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We point out and correct several errors that appear in a recently published paper on
transient flows of second-grade fluids.

1. Introduction

In a recent work, Hayat et al. [4] considered several transient flows of a second-grade
(SG) fluid (see [3, 6, 8] and the references therein). Included in their study was the case
of a SG fluid undergoing start-up Couette flow between two infinite parallel plates. (Here,
we should mention that various versions of this problem for SG fluids have been studied
[1, 5, 9].) Unfortunately, a detailed examination of their solution (i.e., [4, equation (16)])
reveals that it is incorrect. Moreover, this error is propagated throughout [4, Section 4]
since [4, equation (16)] is used to compute other quantities which characterize the flow.

The main aims of the present note are the following: (i) to point out some of these
inaccuracies; (ii) give the correct expressions; (iii) provide additional analytical insight
into this problem; and (iv) present numerical work in support of (i)–(iii).

2. Problem formulation

To this end, we begin by noting that, with a few additions, the same notation, coordinate
system, and so forth used in [4] are also used in the present work. Now, taking the positive
y-axis of a Cartesian coordinate system in the upward direction, let an incompressible,
homogeneous, SG fluid fill the slab y ∈ (0,h) between two flat, infinite solid plates that
occupy the planes y = 0,h. Initially, both the fluid and the plates are at rest. At t = 0+, the
fluid is set in motion by the sudden acceleration of the top plate, in a direction parallel to
the x-axis, to a constant velocity U( �= 0); that is, the velocity of the top plate is given by
(UH(t),0,0), where H(·) denotes the Heaviside unit step function. Neglecting all body
forces and observing that the pressure gradient is zero since the pressure can be at most a
function of time only [5], we wish to determine the flow at every point in the slab for all
t > 0.

By translational invariance in the xz-plane, the velocity vector has the form v = (u(y,
t),0,0). As a result, the continuity equation ∇ · v = 0 is identically satisfied and v̇ =
(∂u(y, t)/∂t,0,0), where a superposed dot denotes the material time derivative. Thus,
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the mathematical model of the flow consists of the following initial-boundary value prob-
lem (IBVP):

∂u

∂t
= ν

∂2u

∂y2
+α

∂3u

∂t∂x2
, (y, t)∈ (0,h)× (0,∞); (2.1)

u(0, t)= 0, u(h, t)=UH(t), t > 0; u(y,0)= 0, y ∈ (0,h). (2.2)

Here, the positive constant ν is the kinematic viscosity and α = α1/ρ, where the positive
constants α1 and ρ denote the first normal stress moduli and the density, respectively [3].

3. Exact solution using the Laplace transform

Employing the nondimensional independent variables η ≡ y/h and τ ≡ νt/h2 (see [4, Fig-
ure 1]) and then applying the temporal Laplace transform [2] to (2.1) and the boundary
conditions (BCs), we obtain, after employing the initial condition (IC) and solving the
resulting subsidiary equation, the transform domain solution

U−1ū(η,s)= 1
s




sinh
[
η
√
s/
(
1 + sl2

)]
sinh

[√
s/
(
1 + sl2

)]

 , (3.1)

where s denotes the transform parameter, a bar over a quantity denotes its image in the
transform domain, and we let l ≡ h−1√α. Observing that the singular points of ū(η,s) are
simple poles located at

sn = −n2π2

1 + l2n2π2
(n= 0,1,2,3, . . .), (3.2)

we invert (3.1) by using the residue theorem to evaluate the Laplace inversion integral
[2]. This yields, after simplifying, the exact ητ-domain series solution

U−1u(η,τ)=H(τ)

{
η+

2
π

∞∑
n=1

exp
[ −n2π2τ

1 + l2n2π2

]
(−1)n sin[nπη]
n
(
1 + l2n2π2

)
}
. (3.3)

Equation (3.3), which is given by Jordan and Puri [5], is the correct solution to IBVP
(2.1)-(2.2). It differs from [4, equation (16)] in that the denominator of each term in the
series appearing in the former is n(1 + l2n2π2), whereas in the case of the latter, the cor-
responding denominators contain only n. In the same way, [4, equation (17)], which is
taken directly from [1, equation (9.5)], is also incorrect. In this case, the correct expres-
sion is

U−1u(η,τ)=H(τ)

{
(1−η)− 2

π

∞∑
n=1

exp
[ −n2π2τ

1 + l2n2π2

]
sin[nπη]

n
(
1 + l2n2π2

)
}
. (3.4)

4. Analytical results

4.1. Temporal limits. Having just obtained the correct solution to IBVP (2.1)-(2.2), we
now examine the small-and large-time behavior of u. Below are listed the limiting values
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of u as τ approaches zero (from above) and infinity, respectively. (Clearly, the τ → 0−

limit of u is identically zero.)

U−1 lim
τ→0+

u(η,τ)=
{

sinh[η/l]
sinh[1/l]

}
, U−1 lim

τ→∞u(η,τ)= η, (4.1)

where η ∈ (0,1) is assumed fixed. These limits were derived from (3.1) using the relations
limτ→0+ u(η,τ)= lims→∞ sū(η,s) and limτ→∞u(η,τ)= lims→0 sū(η,s) [5, 2].

4.2. Start-up jump discontinuity. As was noted in [5], the velocity field in this case
exhibits a stationary jump discontinuity, which could also be called a nonpropagating
vortex sheet [7], across the plane τ = 0, that is, at start-up. The magnitude of this jump,
which is defined here as [u]≡ limτ→0+ u(η,τ)− limτ→0− u(η,τ), is given by

∣∣∣∣ [u]
U

∣∣∣∣=
{

sinh[η/l]
sinh[1/l]

}
, η ∈ (0,1). (4.2)

In addition, we remark that dipolar fluids, a class of non-Newtonian fluids of which SG
fluids can be considered a special case, also exhibits this type of jump at start-up [5].

4.3. Small-time expression. Recasting (3.1) in terms of exponentials and then expand-
ing for large s yields, after neglecting terms on O[s−3] and simplifying,

U−1ū(η,s)≈ 1
s

∞∑
n=0

exp
[−(2n+ 1−η)

l

]
exp

[
ν(2n+ 1−η)

2lαs

]{
1− 3ν2(2n+ 1−η)

8h4l5s2

}

− 1
s

∞∑
n=0

exp
[−(2n+ 1 +η)

l

]
exp

[
ν(2n+ 1 +η)

2lαs

]{
1− 3ν2(2n+ 1 +η)

8h4l5s2

}
.

(4.3)

Inverting term by term using a table of inverses [2] and Bessel function identities, we
obtain the correct small-time series approximation

U−1u(η,τ)≈
∞∑
n=0

exp
[−(2n+ 1−η)

l

]{
I0

[√
2(2n+ 1−η)τ

l3

]

− 3τ
4l2

I2

[√
2(2n+ 1−η)τ

l3

]}

−
∞∑
n=0

exp
[−(2n+ 1 +η)

l

]{
I0

[√
2(2n+ 1 +η)τ

l3

]

− 3τ
4l2

I2

[√
2(2n+ 1 +η)τ

l3

]} (
τ	 l2

)
,

(4.4)

where τ > 0 is assumed and Iζ[·] denotes the modified Bessel function of the first kind of
order ζ .
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4.4. Volume flux expression. Since [4, equation (16)] was used to determine [4, equa-
tion (19)], the latter is also incorrect. To obtain the correct expression for the volume
flux, we integrate (3.3) with respect to η from zero to one. This yields, after simplifying
[5],

U−1Q(τ)=H(τ)

{
1
2
− 1
π2

∞∑
m=0

exp
[ −4π2(m+ 1/2)2τ

1 + 4l2π2(m+ 1/2)2

]

× 1
(m+ 1/2)2

{
1 + 4l2π2(m+ 1/2)2

}
}
.

(4.5)

Here, we should mention that contrary to what is stated in [4], Q �= 0 when τ = 0, but is
rather given by

U−1 lim
τ→0+

Q(τ)= l tanh
[
(2l)−1], (4.6)

a result which can also be obtained directly from (4.1)1.

5. Numerical results

In this section, we use the software package Mathematica (Version 5.0) to plot the velocity
profiles u/U versus η for various fixed values of τ. The plan here is the following. First,
determine the number of terms needed in (3.3) to obtain a sufficiently converged result.
Second, show that (3.3) and [4, equation (16)] are correct and incorrect, respectively, by
comparing them against the numerically generated inverse of (3.1). And lastly, examine
the behavior of the velocity field with respect to τ and l.

To this end, we have, in Figure 5.1, plotted (3.3) for various numbers of terms in the
series. Clearly, this series converges very quickly and that taking only 100 terms yields
extremely good results for the four values of τ considered. Hence, hereafter, we will always
take 100 terms when evaluating (3.3).

Next, to verify our results, we have employed Tzou’s [10] Riemann sum inversion al-
gorithm (TRSIA) to numerically invert the Laplace transform domain solution given in
(3.1). We executed TRSIA, which is given by

u(η,τ)≈ exp[4.7]
τ

{
1
2
ū
(
η,

4.7
τ

)
+ Re

[ N∑
n=1

(−1)nū
(
η,

4.7 + inπ
τ

)]}
(τ > 0), (5.1)

where N(
 1) is a positive integer and Re[ζ] denotes the real part of the complex num-
ber ζ , as a simple Mathematica program. As evident from Figure 5.2, the profiles plotted
from (3.3) are in excellent agreement with those generated from TRSIA for all values of
τ considered. In contrast, we see that the profiles corresponding to [4, equation (16)],
which are plotted as the broken curves, are in agreement with the other two curves only
for large values of τ; that is, as τ is decreased, the error in [4, equation (16)] becomes
more apparent. In fact, for τ = 0.01, the profile corresponding to [4, equation (16)] ap-
pears to be forming a jump discontinuity, and thus cannot represent a solution to IBVP
(2.1)-(2.2).
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Figure 5.1. u/U versus η from (3.3) for τ = (a) 0.01, (b) 0.1, (c) 0.5, (d) 1, and l =√0.01. Dots: 10,000
terms, solid: 100 terms, and broken: 5 terms.

In Figure 5.3, we have illustrated the temporal evolution of the velocity profile for fixed
l. As can also be inferred analytically, we see that u is an increasing function of τ that is
bounded above and below by

η >
u

U
>

sinh[η/l]
sinh[1/l]

. (5.2)

Finally, in Figure 5.4, we have examined the behavior of (4.1)1 as l is varied. Here, we
clearly see that the τ → 0+ limiting case of u is an increasing function of l.

6. Summary

In this work, we have reexamined the problem of unsteady Couette flow involving SG
fluids. We have pointed out a recent case in the literature in which the Laplace transform-
based solution to this problem has been stated incorrectly and we have provided the
needed correction(s). In addition, we have given the temporal limits of the velocity field,
briefly discussed the nonpropagating vortex sheet associated with this particular SG flow,
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Figure 5.2. u/U versus η for τ =(a) 0.01, (b) 0.1, (c) 0.5, (d) 1, and l =√0.01. Solid: (3.3), dots: (5.1)
with N = 10,000, and broken: equation (16) in [4] (100 terms taken).
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Figure 5.3. u/U versus η for l =√0.01. Bold: (4.1)1, thin broken: (3.3) for τ = 0.01, bold broken: (3.3)
for τ = 0.1, thin solid: (3.3) for τ = 0.5, and dots: (3.3) for τ = 1.

and have provided the correct small-time and volume flux expressions. What’s more, ve-
locity profile plots corresponding to a hypothetical SG fluid were also presented and we
verified our solution numerically using TRSIA (see (5.1)). We have also listed several ear-
lier works which addressed various cases of Couette flow involving SG fluids.
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Figure 5.4. u/U versus η from (4.1)1. Bold: l =√0.05, thin solid: l =√0.01, and broken: l =√0.001.

It should be noted that [4, equation (21)], which gives the friction force on the upper
(i.e., moving) plate, is also incorrect. The correct form of this expression can be obtained
by substituting (3.3) into [4, equation (20)]. For other analytical and numerical results
regarding this problem, see [5]. And lastly, it must be stressed that, except for those dis-
cussed in the present note, the author has not checked, nor does he know for certain, if
any of the other expressions given in [4] are incorrect.
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