
SET DIFFERENTIAL EQUATIONS WITH CAUSAL OPERATORS

Z. DRICI, F. A. MCRAE, AND J. VASUNDHARA DEVI

Received 21 October 2004

We obtain some basic results on existence, uniqueness, and continuous dependence of
solutions with respect to initial values for set differential equations with causal operators.

1. Introduction

Differential equations involving causal operators have gained much attention of late and
some results are assembled in a recent monograph [1]. The term causal is adopted from
the engineering literature. Basically, a causal operator is a nonanticipative operator. The
theory of these operators has the powerful quality of unifying ordinary differential equa-
tions, integrodifferential equations, differential equations with finite or infinite delay,
Volterra integral equations, and neutral functional equations, to name a few.

The study of set differential equations (SDE) in a metric space is interesting due to its
applicability to multivalued differential inclusions and fuzzy differential equations and its
inclusion of ordinary differential systems as a special case [2, 4].

A combination of these two concepts leads to set differential equations with causal op-
erators. In this paper, using this setup, we obtain some basic results on existence, unique-
ness, and continuous dependence of solutions with respect to initial values.

2. Preliminaries

Let Kc(Rn) denote the collection of all nonempty compact and convex subsets of Rn.
Define the Hausdorff metric

D[A,B]=max

[
sup
x∈B

d(x,A), sup
y∈A

d(y,B)

]
, (2.1)

where A, B are bounded sets in Rn and d(x,A) = inf[d(x, y) : y ∈ A]. We observe that
Kc(Rn) is a complete metric space.

Suppose that the space Kc(Rn) is equipped with the natural algebraic operations of ad-
dition and nonnegative scalar multiplication. Then, Kc(Rn) becomes a semilinear metric
space, which can be embedded as a complete cone into a corresponding Banach space.
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We note that the Hausdorff metric (2.1) satisfies the following properties:

D[A+C,B+C]=D[A,B], D[A,B]=D[B,A], (2.2)

D[λA,λB]= λD[A,B], (2.3)

D[A,B]≤D[A,C] +D[C,B], (2.4)

for all A, B, C ∈ Kc(Rn) and λ∈R+.
Given any two sets A, B ∈ Kc(Rn) if there exists a set C ∈ Kc(Rn) satisfying A= B+C,

then A−B is defined as the Hukuhara difference of the sets A and B.
The mapping F : I → Kc(Rn) has a Hukuhara derivative DHF(t0) at a point t0 ∈ I , if

lim
h→0+

F
(
t0 +h

)−F
(
t0
)

h
, lim

h→0+

F
(
t0
)−F

(
t0−h

)
h

(2.5)

exist in the topology of Kc(Rn) and are equal to DHF(t0). Here I is any interval in R.
Now we can consider the set differential equation

DHU = F(t,U), U
(
t0
)=U0 ∈ Kc

(
Rn
)
, t0 ≥ 0, (2.6)

where F ∈ C[R+×Kc(Rn),Kc(Rn)].

Definition 2.1. The mapping U ∈ C1[J ,Kc(Rn)], J = [t0, t0 + a], is said to be a solution of
(2.6) on J if it satisfies (2.6) on J .

Since U(t) is continuously differentiable, we have

U(t)=U0 +
∫ t

t0
DHU(s)ds, t ∈ J. (2.7)

Hence, we can associate with the IVP (2.6) the Hukuhara integral

U(t)=U0 +
∫ t

t0
F
(
s,U(s)

)
ds, t ∈ J. (2.8)

The following properties are useful tools in proving theorems in the SDE setup. If
F : [t0,T]→ Kc(Rn) is integrable, we have

∫ t2

t0
F(t)dt =

∫ t1

t0
F(t)dt+

∫ t2

t1
F(t)dt, t0 ≤ t1 ≤ t2 ≤ T ,

∫ T

t0
λF(t)dt = λ

∫ T

t0
F(t)dt, λ∈R+.

(2.9)

Also, if F, G : [t0,T]→ Kc(Rn) are integrable, then D[F(·),G(·)] : [t0,T]→R is integrable
and

D
[∫ t

t0
F(s)ds,

∫ t

t0
G(s)ds

]
≤
∫ t

t0
D
[
F(s),G(s)

]
ds. (2.10)
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We observe that

D[A,θ]= ‖A‖ = sup
a∈A

‖a‖ (2.11)

for A∈ Kc(Rn), where θ is the zero element of Rn, which is regarded as a one-point set.

3. Main results

We will devote this section to extend certain basic results to SDEs with causal or nonan-
ticipative maps of Volterra type, since such equations provide a unified treatment of the
basic theory of SDEs, SDEs with delay and set integrodifferential equations which in turn
include ordinary dynamic systems of the corresponding types.

Let E = C[[t0,T],Kc(Rn)] with norm

D0[U ,θ]= sup
t0≤t≤T

D
[
U(t),θ

]
. (3.1)

Definition 3.1. Suppose that Q ∈ C[E,E], then Q is said to be a causal map or a nonan-
ticipative map if U(s) = V(s), t0 ≤ s ≤ t ≤ T , where U ,V ∈ E, then (QU)(s) = (QV)(s),
t0 ≤ s≤ t.

We define the IVP for an SDE with causal map, using the Hukuhara derivative as fol-
lows:

DHU(t)= (QU)(t), U
(
t0
)=U0 ∈ Kc

(
Rn
)
. (3.2)

Before we proceed to prove an existence and uniqueness result for (3.2), we need the
following comparison results.

Theorem 3.2. Assume that m∈ C[J ,R+], g ∈ C[J ×R+,R+] and, for t ∈ J = [t0,T],

D−m(t)≤ g
(
t,|m|0(t)

)
, (3.3)

where |m|0(t)= supt0≤s≤t |m(s)|. Suppose that r(t)= r(t, t0,w0) is the maximal solution of
the scalar differential equation

w′ = g(t,w), w(t0)=w0 ≥ 0, (3.4)

existing on J . Then, m(t0)≤w0 implies m(t)≤ r(t), t ∈ J .

Proof. To prove the stated inequality, it is enough to prove that

m(t) < w
(
t, t0,w0,ε

)
, t ≥ t0, t ∈ J , (3.5)

where w(t, t0,w0,ε) is any solution of

w′ = g(t,w) + ε, w
(
t0
)=w0 + ε, ε > 0, (3.6)

since limε→0+ w(t, t0,w0,ε)= r(t, t0,w0).
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If (3.5) is not true, there exists a t1 > t0 such that m(t1) = w(t1, t0,w0,ε) and m(t) <
w(t, t0,w0,ε), t0 ≤ t < t1, in view of the fact m(t0) < w0 + ε.

Hence,

D−m
(
t1
)≥w′

(
t1, t0,w0,ε

)= g
(
t1,w

(
t1, t0,w0,ε

))
+ ε. (3.7)

Now g(t,w)≥ 0 implies that w(t, t0,w0,ε) is nondecreasing in t, and this gives

|m|0
(
t1
)=w

(
t1, t0,w0,ε

)=m
(
t1
)
, (3.8)

which in turn yields

D−m
(
t1
)≤ g

(
t1,|m|0

(
t1
))= g

(
t1,w

(
t1, t0,w0,ε

))
(3.9)

which is a contradiction to (3.7). Hence the theorem follows. �

Next we obtain an estimate of the distance between any two solutions of (3.2) in terms
of the maximal solution of (3.4) utilizing Theorem 3.2.

We define D0[U ,V](t)=maxt0≤s≤t D[U(s),V(s)].

Theorem 3.3. Let Q ∈ C[E,E] be a causal map such that for t ∈ J ,

D
[
(QU)(t),(QV)(t)

]≤ g
(
t,D0[U ,V](t)

)
, (3.10)

where g ∈ C[J ×R+,R+]. Suppose further that the maximal solution r(t, t0,w0) of the dif-
ferential equation (3.4) exists on J . Then, if U(t),V(t) are any two solutions of (3.2) through
U(t0)=U0,V(t0)=V0, U0,V0 ∈ Kc(Rn) on J , respectively,

D
[
U(t),V(t)

]≤ r
(
t, t0,w0

)
, t ∈ J , (3.11)

provided that D[U0,V0]≤w0.

Proof. Set m(t)=D[U(t),V(t)]. Then m(t0)=D[U0,V0]≤ w0. Now for small h > 0, t ∈
J , consider m(t + h) = D[U(t + h),V(t + h)]. Using the property (2.4) of the Hausdorff

metric D, we successively get the following relations:

m(t+h)≤D
[
U(t+h),U(t) +h(QU)(t)

]
+D

[
U(t) +h(QU)(t),V(t+h)

]≤D
[
U(t+h),U(t) +h(QU)(t)

]
+D

[
U(t) +h(QU)(t),V(t) +h(QV)(t)

]
+D

[
V(t) +h(QV)(t),V(t+h)

]
≤D

[
U(t+h),U(t) +h(QU)(t)

]
+D

[
U(t) +h(QU)(t),U(t) +h(QV)(t)

]
+D

[
U(t) +h(QV)(t),V(t) +h(QV)(t)

]
+D

[
V(t) +h(QV)(t),V(t+h)

]
.

(3.12)

Next, using the property (2.2) of the Hausdorff metric D and the fact that the Hukuhara
differences U(t+h)−U(t) and V(t+h)−V(t) exist for small h > 0, we arrive at

m(t+h)≤D
[
U(t) +Z(t,h),U(t) +h(QU)(t)

]
+D

[
h(QU)(t),h(QV)(t)

]
+D

[
U(t),V(t)

]
+D

[
V(t) +h(QV)(t),V(t) +Y(t,h)

]
,

(3.13)
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where U(t + h) = U(t) + Z(t,h) and V(t + h) = V(t) +Y(t,h). Again the property (2.2)
gives

m(t+h)≤D
[
Z(t,h),h(QU)(t)

]
+D

[
h(QU)(t),h(QV)(t)

]
+D

[
U(t),V(t)

]
+D

[
h(QV)(t),Y(t,h)

]
.

(3.14)

Since the Hukuhara differences exist, we can replace Z(t,h) and Y(t,h) with U(t + h)−
U(t) and V(t+h)−V(t), respectively. This gives, on subtracting m(t) and dividing both
sides with h > 0,

m(t+h)−m(t)
h

≤D
[
U(t+h)−U(t)

h
, (QU)(t)

]
+D

[
(QU)(t),(QV)(t)

]

+D
[

(QV)(t),
V(t+h)−V(t)

h

]
.

(3.15)

Now, taking limit supremum as h→ 0+ and using the fact thatU(t) and V(t) are solutions
of (3.2), along with the assumption (3.10) we obtain

D+m(t)≤D
[
(QU)(t),(QV)(t)

]≤ g
(
t,D0[U ,V](t)

)= g
(
t,|m|0(t)

)
, t ∈ J. (3.16)

Theorem 3.2 now guarantees the stated conclusion and the proof is complete. �

Corollary 3.4. Let Q ∈ C[E,E] be a causal map such that

D
[
(QU)(t),θ]≤ g

(
t,D0[U ,θ](t)

)
, (3.17)

where g ∈ C[J ×R+,R+]. Also, suppose that r(t, t0,w0) is the maximal solution of the scalar
differential equation (3.4). Then, if U(t, t0,U0) is any solution of (3.2) through (t0,U0) with
U0 ∈ Kc(Rn), D[U0,θ]≤w0 implies D[U(t),θ]≤ r(t, t0,w0), t ∈ J .

We begin by proving a local existence result using successive approximations.

Theorem 3.5. Assume that

(a) Q ∈ C[B,E] is a causal map, where B = B(U0,b) = {U ∈ E : D0[U ,U0] ≤ b} and
D0[(QU),θ](t)≤M1, on B;

(b) g ∈ C[J × [0,2b],R+], g(t,w)≤M2 on J × [0,2b], g(t,0)≡ 0, g(t,w) is nondecreas-
ing in w for each t ∈ J and w(t)= 0 is the only solution of

w′ = g(t,w), w
(
t0
)= 0 on J ; (3.18)

(c) D[(QU)(t),(QV)(t)]≤ g(t,D0[U ,V](t)) on B.

Then, the successive approximations defined by

Un+1(t)=U0 +
∫ t

t0
(QUn)(s)ds, n= 0,1,2, . . . , (3.19)

exist on J0 = [t0, t0 +η), where η =min[T − t0,b/M] and M =max(M1,M2), and converge
uniformly to the unique solution U(t) of (3.2).
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Proof. For t ∈ J0, we have, by induction, using property (2.2) and (2.10) of the Hausdorff

metric D,

D
[
Un+1(t),U0

]=D
[
U0 +

∫ t

t0

(
QUn

)
(s)ds,U0

]
=D

[∫ t

t0

(
QUn

)
(s)ds,θ

]

≤
∫ t

t0
D
[(
QUn

)
(s),θ

]
ds

≤
∫ t

t0
D0
[
QUn,θ

]
(t)ds≤M1

(
t− t0

)≤M
(
t− t0

)≤ b,

(3.20)

which shows the successive approximations are well defined on J0.
Next, we define successive approximations for the problem (3.18) as follows:

w0(t)=M
(
t− t0

)
,

wn+1(t)=
∫ t

t0
g
(
s,wn(s)

)
ds, t ∈ J0, n= 0,1,2, . . . .

(3.21)

Then,

w1(t)=
∫ t

t0
g
(
s,w0(s)

)
ds≤M2

(
t− t0

)≤M
(
t− t0

)=w0(t). (3.22)

Assume, for some k > 1, t ∈ J0, that

wk(t)≤wk−1(t). (3.23)

Then, using the monotonicity of g, we get

wk+1(t)=
∫ t

t0
g
(
s,wk(s)

)
ds≤

∫ t

t0
g
(
s,wk−1(s)

)
ds=wk(t). (3.24)

Hence, the sequence {wk(t)} is monotone decreasing.
Since w′k(t)= g(t,wk−1(t))≤M2, t ∈ J0, we conclude by Ascoli-Arzela theorem and the

monotonicity of the sequence {wk(t)} that

lim
t→∞wn(t)=w(t) (3.25)

uniformly on J0. Since w(t) satisfies (3.18), we get from condition (b) that w(t)≡ 0 on J0.
Observing that for each t ∈ J0, t0 ≤ s≤ t,

D
[
U1(s),U0

]=D
[
U0 +

∫ s

t0

(
QU0

)
(ξ)dξ,U0

]
=D

[∫ s

t0

(
QU0

)
(ξ)dξ,θ

]

≤
∫ s

t0
D
[(
QU0

)
(ξ),θ

]
dξ ≤D0

[(
QU0

)
,θ
](
s− t0

)
≤D0

[(
QU0

)
,θ
](
t− t0

)≤M1
(
t− t0

)≤M
(
t− t0

)=w0(t),

(3.26)

which implies that D0[U1,U0](t)≤w0(t). We assume, for some k > 1,

D0
[
Uk,Uk−1

]
(t)≤wk−1(t), t ∈ J0. (3.27)
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Consider, for any t ∈ J0, t0 ≤ s≤ t,

D
[
Uk+1(s),Uk(s)

]≤
∫ s

t0
D
[(
QUk

)
(ξ),

(
QUk−1

)
(ξ)
]
dξ ≤

∫ s

t0
g
(
ξ,D0

[
Uk,Uk−1

]
(ξ)
)
dξ

≤
∫ s

t0
g
(
ξ,wk−1(ξ)

)
dξ ≤

∫ t

t0
g
(
ξ,wk−1(ξ)

)
dξ =wk(t),

(3.28)

which further gives

D0
[
Uk+1,Uk

]
(t)≤wk(t), t ∈ J0. (3.29)

Thus, we conclude that

D0
[
Un+1,Un

]
(t)≤wn(t), (3.30)

for t ∈ J0 and for all n= 0,1,2, . . . .
We claim that {Un(t)} is a Cauchy sequence. To show this, let n ≤m. Setting v(t) =

D[Un(t),Um(t)] and using (3.19), we get

D+v(t)≤D
[
DHUn(t),DHUm(t)

]
(t)=D

[(
QUn−1

)
(t),
(
QUm−1

)
(t)
]

≤D
[(
QUn−1

)
(t),
(
QUn

)
(t)
]

+D
[(
QUn

)
(t),
(
QUm

)
(t)
]

+D
[(
QUm

)
(t),
(
QUm−1

)
(t)
]≤ g

(
t,D0

[
Un−1,Un

]
(t)
)

+ g
(
t,D0

[
Un,Um

]
(t)
)

+ g
(
t,D0

[
Um−1,Um

]
(t)
)≤ g

(
t,wn−1(t)

)
+ g
(
t,|v|0(t)

)
+ g
(
t,wn−1(t)

)
= g
(
t,|v|0(t)

)
+ 2g

(
t,wn−1(t)

)
.

(3.31)

The above inequalities yield, on using Theorem 3.2, the estimate

v(t)≤ rn(t), t ∈ J0, (3.32)

where rn(t) is the maximal solution of

r′n = g
(
t,rn

)
+ 2g

(
t,wn−1(t)

)
, rn(t0)= 0, (3.33)

for each n. Since as n→∞, 2g(t,wn−1(t))→ 0 uniformly on J0, it follows by [3, Lemma
1.3.1] that rn(t)→ 0, as n→∞ uniformly on J0. This implies from (3.30) that Un(t) con-
verges uniformly to U(t) on J0 and clearly U(t) is a solution of (3.2).

To prove uniqueness, let V(t) be another solution of (3.2) on J0. Set m(t) = D[U(t),
V(t)]. Then, m(t0)= 0 and

D+m(t)≤ g
(
t,|m|0(t)

)
, t ∈ J0. (3.34)

Since m(t0)= 0, it follows from Theorem 3.2 that

m(t)≤ r
(
t, t0,0

)
, t ∈ J0, (3.35)
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where r(t, t0,0) is the maximal solution of (3.18). The assumption (b) now shows that
U(t)=V(t), t ∈ J0, proving uniqueness. �

Assuming local existence, we next discuss a global existence result.

Theorem 3.6. Let Q ∈ C[E,E] be a causal map such that

D
[
(QU)(t),θ

]≤ g
(
t,D0[U ,θ](t)

)
, (3.36)

where g ∈ C[R2
+,R+], g(t,w) is nondecreasing in w for each t ∈ R+ and the maximal so-

lution r(t)= r(t, t0,w0) of (3.4) exists on [t0,∞). Suppose further that Q is smooth enough
to guarantee the local existence of solutions of (3.2) for any (t0,U0) ∈ R+ ×Kc(Rn). Then,
the largest interval of existence of any solution U(t, t0,U0) of (3.2) is [t0,∞), whenever
D[U0,θ]≤w0.

Proof. Suppose that U(t)=U(t, t0,U0) is any solution of (3.2) existing on [t0,β), t0<β<∞
with D[U0,θ]≤w0, and the value of β cannot be increased. Define m(t)=D[U(t),θ] and
note that m(t0)≤w0. Then, it follows that

D+m(t)≤D
[
DHU(t),θ

]≤D
[
(QU)(t),θ

]≤ g
(
t,D0[U ,θ](t)

)
. (3.37)

Using Theorem 3.2, we obtain

m(t)≤ r(t), t0 ≤ t < β. (3.38)

For any t1, t2 such that t0 < t1 < t2 < β, using (3.36) and the properties of Hausdorff met-
ric D,

D
[
U
(
t1
)
,U
(
t2
)]=D

[∫ t1

t0
(QU)(s)ds,

∫ t2

t0
(QU)(s)ds

]

≤
∫ t2

t1
D
[
(QU)(s),θ

]
ds≤

∫ t2

t1
g
(
s,D0[U ,θ](s)

)
ds.

(3.39)

Employing the estimate (3.38) and the monotonicity of g(t,w), we find

D
[
U
(
t1
)
,U
(
t2
)]≤

∫ t2

t1
g
(
s,r(s)

)
ds= r

(
t2
)− r

(
t1
)
. (3.40)

Since limt→β− r(t, t0,w0) exists, taking the limit as t1, t2 → β−, we get that {U(tn)} is a
Cauchy sequence and therefore limt→β−U(t, t0,U0)=Uβ exists. We then consider the IVP

DHU(t)= (QU)(t), U(β)=Uβ. (3.41)

As we have assumed the local existence, we note that U(t, t0,U0) can be continued be-
yond β, contradicting our assumption that β cannot be increased. Thus, every solution
U(t, t0,U0) of (3.2) such that D[U0,θ]≤w0 exists globally on [t0,∞) and hence the proof
follows. �

Next, we will discuss the continuous dependence of solutions with respect to initial
values.
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Lemma 3.7. Let Q ∈ C[E,E] be a causal map and let

G
(
t,k(t)

)= sup
[
D
[
(QU)(t),θ

]
: D
[
U(t),U0

]≤ k(t)
]
. (3.42)

Assume that r∗(t, t0,0) is the maximal solution of

w′ =G(t,w), w
(
t0
)= 0, on J. (3.43)

Let U(t)=U(t, t0,0) be the solution of (3.2). Then,

D
[
U(t),U0

]≤ r∗
(
t, t0,0

)
, t ∈ J. (3.44)

Proof. Set m(t)=D[U(t),U0], t ∈ J . Then,

m(t+h)−m(t)=D
[
U(t+h),U0

]−D
[
U(t),U0

]
=D

[
U(t+h),U(t) +h(QU)(t)

]
+D

[
U(t) +h(QU)(t),U(t)

]
.

(3.45)

Hence,

m(t+h)−m(t)
h

≤D
[
U(t+h)−U(t)

h
, (QU)(t)

]
+D

[
(QU)(t),θ

]
,

D+m(t)≤D
[
(QU)(t),θ

]≤ sup
[
D
[
(QU)(t),θ

]
: D
[
U(t),U0

]≤m(t)
]≤G

(
t,m(t)

)
.

(3.46)

This implies by [3, Theorem 1.4.1] that

D
[
U(t),U0

]≤ r∗
(
t, t0,0

)
, t ∈ J. (3.47)

�

Theorem 3.8. Assume that

(a) assumptions (a), (b), and (c) of Theorem 3.5 hold;
(b) the solutions w(t, t0,w0) of (3.4) through every point (t0,w0) are continuous with

respect to (t0,w0).

Then, the solution U(t)=U(t, t0,U0) of (3.2) is continuous with respect to (t0,U0).

Proof. Let U(t) = U(t, t0,U0), V(t) = V(t, t0,V0), U0,V0 ∈ Kc(Rn) be two solutions of
(3.2). Then, defining m(t)=D[U(t),V(t)], we get from Theorem 3.3 the estimate

D
[
U(t),V(t)

]≤ r(t, t0,D[U0,V0]), t ∈ J. (3.48)

Since limU0→V0 r(t, t0,D[U0,V0])= r(t, t0,0) uniformly on J and by hypothesis r(t, t0,0)≡
0, consequently limU0→V0 U(t, t0,U0)=V(t, t0,V0) uniformly and henceU(t, t0,U0) is con-
tinuous with respect to U0.

To prove continuity with respect to t0, we let U(t) = U(t, t0,U0),V = V(t,τ0,U0) be
two solutions of (3.2) with τ0 > t0. Again, setting m(t) = D[U(t),V(t)] and noting that
m(τ0)=D[U(τ0),U0], using Lemma 3.7, we get

m
(
τ0
)≤ r∗

(
τ0, t0,U0

)
. (3.49)
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Hence, using Theorem 3.3, we obtain

m(t)= r̃(t), t ≥ τ0, (3.50)

where r̃(t,τ0,r∗(τ0, t0,0)) is the maximal solution of (3.2) through (τ0,r∗(τ0, t0,0)). Since
r∗(t, t0,0)= 0, we have

lim
τ0→t0

r̃
(
t,τ0,r∗

(
τ0, t0,0

))= r̃
(
t, t0,0

)
, (3.51)

uniformly on J . By hypothesis, r̃(t, t0,0) ≡ 0 which proves the continuity of U(t, t0,U0)
relative to t0. �
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