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Mechanical models are governed either by partial differential equations with boundary
conditions and initial conditions (e.g., in the frame of continuum mechanics) or by or-
dinary differential equations (e.g., after discretization via Galerkin procedure or directly
from the model description) with the initial conditions. In order to study dynamical be-
havior of mechanical systems with a finite number of degrees of freedom including non-
smooth terms (e.g., friction), we consider here problems governed by differential inclu-
sions. To describe effects of particular constitutive laws, we add a delay term. In contrast
to previous papers, we introduce delay via a Volterra kernel. We provide existence and
uniqueness results by using an Euler implicit numerical scheme; then convergence with
its order is established. A few numerical examples are given.

1. Introduction

Differential inclusions are often used for modeling of nonsmooth terms occurring from
applied sciences: for example, friction [1, 2, 3] and impacts [6, 9]. Mathematical frames
have been extensively studied since the pioneering frameworks by Brézis [5]. Recently we
have considered mechanical systems including nonsmooth terms of friction type and we
have investigated models and also we have processed identification of models [1, 2, 3, 4,
10]. Models have included nonsmooth terms and delay terms [8]. Mathematical models
have been obtained and analyzed numerically. But only simple models for the delay term
have been studied, involving the particular form G(u(t − τ)) inserted in the evolution
equation: that is, only one delay time τ or a finite number of delay times have been taken
into account. Here we extend all the results of reference [8] to more general delay terms
of Volterra form (see [7]).

The paper is organized as follows. In Section 2, the models are described. In Section 3,
theoretical results are given: uniqueness, existence, and convergence of the numerical
scheme. In Section 4, numerical analysis is briefly studied and a few numerical examples
are given.
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2. Description of models

Let n be an integer. Let H =Rn equipped with the usual scalar product denoted by 〈·,·〉
and its norm denoted by | · |, T and τ two strictly positive numbers, and A a maximal
monotone multivalued operator onRn, with nonempty domain denoted byD(A). We as-
sume now that f is a function from [0,T]×Rn to Rn, Lipschitz-continuous with respect
to its second argument:

∃L≥ 0, ∀t ∈ [0,T], ∀x1,x2 ∈Rn,
∣∣ f (t,x1

)− f
(
t,x2

)∣∣≤ L∣∣x1− x2
∣∣, (2.1a)

and whose derivative has the following property:

∀R≥ 0, Φ(R)= sup

{∥∥∥∥∥∂ f∂t (·,v)
∥∥∥∥
L2(0,T ;Rn)

: ‖v‖L2(0,T ;Rn) ≤ R
}
< +∞. (2.1b)

Let �n(R) be the set of real square matrices of size n. Let � be a function from [0,τ] to
�n(R) such that each component �i j of � satisfies

∀i, j ∈ {1, . . . ,n}, �i j ∈H1(0,τ). (2.1c)

Let z be a function such that

z ∈H1(− τ,0;Rn
)
, (2.1d)

z(0)∈D(A). (2.1e)

Applications arising from several fields, as explained in Section 1, lead to systems that
are described by the following general mathematical model: we study functions u from
[−τ,T] to Rn satisfying the differential inclusion with delay term of convolution:

u̇(t) +A
(
u(t)

)
+ f

(
t,u(t)

)
+
∫ τ

0
�(s)u(t− s)ds
 0, a.e. on (0,T), (2.2a)

with initial condition

∀t ∈ [−τ,0], u(t)= z(t). (2.2b)

3. Theoretical results: uniqueness, existence, and convergence of the numerical scheme

As in [2], we study differential inclusion (2.2), by introducing a numerical scheme. Then,
we establish uniform inequalities of the discrete values of solutions of the numerical
scheme and by passing to the limit, we obtain the existence of problem (2.2). We prove
also the uniqueness of the solution of this problem. We conclude the study by giving two
results of order of convergence.

All results of this section are very close to theoretical results of [2]. So, to simplify
this paper, we only give the main theoretical results in this section; moreover, we assume
without loss of generality that n= 1 and then H =R.

For all this section, we set for all functions u∈ L2(−τ,T),

∀s∈ [0,T], �(s,u)=
∫ τ

0
�(x)u(s− x)dx. (3.1)
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3.1. Uniqueness. Before proving uniqueness, we give the following lemma.

Lemma 3.1. If � belongs to L2(0,τ), then for all u1,u2 ∈ L2(−τ,T),

∀t ∈ [0,T],
∫ t

0

(
�
(
s,u1

)−�
(
s,u2

))2
ds≤ 3T‖�‖2

L2(0,τ)

∫ t
−τ

(
u1(s)−u2(s)

)2
ds. (3.2)

Proof. We use the definition (3.1) of �. We obtain the desired result by the inequality∫ t
0

∫ s
s−τ

(
u1(x)−u2(x)

)2
dxds

≤ T‖�‖2
L2(0,τ)

(∫ t
0

(
u1(s)−u2(s)

)2− (u1(s− τ)−u2(s− τ)
)2
ds

+
∫ t
t−τ

(
u1(x)−u2(x)

)2
dx
)
.

(3.3)

�

Proposition 3.2. Let A be a maximal monotone multivalued operator from Rn to Rn.
Under assumptions (2.1), there exists at most one function u belonging to H1(−τ,T ;Rn)
and satisfying (2.2).

Proof. This proposition is very similar to [2, Proposition 2.1], based on the discrete Gron-
wall’s lemma. As for the proof of [2, Proposition 2.1], we have, since u1 and u2 satisfy
(2.2a)

∀t ∈ [0,T],
1
2

(
u1(t)−u2(t)

)2 ≤
(
L+

1
2

)∫ t
0

(
u1(s)−u2(s)

)2
ds

+
1
2

∫ t
0

(
�
(
s,u1

)−�
(
s,u2

))2
ds.

(3.4)

Thanks to Lemma 3.1 and the initial condition (2.2b), we obtain

1
2

(
u1(t)−u2(t)

)2 ≤
(
L+

3
2
T‖�‖2

L2(0,τ) +
1
2

)∫ t
0

(
u1(s)−u2(s)

)2
ds. (3.5)

By using Gronwall’s lemma, we can conclude that v1− v2 = 0. �

3.2. The scheme. As in [2], we discretize problem (2.2) by using an implicit Euler
scheme. As in [8], we assume without loss of generality that there exists Q ∈ N∗ such
that

Qτ = T. (3.6)

Let N be an integer; we set

M =QN , (3.7)

and we consider the time-step

h= τ

N
. (3.8)
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For all p ∈ {−N , . . . ,M}, define tp = ph and let Up be the solution of the numerical
scheme:

∀p ∈ {0, . . . ,M− 1}, Up+1−Up

h
+A

(
Up+1)+ f

(
tp,Up

)
+Wp 
 0, (3.9)

∀p ∈ {−N , . . . ,0}, Up = z(ph). (3.10)

Here, Wp is an approximation of
∫ τ

0 �(s)u(t− s)ds at times tp. We denote by uh the linear
interpolation of the Up’s at tp. We choose the integration rectangle rule:

Wp = h
N−1∑
l=0

�(lh)uh
(
tp− lh

)
. (3.11)

So, we can rewrite numerical scheme (3.9), (3.10), and (3.11) under the form

∀p ∈ {−N , . . . ,0}, Up = z(ph), (3.12a)

∀p ∈ {0, . . . ,M− 1}, Wp = h
N−1∑
l=0

�(lh)Up−l, (3.12b)

∀p ∈ {0, . . . ,M− 1}, Up+1−Up

h
+A

(
Up+1)+ f

(
tp,Up

)
+Wp 
 0. (3.12c)

This scheme possesses a unique solution: indeed, according to Brézis [5], A is maximal
monotone and then, for all λ > 0, the operator (I + λA)−1 is defined on all of Rn and
single-valued from Rn to Rn. Thus, (3.12c) is equivalent to

∀p ∈ {0, . . . ,M− 1}, Up+1 = (I +hA)−1(−h( f (tp,Up
)

+Wp
)

+Up
)
. (3.13)

We set

u0 = z(0). (3.14)

The values Up are uniformly bounded with h.

Lemma 3.3. We assume that (2.1) hold. There exists a constant C1 such that for all N ∈N∗,∥∥uh−u0
∥∥
C0([−τ,T],Rn) ≤ C1, (3.15)∥∥u̇h∥∥L∞(−τ,T ;Rn) ≤ C1. (3.16)

Before proving Lemma 3.3, give a lemma, based on the discrete Gronwall lemma.

Lemma 3.4. Let P be an integer, Λ and h two nonnegative numbers, and positive reals
(aj) j∈{0,...,P} satisfying

∀ j ∈ {1, . . . ,P}, aj ≤Λ

(
1 +h

j−1∑
k=0

ak

)
. (3.17)
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Then,

∀ j ∈ {0, . . . ,P}, aj ≤Λ
(
ha0 + 1

)
eΛ( j−1)h. (3.18)

Proof. We set for all p ∈ {0, . . . ,P},

Sp =
p∑
l=0

al. (3.19)

Inequality (3.17) can then be rewritten under the form

∀ j ∈ {1, . . . ,P}, Sj ≤ (1 +Λh)Sj−1 +Λ. (3.20)

According to the discrete Gronwall lemma, we then have

∀ j ∈ {1, . . . ,P}, Sj ≤ S0e
Λ jh +Λ

j−1∑
k=0

eΛkh

= S0e
Λ jh +Λ

eΛ jh− 1
eΛh− 1

≤ S0e
Λ jh +

eΛ jh− 1
h

.

(3.21)

So, we have

hSj ≤ hS0e
Λ jh + eΛ jh− 1. (3.22)

From (3.17), we can deduce

∀ j ∈ {1, . . . ,P}, aj ≤Λ+Λ
(
hS0e

Λ( j−1)h + eΛ( j−1)h− 1
)

≤Λ
(
ha0 + 1

)
eΛ( j−1)h.

(3.23)

�

Proof of Lemma 3.3. As in [2, Lemmas 2.2 and 2.4], we prove that there exist �1 and
w ∈Rn such that

∀p ∈ {1, . . . ,M}, (
Up−u0

)2 ≤ h�1

p−1∑
k=0

((
f
(
tk,u0

)− f
(
0,u0

)
+w

)2
+
(
Wk

)2
)
.

(3.24)

From assumption (2.1b), we can deduce that the first sum of this inequality is uniformly
bounded with h. Then, there exists �2 such that

∀p ∈ {1, . . . ,M}, (
Up−u0

)2 ≤�2

(
1 +h

p−1∑
k=0

(
Wk

)2
)
. (3.25)
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By using the definition of Wk, we have, thanks to the Cauchy-Schwarz inequality,

p−1∑
k=0

(
Wk

)2 ≤ h
p−1∑
k=0

(N−1∑
l=0

h�2(lh)
N−1∑
l=0

(
Uk−l)2

)
. (3.26)

Denote by �h the piecewise function equal to H(lp) on each interval [tp, tp+1[ of [0,τ].
So, we can write

p−1∑
k=0

(
Wk

)2 ≤ h∥∥�h

∥∥2
L2(0,τ)

p−1∑
k=0

N−1∑
l=0

(
Uk−l)2

. (3.27)

Since

∀k ∈ {0, . . . , p− 1}, ∀l ∈ {0, . . . ,N − 1}, −N ≤ k− l ≤ p− 1, (3.28)

we have

p−1∑
k=0

N−1∑
l=0

(
Uk−l)2 ≤

p−1∑
k=0

p−1∑
r=−N

(
Ur
)2 ≤M

p−1∑
r=−N

(
Ur
)2
. (3.29)

According to (3.25) and (3.27), we then have

∀p ∈ {1, . . . ,M}, (
Up−u0

)2 ≤�2

(
1 +h2M

∥∥�h

∥∥2
L2(0,τ)

p−1∑
r=−N

(
Ur
)2
)
. (3.30)

Since �∈ L2(0,τ), we have

sup
h>0

∥∥�h

∥∥2
L2(0,τ) < +∞, (3.31)

and according to (3.30), there exists �3 such that for all h,

∀p ∈ {1, . . . ,M}, (
Up−u0

)2 ≤�3

(
1 +h

p−1∑
r=−N

(
Ur
)2
)

(3.32)
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which implies there exists �4 such that

∀p ∈ {1, . . . ,M}, (
Up−u0

)2 ≤�4

(
1 +h

p−1∑
r=−N

(
Ur −u0

)2
)
. (3.33)

Since

∀p ∈ {1, . . . ,M},
p−1∑
r=−N

(
Ur −u0

)2 =
−1∑

r=−N

(
Ur −u0

)2
+
p−1∑
r=0

(
Ur −u0

)2
, (3.34)

thanks to initial condition (2.2b) and assumption (2.1d), we deduce from (3.33) that
there exists �5 such that

∀p ∈ {1, . . . ,M}, (
Up−u0

)2 ≤�5

(
1 +h

p−1∑
r=0

(
Ur −u0

)2
)
. (3.35)

Thanks to Lemma 3.4 applied with aj = (U j − u0)2 and Λ =�5, we deduce from (3.35)
that

∀ j ∈ {0, . . . ,M}, (
U j −u0

)2 ≤�5e
�5( j−1)h ≤�5e

�5T . (3.36)

So, the conclusion (3.15) is obtained.
We now prove (3.16), as in [2, Lemma 2.2]. Denote by V p the discrete speed defined

by

∀p ∈ {0, . . . ,M− 1}, V p = Up+1−Up

h
. (3.37)

As in [2], we obtain

∀p ∈ {1, . . . ,M− 1}, (
V p−V p−1)V p ≤ (− f

(
tp,Up

)
+ f

(
tp−1,Up−1))V p

+
(
Wp−Wp−1)V p,

(3.38)

and then

∀p ∈ {1, . . . ,M− 1},(
V p
)2 ≤ (V p−1)2

+ 2
∣∣V p

∣∣(Lh∣∣V p−1
∣∣+

∣∣δp∣∣+
∣∣Wp−Wp−1

∣∣), (3.39)

where

δp =− f
(
tp,Up−1)+ f

(
tp−1,Up−1). (3.40)

We obtain

∀p ∈ {1, . . . ,M− 1},

(1− 2h−Lh)
(
V p
)2 ≤ (1 +Lh)

(
V p−1)2

+
δ2
p

h
+

(
Wp−Wp−1

)2

h
.

(3.41)
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If h is small enough,

(1− 2h−Lh)−1(1 +Lh)≤ 1 + �6h, (3.42)

where �6 is not depending on h. We also have

(1− 2h−Lh)−1 ≤ 2. (3.43)

So, we obtain

∀p ∈ {1, . . . ,M− 1}, (
V p
)2 ≤ (1 + �6h

)(
V p−1)2

+ 2
δ2
p

h
+ 2

(
Wp−Wp−1

)2

h
, (3.44)

and thanks to the discrete Gronwall lemma,

(
V p
)2 ≤ e�6T

((
V 0)2

+
2
h

M−1∑
k=1

δ2
k +

2
h

M−1∑
k=1

(
Wk −Wk−1)2

)
. (3.45)

As in [2], we prove that V 0 and (1/h)
∑M−1

k=1 δ
2
k are uniformly bounded with h. To con-

clude, we prove that there exists �7 such that for all h,

1
h

M−1∑
k=1

(
Wk −Wk−1)2 ≤�7. (3.46)

By using the Cauchy-Schwarz inequality and (3.15), we write successively

∣∣Wk −Wk−1
∣∣

= h
∣∣∣∣∣
N−1∑
l=0

�(hl)Uk−l −
N−1∑
l=0

�(hl)Uk−1−l
∣∣∣∣∣

≤ 2hC1‖�‖C0([0,τ]) +h
N−1∑
l=1

∣∣�(hl)−�(hl−h)
∣∣∣∣Uk−l∣∣

≤ 2hC1‖�‖C0([0,τ]) +h

(N−1∑
l=1

(
�(hl)−�(hl−h)

)2
N−1∑
l=1

(
Uk−l)2

)1/2

≤�8

(
h+

√
h

(N−1∑
l=1

(
�(hl)−�(hl−h)

)2
)1/2)

≤�8

(
h+

√
h

(N−1∑
l=1

(∫ tl+1

tl

d�
dt

(s)ds
)2
)1/2)

≤ h�8

(
1 +

(∫ τ
0

(
d�
dt

(s)
)2

ds
)1/2

)
= h�8

(
1 +‖�̇‖L2(0,τ)

)
,

(3.47)
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and by summation

1
h

M−1∑
k=1

(
Wk −Wk−1)2 ≤ T�2

8

(
1 +‖�̇‖L2(0,τ)

)2
. (3.48)

�

Then, we can prove the following.

Proposition 3.5. If assumptions (2.1) hold, then there exists a constant C2 such that for all
h, k > 0,

∀t ∈ [−τ,T],
∣∣uh(t)−uk(t)

∣∣≤ C2

√
h+ k. (3.49)

As in [2], we might think that the estimates obtained at Lemma 3.3 are sufficient for
passing to the limit; define piecewise constant functions: for all p ∈ {−N , . . . ,M− 1},

vh(t)=Up+1 on
[
tp, tp+1

[
, (3.50)

ṽh(t)=Up on
[
tp, tp+1

[
, (3.51)

fh(t)= f
(
tp,Up

)
on
[
tp, tp+1

[
, (3.52)

for all p ∈ {0, . . . ,M− 1},

�h(t)=Wp on
[
tp, tp+1

[
, (3.53)

for all p ∈ {0, . . . ,N − 1},

�h(t)=�
(
tp
)

on
[
tp, tp+1

[
, (3.54)

and let uh be the piecewise linear interpolation taking the value Up at tp. As in [2], we
are going to prove that the sequence (uh)h>0 is a Cauchy sequence and we will estimate
‖uh − uk‖L∞(0,T) and ‖uh − uk‖L2(0,T) in terms of

√
h+ k. These estimates depend on a

couple a preliminary lemmas which strongly use the regularity assumptions.

Lemma 3.6. If assumptions (2.1) hold, then there exists a constant �1 such that for all h > 0,∥∥uh− vh∥∥L2(−τ,T) +
∥∥uh− ṽh∥∥L2(−τ,T) ≤�1h. (3.55)

Proof. The proof is similar to that of [2, Lemma 2.3]. �

Lemma 3.7. If assumptions (2.1) hold, then there exists a constant �2 such that for all h > 0,∥∥ f (·, ṽh)− fh
∥∥
L2(−τ,T) ≤�2h. (3.56)

Proof. The proof is similar to that of [2, Lemma 2.4]. �

Lemma 3.8. If assumptions (2.1) hold, then there exists a constant �3 such that for all h > 0,

∀t ∈ [0,T],
∣∣∣∣∫ τ

0
�(s)ṽh(t− s)ds−�h(t)

∣∣∣∣≤�3h. (3.57)
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Proof. By using the Cauchy-Schwarz inequality, we can write

∣∣∣∣∫ τ
0

�(s)ṽh(t− s)ds−�h(t)
∣∣∣∣≤ (∫ τ

0

(
ṽh(t− s))2

ds
∫ τ

0

(
�(s)−�h(s)

)2
ds
)1/2

. (3.58)

We then write as in the proof of [2, Lemma 2.4]

∫ tl+1

tl

(
�(s)−�h(s)

)2
ds≤ h2

2

∫ tl+1

tl

(
d�
dt

(s)
)2

ds, (3.59)

and by summing

∫ τ
0

(
�(s)−�h(s)

)2
ds≤ h2

2
‖�̇‖2

L2(0,τ), (3.60)

which permits us to conclude thanks to (3.15) and (3.58). �

Proof of Proposition 3.5. As in the proof of [2, Proposition 2.5], we write that the equa-
tions satisfied, respectively, by uh and uk are

u̇h +Avh + fh + �h 
 0, (3.61)

u̇k +Avk + fk + �k 
 0. (3.62)

We then subtract (3.62) from (3.61), allowing for the usual abuse of notations, and mul-
tiply by vh− vk. We conclude by using Lemmas 3.6, 3.7, and 3.8. �

3.3. Uniqueness and existence. From Proposition 3.5, we can deduce the following.

Proposition 3.9. Assume that (2.1) holds. There exists a unique solution u of (2.2) belong-
ing to W1,∞(−τ,T ;Rn). Moreover, if we denote by uh the approximation defined by (3.12),
it holds that

lim
h→0+

max
t∈[−τ,T]

∣∣u(t)−uh(t)
∣∣= 0. (3.63)

Proof. It is very close to the proof of [2, Proposition 2.5]. The uniqueness of the solution
is already proved. Thanks to (3.15) and (3.16), we extract a subsequence still denoted by
(uh)h>0 which converges in the following sense to the function u:

uh⇀ u in L∞(−τ,T) weak ∗, (3.64)

uh⇀ u in L2(−τ,T) weak, (3.65)

u̇h⇀ u̇ in L∞(−τ,T) weak ∗, (3.66)

u̇h⇀ u̇ in L2(−τ,T) weak. (3.67)

We conclude as in [2, Proposition 2.5]. �
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3.4. Order of convergence. We have the following two results.

Proposition 3.10. If assumptions (2.1) hold, then the scheme is of order 1/2, that is, there
exists a constant C such that

∀h > 0, max
t∈[−τ,T]

∣∣u(t)−uh(t)
∣∣≤ C√h. (3.68)

Proof. As in [2, Proposition 2.6], thanks to estimate (3.49) for k→ 0 and (3.63), we obtain

max
t∈[−τ,T]

∣∣u(t)−uh(t)
∣∣≤ C2

√
h. (3.69)

�

We assume now that K is a nonempty closed convex subset of Rn and that A is the
subdifferential of the indicatrix of the convex K defined by

ψK (x)=
0 if x ∈ K ,

+∞ if x �∈ K. (3.70)

In this particular case, we have

∀(x, y)∈ K ×Rn, y ∈ ∂ψK (x)⇐⇒∀z ∈ K , 〈y,x− z〉 ≥ 0, (3.71)

∀x �∈ K , ∂ψK (x)=∅. (3.72)

Proposition 3.11. Let K be a nonempty closed convex subset of Rn and A the maximal
monotone operator ∂ψK . If hypotheses (2.1) hold, then the order of the scheme is one, that is,
there exists C such that

∀h > 0, max
t∈[−τ,T]

∣∣u(t)−uh(t)
∣∣≤ Ch. (3.73)

Proof. See the proof of [2, Proposition 3.1]. �

4. Numerical simulations

For numerical simulations, we study the following class of example: we consider b and α
real constants. σ denotes the graph of sign function and let g ∈ L2(0,T) andH ∈H1(0,τ).
We consider a one degree-of-freedom mechanical system governed by the inclusion

ẅ(t) + bw(t) +
∫ τ

0
H(s)w(t− s)ds+ασ

(
ẇ(t)

)
+ g(t)
 0, a.e. on (0,T), (4.1)

∀t ∈ [−τ,0], w(t)= z(t). (4.2)
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This model is of the previous general form (2.2) with n= 2, by setting

f

(
t,

(
u
v

))
=
(

−v
bu+ g(t)

)
,

A

(
u
v

)
= {0}× {ασ(v)

}
,

�(s)=
(

0 0
H(s) 0

)
.

(4.3)

Thanks to these definitions, numerical scheme (3.13) is equivalent to

up+1 = hvp +up,

vp+1 = (I +hασ)−1

(
−h

(
bup + g

(
tp
)

+h
N−1∑
l=0

�(lh)up−l
)

+ vp
)
.

(4.4)

For all the numerical simulations, we choose

b = 1, α= 1, τ = 1, h= 1
9991

. (4.5)

Example 4.1. We choose

T = 10, H(s)= 1, (4.6)

g(t)=


(−t+ 4)e−t + (−t+ 1)e−t+1− 1, if t ∈]−∞,2[,

(−t+ 4)e−t + (−t+ 1)e−t+1, if t = 2,

(−t+ 4)e−t + (−t+ 1)e−t+1 + 1, if t ∈]2,+∞[,

(4.7)

so that

w(t)= (t− 1)e−t (4.8)

is exact solution on [−1,T]. Numerical results are presented in Figure 4.1.
Exact solution and approximated solution are plotted simultaneously. Curves are again

superimposed. In this case, derivative ẇ possesses one change of sign.
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Figure 4.1. (a) Displacement and (b) speed versus time for Example 4.1.

Example 4.2. We choose T and H defined by (4.6) and

g(t)=



(− t2 + 7t− 4
)
e−t +

(− t2 + t− 2
)
e−t+1 + 1, if t ∈]−∞,1[,(− t2 + 7t− 4

)
e−t +

(− t2 + t− 2
)
e−t+1, if t = 1,(− t2 + 7t− 4

)
e−t +

(− t2 + t− 2
)
e−t+1− 1, if t ∈]1,2[,(− t2 + 7t− 4

)
e−t +

(− t2 + t− 2
)
e−t+1, if t = 2,(− t2 + 7t− 4

)
e−t +

(− t2 + t− 2
)
e−t+1 + 1, if t ∈]2,+∞[.

(4.9)

so that

w(t)= (t2− t+ 1
)
e−t (4.10)

is exact solution on [−1,T]. Numerical results are presented in Figure 4.2.
Exact solution and approximated solution are plotted simultaneously. Curves are again

superimposed. In this case, derivative ẇ changes its sign twice.
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Figure 4.2. (a) Displacement and (b) speed versus time for Example 4.2.

In order to test numerically the order of the scheme, maximal error between exact
solution and approximated solution has been computed for Example 4.2 for 18 values
of time steps 1/(1001 + 50k), k = 1, . . . ,18. In Figure 4.3, a log-log plot is presented. The
slope of the straight line corresponds to numerically estimated order of the numerical
scheme. A least-square computation provides value 0.993 very close to 1 in this case. In
fact, Proposition 3.10 gives an order equal to 1/2. The order one with A = σ is an open
problem.

Example 4.3. We choose T = 30 and H defined by

H(t)= cos(2πt) + cos(10πt) + cos(20πt),

g(t)= 1,3cos(8t), z(t)= 0.
(4.11)

Numerical results are presented in Figures 4.4 and 4.5. In this case, there are a finite
number of static phases (where ẇ is vanish) and dynamic phases (where ẇ is not vanish).
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Figure 4.3. Log-log plot of maximal error versus time steps for Example 4.2. Numerical estimation of
the order corresponds to the least-square slope of the curve.
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Figure 4.4. (a) Displacement and (b) speed versus time (on [0,2]) for Example 4.3.
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Figure 4.5. (a) Displacement and (b) speed versus time (on [0,30]) for Example 4.3.

5. Conclusions and perspectives

In this paper, results obtained for differential inclusions with delay term of special form
in [8] have been extended to another case where delay terms are provided by Volterra
kernel.

Existence and uniqueness have been proved with assumptions commonly verified by
models issuing from applications. Numerical analysis has been performed. Theoretical
order of convergence is 1/2 in the general case or 1 if A= ∂ψK .

In a future work, we will present a complete proof of the results of Section 3; Moreover,
to generalize results of this paper, and of [2, 8], as in [2], we will give a frame to study
differential problem

u̇(t) +A
(
u(t)

)
+ f

(
t,u(t)

)
+ �(t,u)
 0, a.e. on (0,T), (5.1)

with initial condition

∀t ∈ [−τ,0], u(t)= z(t). (5.2)

Here, H denotes a Hilbert space, u is a function belonging to C0([−τ,T];H) whose de-
rivative belongs to L∞(−τ,T ;H). � is the “history” term: it is a function from [0,T]×
C0([−τ,T];H) depending only on t and of values {u(s) : s ∈ [−τ, t]} from u. We will
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assume that this term is continuous according to u in the following sense: there exists �
such that for all u1, u2 belonging to C0([−τ,T];H),

∀t ∈ [0,T],
∫ t

0

(
�
(
s,u1

)−�
(
s,u2

))2
ds≤�

∫ t
−τ

(
u1(s)−u2(s)

)2
ds. (5.3)
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