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We derive a simple formula for the throughput (jobs produced per unit time) of a serial
production line with workstations that are subject to random failures. The derivation is
based on equations developed for a line flow model that takes into account the impact of
finite buffers between workstations. The formula applies in the special case of a line with
identical workstations and buffers of equal size. It is a closed-form expression that shows
the mathematical relationships between the system parameters, and that can be used to
gain basic insight into system behavior at the initial design stage.

1. Introduction

An important measure of performance for a production line is the system throughput
(i.e., the average number of jobs produced per hour). Various analytical models have been
developed to analyze throughput and identify bottlenecks for a production line composed
of a series of workstations separated by buffers (Gershwin [11, 12]; Buzacott and Shan-
thikumar [6]; Jacobs and Meerkov [15]; Chiang et al. [7]; Alden [1]). These models take
into account that the stations are subject to random failures. The throughput of a line de-
pends on each station’s speed (processing rate) and reliability, and the sizes of the buffers.

The objective of this paper is to obtain a simple formula for throughput from general
equations given in the model by Alden [1]. The model considers a two-station line and
provides a building block for modeling longer lines. It analyzes the flow of jobs through
a line of stations and derives analytical equations for line performance.

Alden’s model is developed for the general case in which stations can have different
speeds and reliabilities, and buffers can have different sizes. Since the model yields ana-
lytical equations, it can be used to compute throughput for such general serial lines very
efficiently, and allows quick “what-if” comparisons. As a result of this generality, however,
the equations are very involved. They are suited for conveniently computing numerical
results rather than providing insight from their functional form.

This paper derives a formula for throughput in the special case of a serial line with
identical stations and buffers of equal sizes. From the general equations of the model,
the paper utilizes simplifications for the special case. The purpose is to have a simple
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Figure 2.1. Two-station production line.

analytical result that shows the mathematical relationships between the key system pa-
rameters. This is useful in the initial design stage, when basic insight into system behavior
is needed before detailed numerical analyses are performed.

A formula with a simple structure is helpful in several ways. It helps provide an in-
tuitive understanding of the underlying model, so that analysts and decision makers can
use the model with confidence. It highlights tradeoffs between the different parameters in
the model, and allows general conclusions to be drawn about system behavior. A formula
also allows quick “back of the envelope” calculations. It does not depend on a particu-
lar type of operating system, programming language, or user interface. It can easily be
incorporated into a spreadsheet tool as part of a wider analysis for strategic planning.

The paper starts with the basic model for a general two-station line developed by Alden
[1], and uses the model to derive a throughput formula in the special case of identical
stations. The paper then extends the formula to apply to a line of any length. The extended
formula is compared with numerical results obtained from simulation.

2. Two-station line

2.1. Alden’s model. The model developed by Alden [1] analyzes a production line con-
sisting of two stations in series, separated by a buffer. Jobs flow along the line to be
processed at each station. The average number of jobs per unit time that can flow along
the line is the line’s throughput. The two stations are each subject to failures, which
affect the throughput. Each station is characterized by its fixed speed (processing rate)
and reliability parameters (failure rate and repair rate).

Figure 2.1 depicts the two-station line. The buffer holds jobs processed at the first sta-
tion and waiting to be processed at the second station. If the buffer is full, the first station
is “blocked” and cannot release a job or process new jobs. If the buffer is empty, the
second station is “starved” and has no new jobs to process. Alden’s model captures the
impact of blocking and starving on the number of jobs in the buffer, and uses results on
the buffer content to obtain the line’s throughput. The equations are developed in the
model for a two-station line in general and for a line where the two stations have equal
speeds.

In this paper, the parameters for the general two-station model are first defined, and
the assumptions are stated. The basic equations developed in the model for stations
with equal speeds are then presented. These equations are used to derive a formula for
throughput in the special case of identical stations (i.e., stations with equal speeds, and
also equal failure rates and repair rates).

For the general two-station line shown in Figure 2.1, the parameters are
(i) Si, the speed of station i (i= 1,2) (jobs per hour),

(ii) λi, the failure rate of station i (i= 1,2) (failures per hour),
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(iii) µi, the repair rate of station i (i= 1,2) (repairs per hour),
(iv) B, the buffer size (0≤ B <∞) (number of jobs).

The speed Si is the number of jobs station i processes per hour when not blocked, starved,
or failed. The failure rate λi is the number of failures per hour of operating time, that is,
1/λi is the mean operating time between failures (MTBFi) (i= 1,2).

The repair rate µi is the number of repairs per hour, that is, 1/µi is the mean time to
repair (MTTRi) or mean downtime (i= 1,2).

The buffer size B is the number of jobs the buffer can hold.
For given reliability parameters λi and µi, the fraction of time that station i is available

for processing jobs if never blocked or starved is

µi
λi +µi

or
MTBFi

MTBFi +MTTRi
. (2.1)

This fraction is known as the station’s stand-alone availability or efficiency. The effective
speed Ŝi of station i, accounting for its stand-alone availability, is therefore

Ŝi = Si

(
µi

λi +µi

)
(i= 1,2). (2.2)

The speed Ŝi in (2.2) is often referred to as the station’s stand-alone throughput.
Alden’s model treats the movement of jobs through the line as a fluid flow, and devel-

ops equations for the system in steady state in terms of the above parameters. The model
is based on the following assumptions about the system.

(a) The buffer does not fail, and jobs flow through it with zero transit time.
(b) A station does not fail if it is blocked or starved (i.e., it is subject to failure only

when operating).
(c) Operating times between failures at a station are exponentially distributed (with

mean 1/λi, i= 1,2).
(d) Repair times at a station are exponentially distributed (with mean 1/µi, i= 1,2).
(e) The first station is never starved and the second (i.e., last) station is never blocked,

so that there are no external impediments to the line’s operation. This assumption
ensures that the analysis determines the maximum number of jobs that can flow
through the line.

The equations derived for the two-station model also require the following assump-
tion.

(f) While one station is down, the other station does not fail, but its speed is reduced
to its normal speed multiplied by its stand-alone availability, that is, its speed is
reduced to Ŝi as given by (2.2). This assumption is an approximation to account
for the possibility of both stations being down simultaneously.

The above assumptions are discussed fully in [1].
The model analyzes the buffer content dynamics by considering the possible system

states. For the case where stations have equal speeds, the states are
(i) U (up): both stations are processing,

(ii) F (filling): station 1 is processing while station 2 has failed,
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(iii) E (emptying): station 2 is processing while station 1 has failed,
(iv) FB (fail-blocked): station 1 is blocked because station 2 has failed,
(v) FS (fail-starved): station 2 is starved because station 1 has failed.

In general, there are two additional states: SB (speed-blocked), where station 1 is blocked
because station 2 has a slower speed, and SS (speed-starved), where station 2 is starved
because station 1 has a slower speed. However, for the case of stations with equal speeds,
speed blocking and speed starving do not occur and therefore these two states (SB and
SS) need not be considered here. The general model is described in [1] and the main
results are summarized in [16].

The approach in Alden’s model is to apply renewal theory to obtain the distribution of
buffer content at a given renewal epoch (Alden [1]), and derive the expected times over a
renewal period that the system is in each of the above states. From the basic relationships
for the case of equal speeds (Alden [1, (8.28)-(8.29), page 84]), the expected renewal
period E(TC) is the sum of the expected times spent in each of the possible states, that is,

E
(
TC
)= E

(
TU
)

+E
(
TF
)

+E
(
TE
)

+E
(
TFB

)
+E

(
TFS

)
, (2.3)

where E(TU), E(TF), E(TE), E(TFB), and E(TFS) denote the expected times spent in states
U , F, E, FB, and FS, respectively, and the fractions of time P(U) and P(E) that the system
is in states U and E, respectively, are given by

P(U)= E
(
TU
)

E
(
TC
) , (2.4)

P(E)= E
(
TE
)

E
(
TC
) . (2.5)

The system throughput ρ for this case is given by (Alden [1, (8.30), page 84])

ρ = S2P(U) + Ŝ2P(E), (2.6)

where Ŝ2 = S2µ2/(λ2 +µ2) from (2.2).
In developing equations for each of these quantities, Alden introduces the following

intermediate variables in terms of the station parameters (Alden [1, pages 18, 21, 23, and
107]):

θ1 = λ1

λ1 + λ2
, θ2 = λ2

λ1 + λ2
, r1 = µ1

Ŝ2
, r2 = µ2

Ŝ1
. (2.7)

Equations for the expected times in each state are expressed in terms of these variables.
For the general model, different sets of equations are developed according to whether the
station speeds are equal or different, and on whether a quantity denoted in [1] by α2 is
zero or nonzero. In the case of equal speeds, α2 = r1θ2− r2θ1 (Alden [1, (8.11)]).
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For the special case of identical stations, the station speeds are equal (i.e., S1 = S2),
and also r1θ2− r2θ1 = 0 (i.e., α2 = 0). The equations that apply in this case are (Alden [1,
(8.21)–(8.27), pages 111–112])

E
(
TU
)= 1

λ1 + λ2
,

E
(
TF
)= Bθ2

Ŝ1
P0,

E
(
TE
)= Bθ2

Ŝ2
P0,

E
(
TFB

)= θ2

θ1µ2
P0,

E
(
TFS

)= 1
µ2

P0,

(2.8)

where P0 is the probability that the buffer is empty at the renewal epoch (taken as the
moment a repair is completed) and is given by (Alden [1, (8.20), page 81])

P0 = θ1

1 + r2θ1B
. (2.9)

2.2. Formula for throughput. Given the above equations, we now derive a formula for
throughput in the special case of identical stations. For this case, the station parameters
become

S1 = S2 = S,

λ1 = λ2 = λ,

µ1 = µ2 = µ,

(2.10)

where S, λ, and µ denote station speed, failure rate, and repair rate, respectively. The above
variables then reduce to

θ1 = θ2 = 1
2

,

r1 = r2 = λ+µ

S
,

(2.11)

and the expected times spent in each state simplify to give

E
(
TU
)= 1

2λ
,

E
(
TF
)= E

(
TE
)= B(λ+µ)

2µS
P0,

E
(
TFB

)= E
(
TFS

)= 1
µ
P0,

(2.12)



298 Analytical formula for production line throughput

where P0 is given by

P0 = 1
2 + (λ+µ)B/S

. (2.13)

Substituting in (2.3), (2.4), and (2.5), the expected renewal period E(TC) becomes

E
(
TC
)= 1

2λ
+

1
µ

, (2.14)

and P(U) and P(E) become

P(U)= µ

2λ+µ
,

P
(
E)= µ

2λ+µ

(
1

1 + 2S/
{

(λ+µ)B
}). (2.15)

Hence, the throughput ρ in (2.6) is given by

ρ = S
(

1
1 + 2(λ/µ)

)(
1 +

(λ/µ)(Bµ/S)
2 + (1 + λ/µ)(Bµ/S)

)
. (2.16)

With some algebraic manipulation, (2.16) for the throughput ρ can be rewritten as

ρ = S

1 + λ/µ+ (λ/µ)/
{

1 + (1/2)(1 + 2λ/µ)(Bµ/S)
} . (2.17)

Similar closed-form results for a two-station line can be obtained from the models by
Gershwin [11, 12], Buzacott and Shanthikumar [6], Jacobs and Meerkov [15], Chiang et
al. [7], and Li and Meerkov [17]. Numerical comparisons in [16] show close agreement
between (2.17) and the other closed-form results.

Although the system is defined by four parameters (S, λ, µ, and B), (2.16) and (2.17)
show that throughput ρ depends on just three basic quantities: S, λ/µ, and Bµ/S. Each
of these three quantities has a clear physical meaning. Station speed S defines the rate of
production if there were no failures, the ratio λ/µ defines the station’s stand-alone avail-
ability or efficiency given there are failures, and the ratio Bµ/S is a measure of buffer
effectiveness during failures, indicating how many jobs a buffer can accommodate during
Bµ/S average downtimes.

One of the benefits of a simple analytical formula is that these key relationships be-
tween the parameters become apparent. This is important in gaining insight into the
factors affecting throughput performance. In particular, the formula shows that it is
not buffer size B in isolation that is critical in understanding the impact of a buffer
on throughput, but rather buffer size in relation to station speed and downtime. What
matters for throughput is not simply the number of jobs that a buffer can hold, but the
amount of time it can keep the line operating in the event of a failure. The time to empty
a full buffer of size B (or fill an empty buffer) is B/S. This is the amount of extra time
the buffer can buy for production when a failure occurs. The ratio of this time B/S to the
mean downtime 1/µ gives the number of downtimes that the line can continue operating.
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This ratio (i.e., Bµ/S) is therefore the basic measure of a buffer’s effectiveness in maintain-
ing throughput, and is the quantity that should be considered in buffer sizing decisions.
A similar conclusion is introduced in [9, 10], where the level of buffering is also defined
by a station’s average downtime.

The throughput formula given in (2.16) and (2.17) can be checked against standard
results in the two extreme cases of no buffer (B = 0) and infinite buffer (B =∞). When
B = 0, the formula reduces to

ρ = S

1 + 2λ/µ
, (2.18)

which is the result for a two-station transfer line (Buzacott [4]). When B =∞, there is no
interaction between the two stations, and the formula reduces to a station’s stand-alone
throughput:

ρ= S

1 + λ/µ
, (2.19)

as given in (2.2).
The formula given in (2.16) and (2.17) is derived directly from Alden’s model for a

two-station line, in the special case of identical stations. The following section uses this
formula to develop an approximate formula for throughput of a line with any number of
identical stations.

3. Line with M stations

Alden’s model for a two-station line (Alden [1]) provides the basis for modeling longer
lines. The blocking and starving interactions in a longer line become too complex to
allow an exact analysis, so we develop here an approximation based on the result for two
stations.

The purpose of this section is to extend the two-station throughput formula derived
above, so that it applies to a line with any number of stations. The extension holds un-
der the same assumptions, (a)–(e), as for the two-station model. We consider again the
special case of identical stations, and assume also that the buffers between stations all
have the same size.

Figure 3.1 depicts the line of general length. The parameters for this case are
(i) S, the station speed (jobs per hour),

(ii) λ, the failure rate (failures per hour),
(iii) µ, the repair rate (repairs per hour),
(iv) B, the buffer size (number of jobs),
(v) M, the line length (number of stations).

To obtain a formula for throughput ρ that includes the additional parameter M, we
make the conjecture that two-station formula in (2.17) be extended to have the following
functional form:

ρ ∼= S

1 + λ/µ+
{
f1(M)λ/µ

}
/
{

1 + f2(M)(1 + 2λ/µ)(Bµ/S)
} , (3.1)
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Figure 3.1. Serial line of general length with identical stations and buffers of equal size.

where f1(M) and f2(M) are functions to be determined. The function f1(M) provides the
M-station generalization for the impact of station failures, independent of the buffers in
the line, while f2(M) accounts for the impact of buffers specifically.

Consider first the standard result for an M-station line with no buffers (i.e., for a trans-
fer line). The throughput in this case is given by (Buzacott [4])

ρ= S

1 +Mλ/µ
. (3.2)

Putting B = 0 in (3.1) gives

ρ = S

1 + λ/µ+ f1(M)λ/µ
. (3.3)

Matching (3.3) with the Buzacott result (3.2), we obtain the following form for the func-
tion f1(M):

f1(M)=M− 1. (3.4)

The simplest form for f2(M) is a linear function, f2(M)= kM, where k is a constant.
With this function, the impact of buffers is proportional to M. For the special case of M =
2, comparing (2.17) and (3.1) gives f2(2)= 1/2. Thus, in terms of k, we have 2k = 1/2 or
k = 1/4, and hence f2(M) is given by

f2(M)= M

4
. (3.5)

Putting (3.4) and (3.5) for f1(M) and f2(M) in (3.1), we obtain the following approximate
expression for throughput ρ of an M-station line:

ρ ∼= S

1 + λ/µ+
{

(M− 1)λ/µ
}
/
{

1 + (M/4)(1 + 2λ/µ)(Bµ/S)
} . (3.6)

Alternative functional forms for an extension of the two-station formula to an M-station
line were also considered, but these did not perform as well as the functional form given
by (3.6). Comparisons of (3.6) with simulation results for throughput are given in the
next section.

Note that the extension given by (3.6) preserves the basic relationships between pa-
rameters, as seen in the two-station formula (2.17). These include the ratio λ/µ that
determines a station’s efficiency, and the ratio Bµ/S that provides a measure of buffer
effectiveness during failures.
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Table 4.1. Station parameter values used in throughput comparisons.

S
(jobs/h)

λ
(failures/h)

µ
(repairs/h)

MTBF
(min)

MTTR
(min)

λ/µ

Short frequent failures 60 3 30 20 2 0.1

Long infrequent failures 60 0.3 3 200 20 0.1

4. Numerical comparisons

This section compares the throughput formula given by (3.6) with numerical throughput
estimates using the simulation software “Simul8” (Hauge and Paige [13]). The compar-
isons are made for given values of the station parameters S, λ, and µ, and a range of
different line lengths M and buffer sizes B.

Table 4.1 shows the parameter values used for each station. Station speed S is taken
as 60 jobs per hour (i.e., cycle time for a job is 1 minute). Two sets of values for the
station reliability parameters λ and µ are considered: short frequent failures and long in-
frequent failures. These cover two representative scenarios of reliability. In both scenar-
ios, the ratio λ/µ is 0.1, and resulting stand-alone availability µ/(λ+µ) is 91%. The table
also gives the corresponding values for the mean operating time between failures MTBF
(= 1/λ) and mean time to repair MTTR (= 1/µ), expressed in minutes.

In all the simulation experiments, the runs were performed with zero initial occu-
pancy of all buffers and 10 000 time units for the warm-up period. The next 100 000 time
units of stationary regime results were used to statistically evaluate the throughput, with
20 replications for each case. The resulting throughput estimates have 95% confidence
intervals that are consistently within ±0.07 jobs per hour for short frequent failures, and
within ±0.2 jobs per hour for long infrequent failures.

Figures 4.1 and 4.2 show the fit of the M-station formula (3.6) to numerical simulation
data, for short frequent failures and long infrequent failures, respectively. The continuous
curves show throughput from the formula and the data points show the numerical sim-
ulation results. Both are plotted against line length M from 2–20 stations, for different
buffer sizes B. The comparisons show close agreement between the formula and simu-
lation results. For all the results in Figures 4.1 and 4.2, the formula is within 6% of the
simulation results.

Differences between the plots in these two figures show that increasing buffer size has
a much bigger improvement in throughput for short frequent failures (Figure 4.1) than
for long infrequent failures (Figure 4.2). As pointed out earlier, it is not buffer size B in
isolation that is critical in determining how buffers improve throughput, but rather buffer
size in relation to station speed S and downtime (1/µ). The formula shows that it is the
ratio Bµ/S that is the measure of buffer effectiveness for maintaining throughput. Thus,
for fixed station speed S and for the repair rates used here (µ= 3 and 0.3), the throughput
curves in Figures 4.1 and 4.2 show that a buffer size B = 1 in the case of short frequent
failures is equivalent to a buffer size B = 10 in the case of long infrequent failures.

Figure 4.3 displays the comparison between the formula and simulation data, with the
throughput plotted against buffer size B, for a fixed line length of M = 20 stations and
for the two reliability scenarios, short frequent failures and long infrequent failures. As
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Figure 4.1. Fit of formula (3.6) to simulation results for short frequent failures.
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Figure 4.2. Fit of formula (3.6) to simulation results for long infrequent failures.

in the earlier figures, the continuous curves show the formula results and the data points
the simulation values. The plots show again that the impact of increasing buffer size on
improving throughput depends on Bµ/S and is therefore much greater for short frequent
failures than for long infrequent failures.

Tables 4.2 and 4.3 list the complete set of numerical results for the comparisons plot-
ted in the above figures, for the cases of short frequent failures and long infrequent fail-
ures, respectively. The tables display the throughput results from the formula and from
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Figure 4.3. Fit of formula (3.6) to simulation results for line length M = 20 stations.

the simulation using Simul8 software, and the relative difference between the two sets of
results.

The above comparisons indicate that the formula given by (3.6) provides a sufficiently
accurate estimate of throughput for a wide range of parameter values. The agreement
holds for lines with different buffer sizes. Note that, for a line with no buffers (B = 0), the
formula reduces to the exact result by Buzacott [4], as given in (3.2). The line in this case
is a synchronous system (i.e., all jobs move together in unison as a transfer line), while for
cases of nonzero buffers, the line is modeled as an asynchronous system (i.e., jobs move
independently of one another).

5. Discussion of throughput formula

Equation (3.6) can be used to determine the buffer size needed for a given system perfor-
mance target. Rewriting (3.6), we obtain the necessary buffer size B to achieve a desired
throughput ρ, that is,

B = 4S
{(

(M− 1)ρλ/µ
)
/
(
S− ρ(1 + λ/µ)

)− 1
}

Mµ(1 + 2λ/µ)
. (5.1)

In terms of buffer effectiveness ratio Bµ/S, we obtain

Bµ

S
= 4

{(
(M− 1)ρλ/µ

)
/
(
S− ρ(1 + λ/µ)

)− 1
}

M(1 + 2λ/µ)
. (5.2)

This result shows that the effective buffer level Bµ/S needed to reach a desired throughput
ρ depends only on S, ρ, M, and λ/µ. Similar results are also obtained in [9] and a closed-
form formula is presented to evaluate the smallest level of buffering (i.e., lean) necessary
to achieve desired line efficiency.
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Table 4.2. Comparison of formula and simulation throughput results for short frequent failures
(S= 60 jobs/h, MTBF= 20 minutes, MTTR= 2 minutes).

Buffer size Line length Simulation Formula Relative difference

B (no. of jobs) M (no. of stations) ρs (jobs/h) ρ f (jobs/h) 100× (ρ f − ρs)/ρs (%)

1 2 50.96 50.98 0.04

1 3 48.38 48.47 0.19

1 5 44.93 45.16 0.51

1 10 40.86 41.10 0.59

1 15 39.07 39.20 0.33

1 20 38.03 38.10 0.18

2 2 51.54 51.61 0.14

2 3 49.54 49.78 0.48

2 5 47.02 47.62 1.28

2 10 44.16 45.28 2.54

2 15 42.92 44.30 3.22

2 20 42.21 43.75 3.65

5 2 52.53 52.63 0.19

5 3 51.36 51.66 0.58

5 5 49.99 50.67 1.36

5 10 48.59 49.76 2.41

5 15 48.01 49.41 2.92

5 20 47.66 49.23 3.29

10 2 53.24 53.33 0.17

10 3 52.57 52.80 0.44

10 5 51.82 52.31 0.95

10 10 51.11 51.89 1.53

10 15 50.83 51.74 1.79

10 20 50.66 51.67 1.99

20 2 53.76 53.85 0.17

20 3 53.41 53.46 0.09

20 5 53.03 53.33 0.57

20 10 52.71 53.14 0.82

20 15 52.59 53.08 0.93

20 20 52.53 53.04 0.97

For the parameter values shown in Table 4.1, and a line length M = 10 stations, the
buffer size B (rounded to the next integer) needed to achieve a target throughput of 40
jobs per hour is B = 1 in the case of short frequent failures and B = 9 in the case of long
infrequent failures. In either case, the effective buffer level Bµ/S is 0.42, that is, the buffer
must be sufficient to accommodate the number of jobs produced during 0.42 average
downtimes.
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Table 4.3. Comparison of formula and simulation throughput results for long infrequent failures
(S= 60 jobs/h, MTBF= 200 minutes, MTTR= 20 minutes).

Buffer size Line length Simulation Formula Relative difference

B (no. of jobs) M (no. of stations) ρs (jobs/h) ρ f (jobs/h) 100× (ρ f − ρs)/ρs (%)

1 2 50.25 50.12 −0.26

1 3 46.51 46.46 −0.11

1 5 40.77 40.76 −0.02

1 10 31.99 31.87 −0.38

1 15 27.45 26.75 −2.55

1 20 24.70 23.42 −5.18

2 2 50.25 50.24 −0.02

2 3 46.76 46.75 −0.02

2 5 41.33 41.44 0.27

2 10 33.31 33.48 0.51

2 15 29.33 29.05 −0.95

2 20 26.93 26.23 −2.60

5 2 50.52 50.55 0.06

5 3 47.39 47.50 0.23

5 5 42.76 43.14 0.89

5 10 36.33 37.17 2.31

5 15 33.34 34.11 2.31

5 20 31.62 32.26 2.02

10 2 50.91 50.98 0.14

10 3 48.25 48.47 0.46

10 5 44.51 45.16 1.46

10 10 39.71 41.10 3.50

10 15 37.53 39.20 4.45

10 20 36.24 38.10 5.13

20 2 51.52 51.61 0.17

20 3 49.47 49.78 0.63

20 5 46.79 47.62 1.77

20 10 43.54 45.28 4.00

20 15 42.21 44.30 4.95

20 20 41.39 43.75 5.70

The curves in Figures 4.1 and 4.2 show that, for a given buffer size B, throughput de-
creases as line length M increases. The more stations in the line, the more system interac-
tions occur due to blocking and starving. However, the curves flatten out as M increases,
indicating that the additional impact of these interactions diminishes with each addi-
tional station. In the limit as M tends to infinity, the throughput approaches a minimum
value that is greater than zero, provided the buffer size B is one or greater. Thus, for a line
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where B ≥ 1, throughput ρ satisfies the property

lim
M→∞

ρ > 0. (5.3)

The result given in (5.3) can be deduced by means of contradiction. Consider a line of
any length M, with nonzero buffers. If the throughput ρ is zero, then the last station
(station M) does not process any jobs. Since the last station is never blocked (assump-
tion (e) in Section 2), this implies that last station is always starved, that is, the buffer
before the last station is always empty. It follows that next-to-last station (station M-1)
cannot be blocked and is always starved, that is, the buffer before station M-1 is always
empty. Repeating this argument up the line to the second station (station 2), we obtain
that station 2 is always starved and the buffer before station 2 (i.e., the first buffer) is al-
ways empty. Therefore, the first station cannot be blocked. Since the first station is never
starved (assumption (e)), it is able to process jobs to fill the buffer before station 2. This
contradicts that this buffer is always empty. For any line length M, therefore, throughput
ρ cannot be zero. Thus, we obtain ρ > 0 when M→∞.

In the special case of no buffers (B = 0), the above argument does not hold, since the
system reduces to a transfer line in which a failure at any station stops the entire line.
Thus, for B = 0, the probability that the line is down approaches 1 as the number of
stations M tends to infinity, and the throughput therefore approaches zero.

Using (3.6) and letting line length M →∞, system throughput ρ approaches the fol-
lowing result:

ρ−→ S

1 + λ/µ+ (λ/µ)/
{

(1/4)(1 + 2λ/µ)(Bµ/S)
} . (5.4)

As discussed above, this asymptotic result is nonzero for any buffer size B ≥ 1, and is zero
only in the special case B = 0.

Note that the formula derived in this paper applies to a line in which stations have fixed
processing times (1/S) and random failures. This type of line is typical for automated
operations. For lines with manual operations, stations typically have processing times that
vary randomly from job to job, but are not subject to machine failures. Analytical results
for throughput of a line with variable processing times have been presented by several
authors (Haydon [14]; Buzacott [5]; Blumenfeld [3]; De Kok [8]; Askin and Standridge
[2]; Martin [19]; Liu et al. [18]).

6. Conclusion

This paper presents an analytical formula for the throughput of a serial production line,
in which workstations are subject to random failures. The formula is derived from the
equations developed in [1] for a two-station line and extended to give a close
approximation for a line of any length. It gives an estimate of throughput in the special
case of identical stations and equally sized buffers. This special case result allows quick
and convenient “back of the envelope” calculations with minimal data. Such calculations
are valuable in initial design stage of a new system, when detailed data are not available.
The formula has a simple analytical form, so that the mathematical relationships between
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the system parameters are readily apparent. This is important in gaining insight into sys-
tem behavior and in assessing the benefits of system improvements.

With the recent development of web-based technology, the formula has an additional
benefit. It is a closed-form function that does not involve any iterative procedures. The
formula is therefore ideally suited to being programmed in a Java applet for interac-
tive analyses on a graphical display, so that the impact on throughput of any parameter
changes can be seen virtually instantaneously.

In summary, the formula provides a handy way of assessing throughput performance
as a first step in production system design. It allows quick comparisons between design
alternatives before more detailed analyses are conducted. Initial approximate estimates
of throughput are useful in decision-making, where it is necessary to consider tradeoffs
between throughput and other performance criteria, such as operating costs and invest-
ment planning. Since the formula is not limited to a particular programming language or
operating system, it can be used on its own for throughput calculations or be included as
one component of a comprehensive decision-making tool for planning purposes.
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