

For the problem under question, we consider the velocity and temperature fields as

V= (u′(z′, t′),v′(z′, t′),w′(z′, t′)
)
, (2.1)

T = T(z′, t′), (2.2)

in which u′, v′, andw′ are the velocity components in x′, y′, and z′directions, respectively,
and T indicates the temperature.

The governing equations in absence of body forces and radiant heating are

div V= 0, (2.3)

ρ′
[
dV
dt′

+ 2Ω×V +Ω× (Ω× r)
]
= div T, (2.4)

ρ′
de

dt′
= T ·L−div q. (2.5)

In above equations d/dt′, ρ′, e, L, and q are, respectively, the material derivative, den-
sity, the specific internal energy, the gradient of velocity, the heat flux vector, and the ra-
dial distance r2 = x2 + y2. The Cauchy stress T in an incompressible homogeneous fluid
of second grade is of the form

T=−pI +µA1 +α1A2 +α2A2
1, (2.6)

A1 = (gradV) + (gradV)�, (2.7)

A2 = dA1

dt
+ A1(gradV) + (gradV)�A1, (2.8)
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where µ, −pI, αj ( j = 1,2), A1, and A2 are, respectively, the dynamic viscosity, spher-
ical stress, normal stress moduli, and first two Rivlin-Ericksen tensors. The thermody-
namic analysis of model (2.6) has been discussed in detail by Dunn and Fosdick [4]. The
Clausius-Duhem inequality and the assumption that the Helmholtz free energy is a min-
imum in equilbrium provide the following restrictions [5]:

µ≥ 0, α1 ≥ 0, α1 +α2 = 0. (2.9)

It is evident from (2.1) and (2.3) that

∂w′

∂z′
= 0. (2.10)

The above equation shows that w′ is a function of time. Following Messiha [18] and
Soundalgekar and Puri [23] we take

w′ = −W ′
0

(
1 + εAeiω

′t′). (2.11)

In above equation W ′
0 is nonzero constant mean suction velocity, A is real positive

constant, ε is small such that εA ≤ 1, and negative sign indicates that suction velocity
normal to the plate is directed towards the plate. From (2.1), (2.4), (2.6), (2.8), and (2.11)
we get

∂u′

∂t′
−W ′

0

(
1 + εAeiω

′t′)∂u′
∂z′

− 2Ωv′ =− 1
ρ′

∂p̂

∂x′
+ υ

∂2u′

∂z′2
+α∗

∂3u′

∂z′2∂t′

−α∗W ′
0

(
1 + εAeiω

′t′)∂3u′

∂z′3
,

(2.12)

∂v′

∂t′
−W ′

0

(
1 + εAeiω

′t′)∂v′
∂z′

2Ωu′ =− 1
ρ′

∂p̂

∂y′
+ υ

∂2v′

∂z′2
+α∗

∂3v′

∂z′2∂t′

−α∗W ′
0

(
1 + εAeiω

′t′)∂3v′

∂z′3
,

(2.13)

∂w′

∂t′
= − 1

ρ′
∂p̂

∂z′
, (2.14)

subject to the boundary conditions

u′ = v′ = 0 at z′ = 0, (2.15)

u′ −→U ′(t′), v′ −→ 0 as z′ −→∞, (2.16)

where U ′(t′) is the free stream velocity and modified pressure

p̂ = p− 1
2
ρ′Ω2r2− (2α1 +α2

)[(∂u′
∂z′

)2

+
(
∂v′

∂z′

)2]
,

υ = µ

ρ′
, α∗ = α1

ρ′
.

(2.17)
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In view of (2.11) and (2.14), ∂p̂/∂z′ is small in the boundary and hence can be ignored
[8, 18, 23]. The modified pressure p̂ is assumed constant along any normal and is given
by its value outside the boundary layer. Equations (2.12) and (2.13) for the free stream
yields

− 1
ρ′

∂p̂

∂x′
= dU ′

dt′
, (2.18)

− 1
ρ′

∂p̂

∂y′
= 2ΩU ′. (2.19)

Making use of (2.18) and (2.19) into (2.12) and (2.13), we have

∂u′

∂t′
−W ′

0

(
1 + εAeiω

′t′)∂u′
∂z′

− 2Ωv′ = dU ′

dt′
+ υ

∂2u′

∂z′2
+α∗

∂3u′

∂z′2∂t′

−α∗W ′
0

(
1 + εAeiω

′t′)∂3u′

∂z′3
,

(2.20)

∂v′

∂t′
−W ′

0

(
1 + εAeiω

′t′)∂v′
∂z′

2Ωu′ = 2ΩU ′ + υ
∂2v′

∂z′2
+α∗

∂3v′

∂z′2∂t′

−α∗W ′
0

(
1 + εAeiω

′t′)∂3v′

∂z′3
,

(2.21)

where U ′ is periodic free stream velocity given by

U ′(t′)=U ′
0

(
1 + εeiω

′t′), (2.22)

where U ′
0 is the reference velocity.

With the help of (2.22), (2.20), (2.21), and boundary conditions (2.15) become

∂F′

∂t′
−W ′

0

(
1 + εAeiω

′t′)∂F′
∂z′

+ 2iΩF′

=U ′
0iω

′εeiιω
′t′ + υ

∂2F′

∂z′2
+ 2iΩU ′

0

(
1 + εeiω

′t′)+α∗
∂3F′

∂z′2∂t′

−α∗W ′
0

(
1 + εAeiω

′t′)∂3F′

∂z′3
,

(2.23)

F′ = 0 at z′ = 0,

F′ =U ′
o

(
1 + εeiω

′t′) as z′ −→∞,
(2.24)

where

F′ = u′ + iv′. (2.25)

Introducing the nondimensional variables

η = z′W ′
o

υ
, t = W

′2
o t

′

4υ
, ω = 4υω′

W ′2
o

, U = U ′

U ′
o

,

u= u′

U ′
o

, v = v′

U ′
o

, F = F′

U ′
o

,
(2.26)
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the boundary value problem consisting of (2.23) and conditions (2.24) yields

1
4
∂F

∂t
− (1 + εAeiωt

)∂F
∂η

+ 2iNF = 1
4

(
iωεeιωt

)
+ 2iN

(
1 + εeiωt

)
+
∂2F

∂η2

+α
(

1
4

∂3F

∂η2∂t
− (1 + εAeiωt

)∂3F

∂η3

)
,

(2.27)

F = 0 at η = 0,

F −→ 1 + εeiωt as η −→∞,
(2.28)

where

α= α∗W ′2
o

υ2
, N = Ων

W ′2
o
. (2.29)

3. Analytical solution

The solution of (2.27) subject to conditions (2.28) is written as

F(η, t)= f1(η) + εeiωt f2(η). (3.1)

Using above equation into (2.27) and separating the harmonic and nonharmonic
terms we obtain

α
d3 f1
dη3

− d2 f1
dη2

− df1
dη

+ iN f1 = iN ,

α
d3 f2
dη3

−
(

1 +
iαω

4

)
d2 f2
dη2

− df2
dη

+ iN1 f2 = iN1 +A
df1
dη
−αA

d3 f1
dη3

,

(3.2)

where

N1 =N +
ω

4
. (3.3)

The corresponding boundary conditions are

f1 = 0 at η = 0,

f1 −→ 1 as η −→∞,

f2 = 0 at η = 0,

f2 −→ 1 as η −→∞.

(3.4)
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It is worth emphasizing that (3.2) for second-grade fluid are third order (one order
higher than the Navier-Stokes equation). Thus, one needs three conditions for the unique
solution whereas two conditions are prescribed. One possible way to overcome this diffi-
culty is to employ a perturbation analysis (as in Beard and Walters [2], Soundalgekar and
Puri [23], Kaloni [14], and Hayat et al. [8]) and take the solution as follows

f1 = f01 +α f11 + o
(
α2),

f2 = f02 +α f12 + o
(
α2). (3.5)

Substituting (3.5) into (3.2), (3.4), equating the coefficients of α, and then solving the
corresponding problems we have for f1 and f2

f1 = 1− (1 +αηL)e−hη,

f2 = 1− Se−gη− (1− S)e−hη +α
[
c5e

−gη−ηMe−gη− (ηc3+c5
)
e−hη

]
,

(3.6)

and so from (3.1),

F = 1− (1 +αηL)e−hη + εeiωt
 1− Se−gη− (1− S)e−hη

+α
{
c5e−gη−ηMe−gη− (ηc3+c5

)
e−hη

}
 , (3.7)

which upon separating real and imaginary parts gives

u= u0 + εeiωtu1 = 1− e−hrη
((

1 +αηLr
)

coshi η+αηLi sinhi η
)

+ εeiωt



1− e−grη
((

1− 4Ahi
ω

)
cosgiη+

4Ahr
ω

singiη
)

+e−hrη
(

4Ahi
ω

coshi η− 4Ahr
ω

sinhi η
)

+αe−grη
(
c5r cosgiη+ c5i singiη

)
−αηe−grη(Mr cosgiη+Mi singiη

)
−αe−hrη((ηc3r + c5r

)
coshiη+

(
ηc3i + c5i

)
sinhiη

)


,

(3.8)
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v = v0 + εeiωtv1 = e−hrη
((

1 +αηLr
)

sinhi η+αηLi coshi η
)

+ εeiωt



e−grη
((

1− 4Ahi
ω

)
singiη− 4Ahr

ω
cosgiη

)

−e−hrη
(

4Ahi
ω

sinhi η+
4Ahr
ω

coshi η
)

+αe−grη
(
c5i cosgiη− c5r singiη

)
−αηe−grη(Mi cosgiη−Mr singiη

)
−αe−hrη((ηc3i + c5i

)
coshiη−

(
ηc3r + c5r

)
sinhiη

)


,

(3.9)

where

h= hr + ihi = 1 +
√

1 + 4iN
2

,

hr = 1
2

+
1
2

[
1
2

(
1 +
√

1 + 16N2
)]2

, hi = 1
2

[
1
2

(
− 1 +

√
1 + 16N2

)]2

,

a=
[

1
2

(
1 +
√

1 + 16N2
)]2

, b =
[

1
2

(
− 1 +

√
1 + 16N2

)]2

,

r = a2 + b2 =
√

1 + 16N2, g = gr + igi = 1 +
√

1 + 4iN1

2
,

gr = 1
2

+
1
2

[
1
2

(
1 +
√

1 + 16N2
1

)]2

, gi = 1
2

[
1
2

(
− 1 +

√
1 + 16N2

1

)]2

,

a1 =
[

1
2

(
1 +
√

1 + 16N2
1

)]2

, b1 =
[

1
2

(
− 1 +

√
1 + 16N2

1

)]2

,

r1 = a2
1 + b2

1 =
√

1 + 16N2
1 , S= Sr + iSi = 1− 4iAh

ω
,

Sr = 1 +
4Ahi
ω

, Si = 4Ahr
ω

, L= Lr + iLi = h3
√

1 + 4iN
,

Lr = 1
r


1
4

(
r + 1

2

)1/2(
1 +
(
r + 1

2

))
+

1
2
− 2N2

−7
4

(
r− 1

2

)(
r + 1

2

)1/2

 ,

Li = 1
r


1
4

(
r− 1

2

)1/2(
1−

(
r− 1

2

))
+

5N
2

+
3
2

(
r + 1

2

)(
r− 1

2

)1/2

 ,

M =Mr + iMi = g2
(
g + iω/4

)(
1− 4iAh/ω

)√
1 + 4iN1

,
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Mr = 1
r1



1
4

(
r1 + 1

2

)1/2

+
1
8

(
r1 + 1

)( r1 + 1
2

)1/2

+
r1

2

+
3
8

(
r1− 1

)( r1 + 1
2

)1/2

−N2
1

(
r1 + 1

2

)1/2

+
Ahi
ω



(
r1 + 1

2

)1/2

+
(
r1 + 1

2

)(
r1 + 1

2

)1/2

+2r1 +
3
2

(
r1− 1

)( r1 + 1
2

)1/2

−4N2
1

(
r1 + 1

2

)1/2



+
Ahr

ω



2N1
(
r1 + 1

)
+

3
2

(
r1 + 1

)( r1− 1
2

)1/2

−
(
r1− 1

2

)1/2

+
(
r1− 1

2

)(
r1− 1

2

)1/2

+4N2
1

(
r1− 1

2

)1/2





,

Mi = 1
r1



2N1r1− 1
4

(
r1− 1

2

)1/2

+
3
8

(
r1 + 1

)( r1 + 1
2

)1/2

+
3
8

(
r1− 1

)( r1− 1
2

)1/2

+N2
1

(
r1− 1

2

)1/2

+
Ahi
ω



8N1 + 4N1r1 +
(
r1− 1

2

)1/2

+
(
r1− 1

2

)(
r1− 1

2

)1/2

+ 4N2
1

(
r1− 1

2

)1/2

+
5
2

(
r1 + 1

)( r1− 1
2

)1/2



+
Ahr

ω



−3N1
(
r1− 1

)− 2r1

−
(
r1 + 1

2

)1/2(
1 +
(
r1 + 1

2

))
+4N2

1

(
r1 + 1

2

)1/2





,

c5 = c5r + ic5i =
(
c1r + c2r + c4r

)
+ i
(
c1i + c2i + c4i

)
,

c1 = c1r + ic1i = 4h3

ιω

(
A− (1− S)

)
,

c1r = 4
(
h3
i − 3h2

r hi
)(

A+
4Ahi
ω

)
− 16

Ahr
ω

(
h3
r − 3h2

i hr
)
,

c1i =−4
(
h3
r − 3h2

i hr
)(

A+
4Ahi
ω

)
− 16

Ahr
ω

(
h3
r − 3h2

r hi
)
,

c2 = c2r + ic2i = 4A
(
h3 +L

)
iω

,

c2r = 4A
ω

(
Li
(
h3
r − 3h2

i hr
)−Lr

(
h3
i − 3h2

r hi
))

,
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c2i =−4A
ω

(
Lr
(
h3
r − 3h2

i hr
)

+Li
(
h3
i − 3h2

r hi
))

,

c3 = c3r + ic3i = 4AhL
iω

,

c3r = 4A
ω

(
hiLr +hrLi

)
, c3i =−4A

ω

(
hrLr −hiLi

)
,

c4 = c4r + ic4i = 16AhL(1− 2h)
ω2

,

c4r = 16A
ω2

((
1− 2hr

)(
hrLr −hiLi

)
+ 2hi

(
hrLi +hiLr

))
,

c4i = 16A
ω2

((
1− 2hr

)(
hrLi +hiLr

)− 2hi
(
hrLr −hiLi

))
.

(3.10)

The drag Pxz and lateral stress Pyz at the plate in nondimensional form can be written,
respectively, as

Pxz = P′x′z′
U ′

0W
′
0ρ′

= ∂u

∂η
− α

4

[
∂2u

∂η∂t
− 4
(
1 + εAeiωt

)∂2u

∂η2

]
,

Pyz =
P′y′z′

U ′
0W

′
0ρ′

= ∂v

∂η
− α

4

[
∂2v

∂η∂t
− 4
(
1 + εAeiωt

)∂2v

∂η2

]
.

(3.11)

The above equations after using (3.8) and (3.9) give

Pxz = α
(
h2
i −h2

r

)−hr −αLr + εeiωt



gr − 4A
ω

(
higr +hrgi

)− 8Ahihr
ω

−α(grc5r − gic5i
)

+αA
(
h2
i −h2

r

)
−αMr +α

(
hrc5r −hic5i

)−αc3r

−iαω
(
gr
4
− A

ω

(
higr +hrgi

)− 2Ahihr
ω

)

+α


(
g2
i − g2

r

)(
1− 4Ahi

ω

)
+

8Ahrgigr
ω

+
12Ahih2

r

ω
− 4Ah3

i

ω





, (3.12)

Pyz = hi−αLi− 2αhihr + εeiωt



gi +
4A
ω

(
hrgr −higi

)
+

4A
ω

(
h2
r −h2

i

)
−α(grc5i + gic5r

)− 2αAhihr

−αMi +α
(
hrc5i +hic5r

)−αc3i

−iαω
(
gi +

4A
ω

(
hrgr −higi

)
+

4A
ω

(
h2
r −h2

i

))

+α


−2gigr +

8Ahigigr
ω

− 4Ahr
ω

(
g2
r − g2

i

)
+

12Ahrh2
i

ω
− 4Ah3

r

ω





. (3.13)
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The above equations can also be written as

Pxz = α
(
h2
i −h2

r

)−hr −αLr + ε|B|cos(ωt+β),

Pyz = hi−αLi− 2αhihr + ε
∣∣B1

∣∣cos(ωt+ γ),
(3.14)

where

B = Br + iBi =



gr − 4A
ω

(
higr +hrgi

)− 8Ahihr
ω

−α(grc5r − gic5i
)

+αA
(
h2
i −h2

r

)
−αMr +α

(
hrc5r −hic5i

)−αc3r

−iαω
(
gr
4
− A

ω

(
higr +hrgi

)− 2Ahihr
ω

)

+α


(
g2
i − g2

r

)(
1− 4Ahi

ω

)
+

8Ahrgigr
ω

+
12Ahih2

r

ω
− 4Ah3

i

ω





,

Br =



gr − 4A
ω

(
higr +hrgi

)− 8Ahihr
ω

−α(grc5r − gic5i
)

+αA
(
h2
i −h2

r

)
−αMr +α

(
hrc5r −hic5i

)−αc3r

+α


(
g2
i − g2

r

)(
1− 4Ahi

ω

)
+

8Ahrgigr
ω

+
12Ahih2

r

ω
− 4Ah3

i

ω




,

Bi = αω
(
gr
4
− A

ω

(
higr +hrgi

)− 2Ahihr
ω

)
,

B1 = B1r + iB1i =



gi +
4A
ω

(
hrgr −higi

)
+

4A
ω

(
h2
r −h2

i

)
−α(grc5i + gic5r

)− 2αAhihr

−αMi +α
(
hrc5i +hic5r

)−αc3i

−iαω
(
gi +

4A
ω

(
hrgr −higi

)
+

4A
ω

(
h2
r −h2

i

))

+α


−2gigr +

8Ahigigr
ω

− 4Ahr
ω

(
g2
r − g2

i

)
+

12Ahrh2
i

ω
− 4Ah3

r

ω





,

β = tan−1
(
Bi

Br

)
, γ = tan−1

(
B1i

B1r

)
,
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B1r =



gi +
4A
ω

(
hrgr −higi

)
+

4A
ω

(
h2
r −h2

i

)
−α(grc5i + gic5r

)− 2αAhihr

−αMi +α
(
hrc5i +hic5r

)−αc3i

+α


−2gigr +

8Ahigigr
ω

− 4Ahr
ω

(
g2
r − g2

i

)
+

12Ahrh2
i

ω
− 4Ah3

r

ω




,

B1i = αω
(
gi +

4A
ω

(
hrgr −higi

)
+

4A
ω

(
h2
r −h2

i

))
.

(3.15)

We now proceed to derive the energy equation appropriate for the problem under
consideration. We start with the energy equation (2.5). It follows from (2.5), (2.6), (2.7),
(2.8), and (2.9) and L= gradV that

T ·L= µ
[(

∂u′

∂z′

)2

+
(
∂v′

∂z′

)2]
+α


∂u′

∂z′

(
∂2u′

∂t′∂z′
+w′

∂2u′

∂z′2

)
+
∂v′

∂z′

(
∂2v′

∂t′∂z′
+w′

∂2v′

∂z′2

)
 . (3.16)

Following the thermodynamical considerations given in Dunn and Fosdick [4] for flu-
ids of second grade and representing q by Fourier’s law with a constant thermal
conductivity, k, (2.5) reduces to

ρ′c
[
∂T

∂t′
+w′

∂T

∂z′

]
− k

∂2T

∂z′2
= µ
[(

∂u′

∂z′

)2

+
(
∂v′

∂z′

)2]
+α1


∂u′

∂z′

(
∂2u′

∂t′∂z′
+w′

∂2u′

∂z′2

)
+
∂v′

∂z′

(
∂2v′

∂t′∂z′
+w′

∂2v′

∂z′2

)
 ,

(3.17)

where c is the specific heat. The boundary conditions for the temperature are

T = T0 at z′ = 0,

T −→ T∞ as z′ −→∞.
(3.18)

Using

θ = T −T0

T∞ −T0
, (3.19)
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(3.17) and boundary conditions (3.18) become

−∂2θ

∂η2
−Pr

(
1 + εAeiωt

)∂θ
∂η

+
Pr
4
∂θ

∂t
= Ec

[(
∂u

∂η

)2

+
(
∂v

∂η

)2]
+P



∂u

∂η

∂2u

∂η∂t
+
∂v

∂η

∂2v

∂η∂t

−(1 + εAeιωt
)∂u
∂η

∂2u

∂η2

−(1 + εAeιωt
)∂v
∂η

∂2v

∂η2


,

(3.20)

θ = 0 at η = 0,

θ −→ 1 at η −→∞,
(3.21)

in which

Pr = µc

k
, Ec = k∗U2

0(
T∞ −T0

) , (3.22)

P = αU
′2
0 µ

k
(
T∞ −T0

) . (3.23)

We further assume that

θ = θ0 + εeiωtθ1. (3.24)

Substituting (3.24) into (3.20) and boundary conditions (3.21), and equating the co-
efficients of the harmonic and nonharmonic term after neglecting the coefficients of ε2,
we get

d2θ0

dη2
+Pr

dθ0

dη
=−Ec

[(
du1

dη

)2

+
(
dv1

dη

)2]
+P
[
du1

dη

d2u1

dη2
+
dv1

dη

d2v1

dη2

]
, (3.25)

d2θ1

dη2
+Pr

dθ1

dη
− Pr

4
iωθ1 =−PrAdθ0

dη
− 2Ec

[
du1

dη

du2

dη
+
dv1

dη

dv2

dη

]

−P



iω
(
du1

dη

du2

dη
+
dv1

dη

dv2

dη

)
−
(
du1

dη

d2u2

dη2
+
dv1

dη

d2v2

dη2

)
−A
(
du1

dη

d2u1

dη2
+
dv1

dη

d2v1

dη2

)
−
(
du2

dη

d2u1

dη2
+
dv2

dη

d2v1

dη2

)



, (3.26)

θ0 = 0 at η= 0,

θ0 −→ 1 at η −→∞,

θ1 = 0 at η= 0,

θ1 −→ 0 at η −→∞.

(3.27)
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Solving (3.25) and (3.26) along with the boundary conditions (3.27), we obtain

θ0 = 1− (1 +d7
)
e−Prη +

(
d7 +d8η

)
e−2hrη, (3.28)

θ1 =−m16e
− f η +

(
m7 +m9 +m8η

)
e−2hrη

+
(
m10 +m14 +m12η

)
e−(hr+gr )η cos

(
hi− gi

)
η

+
(
m11 +m15 +m13η

)
e−(hr+gr )η sin

(
hi− gi

)
η,

(3.29)

where

d1 =−Ec
(
h2
r +h2

i − 2αLihi
)
, d2 =−2EcαLr

(
h2
r +h2

i

)
,

d3 = P
(−h3

r + 3αLrh2
r −hrh

2
i + 2αLihihr +αLrh

2
i

)
,

d4 =−2PαLrhr
(
h2
r +h2

i

)
, d5 = d1 +d3, d6 = d2 +d4,

d7 = d5

4h2
r − 2Prhr

− d6
(
4hr −Pr

)(
4h2

r − 2Prhr
)2 , d8 = d6(

4h2
r − 2Prhr

) ,

d9 =



−4Ahr
ω

(
hrgr +h2

i

)
+
(

1− 4Ahi
ω

)(
higr −hrgi

)
+α
(
hr
(
grc5i + gic5r

)−hi
(
grc5r − gic5i

))
+α
(
hrMi−hiMr

)
+

4αAhr
ω

(
grLr − giLi

)
+α
(

1− 4Ahi
ω

)(
giLr − grLi

)


,

d10 =


−4αAh2

r

ω

(
Lrgr +Ligi

)−αhr

(
1− 4Ahi

ω

)(
Lrgi−Ligr

)
−α(hr(grMi + giMr

)−hi
(
grMr − giMi

))
−4αAhrhi

ω

(
giLr − grLi

)
+αhi

(
1− 4Ahi

ω

)(
grLr − giLi

)

 ,

d11 =



−4Ahrhi
ω

(
hr − gr

)
+α
(

1− 4Ahi
ω

)(
Lrgr −Ligi

)
−α(hr(grc5r − gic5i

)−hi
(
grc5i + gic5r

))
+

4αAhr
ω

(
giLr − grLi

)
+
(

1− 4Ahi
ω

)(
grhr + gihi

)
−α(Mrhr +Mihi

)


,

d12 =


−4αAh2

r

ω

(
Lrgi−Ligr

)
+αhr

(
1− 4Ahi

ω

)(
Lrgr +Ligi

)
−α(hr(grMr + giMi

)−hi
(
grMi + giMr

))
−4αAhrhi

ω

(
grLr − giLi

)
+αhi

(
1− 4Ahi

ω

)(
giLr − grLi

)

 ,
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d13 =


−8Ahrhi

ω

(
hr −αLr

)
+αc5r

(
h2
r +h2

i

)
+

4Ahi
ω

(
h2
r −h2

i

)− 4αALi
ω

(
h2
r −h2

i

)−α
(
hrc3r +hic3i

)
 ,

d14 =
−8Ahrhi

ω

(
hrLr −hiLi

)
+

4αA
ω

(
h2
r −h2

i

)(
hrLi−hiLr

)
+αc3r

(
h2
r +h2

i

)
 ,

d15 =



4Ahr
ω

(
g2
r − g2

i

)(
hr −αLr

)
+ 2grgi

(
1− 4Ahi

ω

)(
hr −αLr

)
−2α

(
hr
(
grMi− giMr

)−hi
(
grMr − giMi

))
−α(g2

r − g2
i

)(
hrc5i−hic5r

)
−
(

1− 4Ahi
ω

)(
g2
r − g2

i

)(
hi−αLi

)
−2αgrgi

(
hrc5r +hic5i

)
+

8Ahrgrgi
ω

(
hi−αLi

)


,

d16 =



4αAhr
ω

(
g2
r − g2

i

)(
hrLr −hiLi

)
+ 2αgrgi

(
hrMr + giMi

)
+α
(
g2
r − g2

i

)(
hrMi−hiMr

)
+

8αAhrgrgi
ω

(
hrLi +hiLr

)
−α
(

1− 4Ahi
ω

)(
g2
r − g2

i

)(
hrLi +hiLr

)
+2αgrgi

(
1− 4Ahi

ω

)(
hrLr −hiLi

)


,

d17 =



−4Ahr
ω

(
g2
r − g2

i

)(
hi−αLi

)
+ 2grgi

(
1− 4Ahi

ω

)(
hi−αLi

)
+2α

(
hr
(
grMr − giMi

)
+hi

(
grMi− giMr

))
+α
(
g2
r − g2

i

)(
hrc5r +hic5i

)
+

8Ahrgrgi
ω

(
hr +αLr

)
−
(

1− 4Ahi
ω

)(
g2
r − g2

i

)(
hr −αLr

)− 2αgrgi
(
hrc5i−hic5r

)


,

d18 =



−4αAhr
ω

(
g2
r − g2

i

)(
hrLi +hiLr

)
+

8αAhrgrgi
ω

(
hrLr −hiLi

)
−2αgrgi

(
1− 4Ahi

ω

)(
hrLi +hiLr

)
+2αgrgi

(
hrMi−hiMr

)−α
(
g2
r − g2

i

)(
hrMr +hiMi

)
−α
(

1− 4Ahi
ω

)(
g2
r − g2

i

)(
hrLr −hiLi

)


,

d19 =


8Ahrhi

ω

(
h2
r +h2

i

)−α
(
h3
r c5r +h3

i c5i
)

+αh2
r hic5i

−12αAhrhi
ω

(
hrLr −hiLi

)
+

4αA
ω

(
Lrh

3
i −Lih3

r

)
+2αc3r

(
h2
r +h2

i

)
+αhrhi

(
hrc5i−hic5r

)

 ,
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d20 =
 8αAhrhiLr

ω

(
h2
r +h2

i

)− 4αALi
ω

(
h4
r −h4

i

)
−α(h3

r c3r +h3
i c3i
)

+αhrhi
(
hrc3i−hic3r

)
 ,

d21 =



gi

(
1− 4Ahi

ω

)(
h2
r −h2

i

)−αh2
r

(
grc5i + gic5r

)
+ 2αhrhiMr

+2αhrhi
(
grc5r − gic5i

)− 2hrgr

(
1− 4Ahi

ω

)(
hi−αLi

)
+

4Ahrgr
ω

(
h2
r −h2

i

)
+αh2

i

(
grc5i + gic5r

)− 8αAh2
r grLr
ω

+
8Ah2

r gi
ω

(
hi−αLi

)− 2αLr

(
1− 4Ahi

ω

)(
hrgi−higr

)
−8αAhrhi

ω

(
Lrgi−Ligr

)
+ 2αLihigi

(
1− 4Ahi

ω

)



,

d22 =



α
(
grMi + giMr

)(
h2
r −h2

i

)
−8αAhr

ω

(
h2
r −h2

i

)(
Lrgr +Ligi

)
+2αhrhi

(
grMr − giMi

)
+

8αAhrhi
ω

(
Lrgi−Ligr

)
+α
(

1− 4Ahi
ω

)(
Lrgi−Ligr

)(
h2
r gi−h2

i

)
−2αhrhi

(
1− 4Ahi

ω

)(
Lrgr +Ligi

)


,

d23 =



−gr
(

1− 4Ahi
ω

)(
h2
r −h2

i

)
+αgrc5r

(
h2
r −h2

i

)
+αgic5i

(
h2
r +h2

i

)− 8Ah2
r gr

ω

(
hi−αLi

)
+

4Ahrgi
ω

(
h2
r −h2

i

)
+ 2αhrhiMi

+2αhrhi
(
grc5i + gic5r

)
−2hrgi

(
1− 4Ahi

ω

)(
hi +αLi

)
−8αAh2

r giLr
ω

+
8αAhrhi

ω

(
Lrgr +Lihi

)
+2αhi

(
1− 4Ahi

ω

)(
Lrgi−Ligr

)



,

d24 =



−α
(

1− 4Ahi
ω

)(
h2
r −h2

i

)(
Lrgr +Ligi

)
−α(h2

r −h2
i

)(
Mrgr −Migi

)− 8αAh2
r hi

ω

(
Lrgr +Ligi

)
+

4αAhr
ω

(
Lrgi−Ligr

)(
h2
r −h2

i

)
−2αhrhi

(
1− 4Ahi

ω

)(
Lrgi−Ligr

)
−2αhrhi

(
Migr +Mrgi

)


,
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d25 =


−α(h3

r c5r +h3
i c5i
)

+αc3r
(
h2
r −h2

i

)
+

8αAhrLi
ω

(
h2
r −h2

i

)
+2αhrhic3i−αhrhi

(
hrc5i +hic5r

)− 8αAh3
i Lr

ω

 ,

d26 =
 −4αALi

ω

(
h4
r +h4

i

)− 8αAh2
i Lih

2
r

ω

−α(h3
r c3r +h3

i c3i
)−αhrhi

(
hrc3i +hic3r

)
 ,

d27 =
[−h3

r + 3αh2
r Lr −hrh

2
i + 2αhrhiLi +αLrh

2
i

]
,

d28 =−2αLrhr
(
h2
r +h2

i

)
,

m1 =m1r + im1i =
[−PrA(Pr(1 +d7

)− 2hrd7 +d8
)

+PAd27

−(2Ec + iωP
)
d13 +P

(
d19 +d25

) ]
,

m2 =m2r + im2i =
[

2PrAhrd8−
(
2Ec + iωP

)
d14

+PAd28 +P
(
d20 +d26

) ]
,

m3 =m3r + im3i =
[− (2Ec + iωP

)
d9 +P

(
d15 +d21

)]
,

m4 =m4r + im4i =
[− (2Ec + iωP

)
d10 +P

(
d16 +d22

)]
,

m5 =m5r + im5i =
[− (2Ec + iωP

)
d11 +P

(
d17 +d23

)]
,

m6 =m6r + im6i =
[− (2Ec + iωP

)
d12 +P

(
d18 +d24

)]
,

m7 =m7r + im7i,

m7r = m1r
(
4h2

r − 2hrPr
)−m1i

(
ωPr/4

)(
4h2

r − 2hrPr
)2

+
(
ωPr/4

)2 , m7i = m1i
(
4h2

r − 2hrPr
)

+m1r
(
ωPr/4

)(
4h2

r − 2hrPr
)2

+
(
ωPr/4

)2 ,

m8 =m8r + im8i,

m8r = m2r
(
4h2

r − 2hrPr
)−m2i

(
ωPr/4

)(
4h2

r − 2hrPr
)2

+
(
ωPr/4

)2 , m8i = m2i
(
4h2

r − 2hrPr
)

+m2r
(
ωPr/4

)(
4h2

r − 2hrPr
)2

+
(
ωPr/4

)2 ,

n1 = n1r + in1i =


(
4h2

r − 2hrPr
)2

+
(
ωPr

4

)2

−2i
(
4h2

r − 2hrPr
)(ωPr

4

)
 ,

n1r =
(
4h2

r − 2hrPr
)2

+
(
ωPr

4

)2

, n1i =−2
(
4h2

r − 2hrPr
)(ωPr

4

)
,

m9 =m9r + im9i,

m9r =
(
4hr −Pr

)(
n1rm2r −m2in1i

)
n2

1r +n2
1i

, m9i =
(
4hr −Pr

)(
n1im2r +m2in1r

)
n2

1r +n2
1i

,

n2 = n2r + in2i =


(
hr + gr

)2− (hi− gi
)2−Pr

(
hr + gr

)
+i
(
− 2
(
hr + gr

)(
hi− gi

)
+Pr

(
hi− gi

)− ωPr
4

) ,

n2r =
[(
hr + gr

)2− (hi− gi
)2−Pr

(
hr + gr

)]
,

n2i =−2
(
hr + gr

)(
hi− gi

)
+Pr

(
hi− gi

)− ωPr
4

,
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m10 =m10r + im10i, m10r =
(
n2rm5r −m3rn2i

)
n2

2r +n2
2i

,

m10i =
(
n2rm5i−m3in2i

)
n2

2r +n2
2i

, m11 =m11r + im11i,

m11r =
(
n2im5r +m3rn2r

)
n2

2r +n2
2i

, m11i =
(
n2im5i +m3in2r

)
n2

2r +n2
2i

,

m12 =m12r + im12i, m12r =
(
n2rm6r −m4rn2i

)
n2

2r +n2
2i

,

m12i =
(
n2rm6i−m4in2i

)
n2

2r +n2
2i

, m13 =m13r + im13i,

m13r =
(
n2im6r +m6rn2r

)
n2

2r +n2
2i

, m13i =
(
n2im6i +m6in2r

)
n2

2r +n2
2i

,

n3 = n3r + in3i =
[(

2
(
hr + gr

)−Pr
)

+ i
(− 2

(
hi− gi

))]
,

n3r = 2
(
hr + gr

)−Pr , n3i =−2
(
hi− gi

)
, n4 = n4r + in4i,

n4r =



(
hr + gr

)4
+
(
hi− gi

)4
+
ωP2

r

2

(
hi− gi

)
−6
(
hr + gr

)2(
hi− gi

)2
+
ω2P2

r

16

+P2
r

((
hr + gr

)2− (hi− gi
)2
)
−ωPr

(
hr + gr

)(
hi− gi

)
+2Pr

(
− (hr + gr

)3
+ 3
(
hr + gr

)(
hi− gi

)2
)


,

n4i =


−4
(
hr + gr

)3(
hi− gi

)
+ 4
(
hr + gr

)(
hi− gi

)3

+2Pr
(
3
(
hr + gr

)2(
hi− gi

)− (hi− gi
)3)− ωP2

r

2

(
hr + gr

)
−2P2

r

(
hr + gr

)(
hi− gi

)− ωPr
2

((
hr + gr

)2− (hi− gi
)2
)

 ,

m14 =m14r + im14i,

m14r = m6r
(
n4rn3r +n4in3i

)
+m4r

(
n4rn3i−n4in3r

)
n2

4r +n2
4i

,

m14i = m6i
(
n4rn3r +n4in3i

)
+m4i

(
n4rn3i−n4in3r

)
n2

4r +n2
4i

,

m15 =m15r + im15i,

m15r = −m6r
(
n4rn3i−n4in3r

)
+m4r

(
n4rn3r +n4in3i

)
n2

4r +n2
4i

,

m14i = −m6i
(
n4rn3i−n4in3r

)
+m4i

(
n4rn3r +n4in3i

)
n2

4r +n2
4i

,

m16 =m16r + im16i =m7 +m9 +m10 +m14,

m16r =m7r +m9r +m10r +m146r , m16i =m7i +m9i +m10i +m146i,

f = fr + i fi =
(
Pr +

√
P2
r + iωPr

)
2

,
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fr = Pr
2

+
a2

2
= Pr

2
+

1
2

[
P2
r +
√
P4
r +ω2P2

r

2

]1/2

,

fi = b2

2
= 1

2

[−P2
r +
√
P4
r +ω2P2

r

2

]1/2

,

a2 =
[
P2
r +
√
P4
r +ω2P2

r

2

]1/2

, b2 =
[−P2

r +
√
P4
r +ω2P2

r

2

]1/2

,

r2 = a2
2 + b2

2 =
√
P4
r +ω2P2

r .

(3.30)

From (3.24), (3.28), and (3.29), we can write

θ = θ0 + ε
(
θ1r cosωt− θ1i sinωt

)
, (3.31)

in which

θ1r =−e− frη
(
m16r cos fiη−m16i sin fiη

)
+
(
m7r +m9r +m8rη

)
e−2hrη

+

[ (
m10r +m14r +m12rη

)
cos
(
hi− gi

)
η

+
(
m11r +m15r +m13rη

)
sin
(
hi− gi

)
η

]
e−(hr+gr )η,

(3.32)

θ1i =−e− frη
(
m16r sin fiη+m16i cos fiη

)
+
(
m7i +m9i +m8iη

)
e−2hrη

+

[ (
m10i +m14i +m12iη

)
cos
(
hi− gi

)
η

+
(
m11i +m15i +m13iη

)
sin
(
hi− gi

)
η

]
e−(hr+gr )η.

(3.33)

4. Discussion of results

In this paper, we consider the problem of heat transfer in rotating flow of an incompress-
ible fluid of second grade. A perturbation procedure has been used to obtain the analytic
solution. The effects of various parameters such as Ω, Pr , and Ec on the real and imag-
inary parts of velocity (u,v) and temperature (θr ,θi) distributions are studied and the
results have been presented by several graphs.

To study the effect of Ω on the velocity components, we have plotted u and v against
η in Figures 4.1, and 4.2 for Newtonian and second-grade fluids. From Figure 4.1(a), it
is observed that near the plate u increases with the increase of Ω. Figure 4.1(b) indicates
that u increases very near to the plate and then fluctuates through an increase in Ω. The
comparison of these two figures reveals that u in case of second-grade fluid is greater than
that of Newtonian fluid. Also, the velocity boundary layer thickness for second-grade
fluid is larger than the Newtonian fluid. It is also seen from Figures 4.2(a) and 4.2(b)
that v increases near the plate and then decreases for large value of Ω. The fluctuations in
second-grade fluid are more visible than that of Newtonian fluid. Also, the value of v for
second-grade fluid is smaller than in the case of Newtonian fluid.

Figures 4.3 and 4.4 show the effect of Ω on the real (θr) and imaginary (θi) parts of
temperature distributions. Figure 4.3(a) shows that with the increase of Ω, θr decreases
near the wall. As shown in Figure 4.3(b), we can see that as Ω increases, θr increases near
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Figure 4.1. Effect of Ω on real part of velocity profile u versus η. In (a) for Newtonian fluid at α= 0,
ωt = π/2, A= 0.2, ε = ω = 0.5, W0 =−0.5, ν= 0.1. In (b) for second-grade fluid at α= 0.4.
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Figure 4.2. Effect of Ω on imaginary part of velocity profile v versus η. In (a) for Newtonian fluid at
α= 0, ωt = π/2, A= 0.2, ε = ω= 0.5, W0 =−0.5, ν= 0.1. In (b) for second-grade fluid at α= 0.1.
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Figure 4.3. Effect of Ω on real part of temperature profile θr versus η. In (a) for Newtonian fluid at
α = 0, ωt = π/2, A = ε = ω = 0.5, W0 = −0.5, ν = 0.1, Pr = 1.5, Ec = 5.0, k = 0.2, P = 0.3. In (b) for
second-grade fluid at α= 0.04.
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Figure 4.4. Effect of Ω on imaginary part of temperature profile θi versus η. In (a) for Newtonian
fluid at α= 0, ωt = π/2, A= ε = ω = 0.5, W0 =−0.5, ν= 0.1, Pr = 1.5, Ec = 5.0, k = 0.2, P = 0.3. In
(b) for second-grade fluid at α= 0.05.
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Figure 4.5. Effect of Pr on real part of temperature profile θr versus η. In (a) for Newtonian fluid at
α = 0, ωt = π/2, A = ε = ω = 0.5, W0 = −0.5, ν = 0.1, Ω = 3.0, Ec = 5.0, k = 0.2, P = 0.3. In (b) for
second-grade fluid at α= 0.05.
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Figure 4.6. Effect of Pr on imaginary part of temperature profile θi versus η. In (a) for Newtonian
fluid at α = 0, ωt = π/2, A = ε = ω = 0.5, W0 = −0.5, ν = 0.1, Ω = 2.5, Ec = 5.0, k = 0.2, P = 0.3. In
(b) for second-grade fluid at α= 0.04.
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Figure 4.7. Effect of Ec on real part of temperature profile θr versus η. In (a) for Newtonian fluid at
α = 0, ωt = π/2, A = ε = ω = 0.5, W0 = −0.5, ν = 0.1, Ω = 4.0, Pr = 5.0, k = 0.2, P = 0.3. In (b) for
second-grade fluid at α= 0.04.
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Figure 4.8. Effect of Ec on imaginary part of temperature profile θi versus η. In (a) for Newtonian
fluid at α = 0, ωt = π/2, A = ε = ω = 0.5, W0 = −0.5, ν = 0.1, Ω = 2.5, Pr = 5.0, k = 0.2, P = 0.3. In
(b) for second-grade fluid at α= 0.05.
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the plate, and then at a distance of η = 1, the θr begins to decrease. That is, the behavior of
θr is quite opposite for Newtonian and second-grade fluids near the plate. Figure 4.4(a)
shows the variation of Ω on θi. It can be seen that as Ω increases, the value of θi decreases
at a distance of approximately η = 0.8 and then increases. Figure 4.4(b) indicates that θi
increases near the wall for Ω > 1.

In order to illustrate the variation of Pr on θr and θi, we have prepared Figures 4.5
and 4.6. Figures 4.5(a) and 4.6(a) explain the effect of Pr on θr and θi, respectively, for
Newtonian fluid case. From these figures, it is revealed that near the plate, θr decreases
and θi increases for Pr > 2. The thermal boundary layer thickness in θr increases where as
for θi decreases. For second-grade fluid, we note that from Figures 4.5(b) and 4.6(b) that
for Pr > 2, θr decreases near the wall and increases far away. Also θi decreases for Pr > 2.

Figures 4.7 and 4.8 show the effect of Ec on θr and θi. From Figures 4.7(a) and 4.7(b),
we observe that θr decreases near the wall with the increase in Ec and increases far away.
The thermal boundary layer thickness increases for large Ec. Moreover, it can be seen
from Figure 4.8(a) that θi increases for large values of Ec. From Figure 4.8(b), it can be
seen that with the increase in the values of Ec, the temperature θi decreases near the plate
and increases far away. The thermal boundary layer thicknesses in both fluids increases.

References

[1] R. Bandelli, Unsteady unidirectional flows of second grade fluids in domains with heated bound-
aries, Internat. J. Non-Linear Mech. 30 (1995), no. 3, 263–269.

[2] D. W. Beard and K. Walters, Elastico-viscous boundary-layer flows. I. Two-dimensional flow near
a stagnation point, Proc. Camb. Phil. Soc. 60 (1964), 667–674.
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