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We present a general reliability analysis of a renewable multiple cold standby system at-
tended by a single repairman. Our analysis is based on a refined methodology of queuing
theory. The particular case of deterministic failures provides an explicit exact result for
the survival function of the duplex system.

1. Introduction

Apart from important but particular cases, such as state-dependent exponential distri-
butions, for example, [1, 4] or an arbitrary repair time distribution [12], the reliability
analysis of multiple cold standby systems is far from complete.

We present a general reliability analysis of a basic multiple cold standby system at-
tended by a single repairman, henceforth called a K-system. The K-system consists of a
single operative unit (the on-line unit) endowed with K units in cold standby. The system
acts as a closed queueing system evolving in time, that is, any failed unit is immediately
replaced by a standby spare (if available upon failure) and taken into repair provided that
the repairman is idle. Otherwise, the failed unit has to queue for repair. On the other
hand, a repaired unit lines up in standby or becomes instantaneously operative if the K
remaining units are down. Our K-system is the statistical dual of the K-system described
in [12]. An example of the so-called duplex system (K = 1) is the (internal) cooling de-
vice of the International Space Station (ISS) sustained by an (external) cooling device in
cold standby. Note that astronauts can provide local repair.

OurK-system satisfies the usual conditions, that is, independent identically distributed
random variables, perfect repair and queuing. Each operative unit has an arbitrary life-
time (failure-free time) distribution, a zero failure rate in standby (the so-called cold
standby [2]), and a constant repair rate [8]. Note that our particular assumptions are less
general with regard to the previous assumptions proposed in [1, 4].

But, on the other hand, our present assumptions are less restrictive since we are dealing
with an arbitrary lifetime distribution.

In order to derive the survival function of the K-system, we first introduce a stochas-
tic process defined on some filtered probability space {Ω,B,P,F}. Moreover, we define
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a suitable stopping time τK , called the first system-down time. Then, we derive a straight-
forward relationship between the Laplace-Stieltjes-transforms Ee−sτK and Ee−sβK , where
βK denotes the busy period of the queuing system M|G|1|K (see Cohen [6] for a precise
description).

Finally, as an example, we derive the exact explicit survival function of the duplex
system in the particular case of deterministic failures.

2. Formulation

Consider the basic K + 1-unit cold standby system attended by a single repairman, hence-
forth called the K-system. Our K-system is the statistical dual of the K-system described
in [12]. The K-system satisfies the usual conditions (i.i.d. random variables, perfect re-
pair, queuing). The set of K standby units is usually called a socket. Each operative unit
has an arbitrary lifetime distribution F(·), F(0) = 0, a zero failure rate in standby (cold
standby), and a constant repair rate λ > 0. The Laplace-Stieltjes-transform of F(·) is de-
noted by f (s), Res≥ 0. Let Xt be the number of failed units in the repair shop at time t,
so that Xt ∈ {0, . . . ,K + 1}. The non-Markovian stochastic process {Xt, t ≥ 0} is defined
on a filtered probability space {Ω,B,P,F}, where the history F := {Ft, t ≥ 0} satisfies the
Dellacherie conditions

(i) F0 contains the P-null sets of B,
(ii)

∀t ≥ 0, Ft =
⋂
u>t

Fu, (2.1)

that is, the family F is right continuous.
Consider the F-stopping time

τK := inf
{
t > 0 : Xt = K + 1 | X0 = 1

}
. (2.2)

In reliability engineering, τK is usually called the first system-down time. The origin of
time is fixed at the instant of the first failure, so that the busy period of the repairman
starts at t = 0, that is, X0 = 1, P-a.s. Finally, let

R(K)(t) := P
{
τK > t

}
, t ≥ 0. (2.3)

The tail R(K)(·) is called the survival function of the K-system.

3. A preliminary result

We are going to determine Ee−sτK by means of a theorem due to Cohen [5] and Vander-
perre [10]. Let Dω be a circle at the origin of the complex ω-plane, with counterclockwise
orientation and with radius |ω| < |ρ(s)|, where ρ(s) is the smallest root of the functional
equation ω = f (s+ λ− λω). Note that ρ(s) = Ee−sβ, where β denotes the busy period of
the queuing system M|G|1|∞. See Lemma of Takács, for example, [6, Appendix].
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Theorem 3.1 [5, 10]. For k ≥ 1 and Res≥ 0,

Ee−sβk = 1− (1− f (s)
)
(1/2πi)

∫
Dω

(1−ω)−1
(
ω− f (s+ λ− λω)

)−1
(dω/ωk−1)

1− (1− f (s)
)
(1/2πi)

∫
Dω

(1−ω)−1
(
ω− f (s+ λ− λω)

)−1
(dω/ωk)

. (3.1)

4. The survival function

It is plain that τK does not depend on the queuing order in the socket! Therefore, with-
out loss of generality, we may assume (nonbreak-in) overall priority in operation for any
repaired unit (if any). Consequently, taking the Markov property of the exponential dis-
tribution into account,

τK
D=

K∑
k=1

βk, K ≥ 1. (4.1)

It should be noted that the random variables βk, k = 1, . . . ,K , are statistically indepen-
dent. Hence,

Ee−sτK =
K∏
k=1

Ee−sβk . (4.2)

By Theorem 3.1 and the identity

1
2πi

∫
Dω

(1−ω)−1(ω− f (s+ λ− λω)
)−1

dω = 0, (4.3)

we obtain the following theorem.

Theorem 4.1. For K ≥ 1 and Res≥ 0,

Ee−sτK =
{

1− (1− f (s)
) 1

2πi

∫
Dω

(1−ω)−1(ω− f (s+ λ− λω)
)−1 dω

ωK

}−1

. (4.4)

Remarks 4.2. (i) There exist several methods to evaluate the Cauchy-type integral. A gen-
eral method could be based on Faa di Bruno’s formula, for example, [9, Appendix] or on
series expansion techniques, for example, [6, 12].

(ii) Note that a probability distribution is uniquely determined by its Laplace-Stieltjes-
transform. Hence, R(K)(·) follows from inversion of Ee−sτK (see forthcoming example).

(iii) It should be remarked that even the simplest case K = 1 has several tantalizing
technical applications, for example, [7]. Therefore, we consider the case K = 1 in detail.

5. The duplex system

As an example, we consider the duplex system (K = 1) subjected to the particular case of
deterministic failures, that is, let

F(t)≡U
(
t− t0

)
:=



1, if t ≥ t0 > 0,

0, if t < t0.
(5.1)
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Clearly, f (s)= e−st0 . By Theorem 4.1 and Cauchy’s theorem, we obtain

Ee−sτ1 = e−(s+λ)t0
{

1− e−st0
(
1− e−λt0

)}−1
, (5.2)

or

Ee−sτ1 =
∞∑
k=0

Pke
−s(k+1)t0 , (5.3)

where

Pk := e−λt0
(
1− e−λt0

)k
; k = 0,1, . . . . (5.4)

Hence, by inversion,

R(1)(t)= 1−
∞∑
k=0

PkU
(
t− (k+ 1)t0

)
, t ≥ 0. (5.5)

Note that the survival function is the tail of a lattice distribution with period t0 and with
jump Pk at (k+ 1)t0; k = 0,1, . . . .

Remarks 5.1. Observe that R(K)(·) is also uniquely determined by its Laplace transform

1−Ee−sτK

s
=
∫∞

0
e−stR(K)(t)dt, Res > 0. (5.6)

Consequently, the survival function of the K-system could be computed by a general
numerical inversion procedure introduced by Blanc [3]. In particular, Blanc’s method
seems to be of interest in the case of nonrational transforms. Obviously, the case of ratio-
nal transforms (related to Coxian distributions) should be handled by exact or numerical
user-friendly software as proposed in the previous literature (see, e.g., [11] for a detailed
application). Finally, the exact explicit survival function could also be obtained, for a
particular family of nonrational transforms, by an inversion procedure based on elegant
methods of complex analysis [12].

6. Conclusion

Our proposed K-system (and its dual) can be analyzed by elegant probabilistic methods
based on queuing theory. The general K-system, subject to arbitrary lifetime and repair
time distributions, invokes an open (harsh) problem in the theory of statistical reliability
engineering. The analysis of renewable multiple standby systems is far from complete.
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