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This paper studies the asymptotic stability of linear neutral systems with multiple time
delays. Using the characteristic equation of the system, new delay-independent stability
criteria are derived in terms of the spectral radius of modulus matrices. Numerical exam-
ples are given to demonstrate the validity of our new criteria.

1. Introduction

Mathematical models with time delays are often encountered in various engineering sys-
tems due to measurement and computational delays, transmission and transport lags.
Since the existence of time delays is frequently the source of instability, an important
theme in neutral delay-differential systems is the stability of response characteristics.

Different methods have been presented to deal with the stability problem of neutral
systems with time delays in the literature. A number of stability criteria based on the
characteristic equation approach, involving the determination of eigenvalues, measures
and norms of matrices, or matrix conditions in terms of Hurwitz matrices, have been
presented by Hale et al. [4], Li [9], Hu et al. [6], and Cao and He [1, 2]. Some stabil-
ity criteria (delay-independent or delay-dependent) are given in terms of the Lyapunov
function and matrix inequalities (see, e.g., Lien et al. [10], Fridman [3], and Niculescu
[11]). Based on the linear matrix inequality (LMI) approach, robust stability conditions
have been developed to make the criteria less conservative, see, for example, Park [12].

Recently, the study of stability has been extended to neutral systems with multiple time
delays. By making use of the characteristic equation of the system, Hui and Hu [7] derived
a delay-independent stability criterion in terms of the matrix measure and spectral norm
of the matrix. In order to reduce the conservatism in the criterion of Hui and Hu [7],
Won and Park [13] proposed a new delay-independent criterion in terms of the spectral
radius of modulus matrices. However, we have found that a technical error, as shown in
the next section, exists in the proof of the criterion of Won and Park [13].

This paper deals with the asymptotic stability of linear neutral systems with multiple
time delays. Using the characteristic equation of the system, new delay-independent sta-
bility criteria are derived. Scalar inequalities involving the spectral radius and modulus
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Table 2.1

Rn(Cn) n-dimensional real (complex) space

Rn×n (Cn×n) Set of all real (complex) n×n matrices

I Unit matrix

λj(A) jth eigenvalue of matrix A

λmax(A) Maximum eigenvalue of matrix A

AT Transpose of matrix A

A∗ Conjugate transpose of matrix A

det(A) Determinant of matrix A

Re(s) Real part of complex number s

ρ(A) Spectral radius of matrix A

|s| Modulus of complex number s

|A| Modulus matrix of matrix A; |A| = [|ai j|] with A= [ai j]

A≤ B aij ≤ bi j with A= [ai j] and B = [bi j]

‖A‖ Spectral norm of matrix A; ‖A‖ = √λmax(A∗A)

µ(A) Matrix measure of matrix A; µ(A)= 1
2
λmax(A+A∗)

matrices constitute the mathematical foundations of our approach. Numerical examples
are given to demonstrate the validity of our new criteria and to compare them with the
existing ones.

2. System description and previous results

Throughout this paper, the conventions in Table 2.1 are used.
Consider the following linear neutral system with multiple time delays:

ẋ(t)= Ax(t) +
m∑
j=1

[
Bjx

(
t− τj

)
+Cjẋ

(
t− τj

)]
, (2.1)

where x(t)∈ Cn×1 is the state vector, the constant parameters τj ≥ 0 with τ =max{τj , j =
1,2, . . . ,m} represent the delay arguments, A, Bj , and Cj ∈ Cn×n ( j = 1,2, . . . ,m), and the
system matrix A is assumed to be a Hurwitz matrix, that is, all the eigenvalues of A have
negative real parts.

For simplicity, the following notations defined in Won and Park [13] are employed:

B(s)=
m∑
j=1

Bj exp
(− sτj

)
, C(s)=

m∑
j=1

Cj exp
(− sτj

)
,

Bm =
m∑
j=1

∣∣Bj

∣∣, Cm =
m∑
j=1

∣∣Cj

∣∣, CAm =
m∑
j=1

∣∣CjA
∣∣, c =

m∑
j=1

∥∥Cj

∥∥.
(2.2)
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The characteristic equation of the neutral system (2.1) is described by

P(s)= det
[
sI −A−B(s)− sC(s)

]= 0. (2.3)

Here P(s) denotes the characteristic function. The following three lemmas are cited and
will be used in the proof of our main results.

Lemma 2.1 (Hale and Verduyn Lunel [5]). If aD = sup{Re(s) : P(s)= 0} and aD < 0, then
the neutral system (2.1) is asymptotically stable.

Lemma 2.2 (Lancaster and Tismenetsky [8]). Let R ∈ Cn×n. If ρ(R) < 1, then (I − R)−1

exists, det(I ±R) �= 0 and

(I −R)−1 = I +R+R2 + ··· . (2.4)

Lemma 2.3 (Lancaster and Tismenetsky [8]). Let R, T , and V ∈ Cn×n. If |R| ≤V , then

(a) |RT| ≤ |R||T| ≤V |T|,
(b) |R+T| ≤ |R|+ |T| ≤V + |T|,
(c) ρ(R)≤ ρ(|R|)≤ ρ(V),
(d) ρ(RT)≤ ρ(|R||T|)≤ ρ(V |T|),
(e) ρ(R+T)≤ ρ(|R+T|)≤ ρ(|R|+ |T|)≤ ρ(V + |T|).

Based on the characteristic equation (2.3), Hui and Hu [7] presented the following
theorem.

Theorem 2.4 (Hui and Hu [7]). The neutral delay-differential system (2.1) is asymptoti-
cally stable if c < 1 and

µ(A) +
m∑
j=1

∥∥Bj

∥∥+
1

1− c

[ m∑
j=1

∥∥CjA
∥∥+

m∑
j,k=1

∥∥CjBk

∥∥] < 0. (2.5)

Obviously, the condition µ(A) < 0 is necessary to satisfy sufficient condition (2.5) and
is a strict restriction for application. To reduce the conservatism, Won and Park [13]
derived the following theorem in terms of the spectral radius of the matrix which is the
combination of the modulus matrices.

Theorem 2.5 (Won and Park [13]). The neutral delay-differential system (2.1) is asymp-
totically stable if c < 1 and

ρ
[
Fm

(
Bm +

CAm +CmBm

1− c

)]
< 1, (2.6)

where Fm denotes a matrix formed by taking the maximum magnitude of each element of
F(s)= (sI −A)−1 for Re(s) > 0.

The numerical example given in Won and Park [13] showed that the condition in
Theorem 2.5 is less conservative than that in Theorem 2.4. Unfortunately, there exists a
technical error in the proof of Theorem 2.5 (Won and Park [13, Theorem 1]). In fact, it
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is easy to see that, in general, the inequality

ρ
(|R||T|)≤ ρ

(‖R‖|T|) (2.7)

does not hold for given matrices R and T . Thus, in general, the following inequality

ρ
[
Fm
(
Bm +

∣∣I +C(s) +C2(s) + ···∣∣(∣∣C(s)A
∣∣+

∣∣C(s)B(s)
∣∣))]

≤ ρ
[
Fm
(
Bm +

∥∥I +C(s) +C2(s) + ···∥∥(∣∣C(s)A
∣∣+

∣∣C(s)B(s)
∣∣))] (2.8)

does not hold. Therefore, additional prerequisites might be required for the proof of
Theorem 2.5.

3. Main results

We define

CBm1 =
m∑
j=1

m∑
k≥ j

∣∣CjBk +CkBj
(
1− δjk

)∣∣, CBm2 =
m∑

j,k=1

∣∣CjBk

∣∣, (3.1)

where δjk is the Dirac δ-function.

Theorem 3.1. The neutral delay-differential system (2.1) is asymptotically stable if ρ(Cm) <
1 and

ρ
[
Fm
(
Bm +

(
I −Cm

)−1(
CAm +CBm1

))]
< 1. (3.2)

Proof. For Re(s)≥ 0, in view of

∣∣C(s)
∣∣=

∣∣∣∣∣
m∑
j=1

Cj exp
(− sτj

)∣∣∣∣∣≤
m∑
j=1

∣∣Cj exp
(− sτj

)∣∣≤ m∑
j=1

∣∣Cj

∣∣= Cm, (3.3)

it follows from Lemma 2.2 that (I −C(s))−1 exists and det[I −C(s)] �= 0.
According to Lemma 2.1, system (2.1) is asymptotically stable if

det
[
sI −A−B(s)− sC(s)

] �= 0, for Re(s)≥ 0. (3.4)

Since det[I −C(s)] �= 0, (3.4) is equivalent to

det
[
sI − (I −C(s)

)−1(
A+B(s)

)] �= 0, for Re(s)≥ 0. (3.5)

Employing the well-known relation (I −C(s))−1 = I + (I −C(s))−1C(s), we have

det
[
sI − (I −C(s)

)−1(
A+B(s)

)]
= det

[
sI − (I − (I −C(s)

)−1
C(s)

)(
A+B(s)

)]
= det

[
sI −A−B(s)− (I −C(s)

)−1(
C(s)A+C(s)B(s)

)]
= det(sI −A)det

[
I −F(s)(B(s) +

(
I −C(s)

)−1(
C(s)A+C(s)B(s)

))]
,

(3.6)



Keyue Zhang 179

where F(s) = (sI −A)−1. Since A is a Hurwitz matrix, det(sI −A) �= 0 for Re(s) ≥ 0. It
follows from (3.4), (3.5), (3.6), and Lemma 2.2 that (2.1) is asymptotically stable if

ρ
[
F(s)

(
B(s) +

(
I −C(s)

)−1(
C(s)A+C(s)B(s)

))]
< 1, for Re(s)≥ 0. (3.7)

According to Lemma 2.3, for Re(s)≥ 0, the following relations can be easily obtained:

∣∣B(s)
∣∣=

∣∣∣∣∣
m∑
j=1

Bj exp
(− sτj

)∣∣∣∣∣≤
m∑
j=1

∣∣Bj exp
(− sτj

)∣∣≤ m∑
j=1

∣∣Bj

∣∣= Bm, (3.8)

∣∣C(s)A
∣∣=

∣∣∣∣∣
m∑
j=1

CjAexp
(− sτj

)∣∣∣∣∣≤
m∑
j=1

∣∣CjAexp
(− sτj

)∣∣≤ m∑
j=1

∣∣CjA
∣∣= CAm, (3.9)

∣∣C(s)B(s)
∣∣=

∣∣∣∣∣
m∑
j=1

m∑
k=1

CjBk exp
(− s

(
τj + τk

))∣∣∣∣∣
=
∣∣∣∣∣

m∑
j=1

CjBj exp
(− sτj

)
+

m∑
j=1

m∑
k>j

(
CjBk +CkBj

)
exp

(− s
(
τj + τk

))∣∣∣∣∣
=

m∑
j=1

∣∣CjBj exp
(−sτj)∣∣+

m∑
j=1

m∑
k>j

∣∣(CjBk+CkBj
)

exp
(−s(τj+ τk

))∣∣

≤
m∑
j=1

m∑
k≥ j

∣∣CjBk +CkBj
(
1− δjk

)∣∣= CBm1.

(3.10)

Moreover, using (3.3) and Lemmas 2.2 and 2.3, we have for Re(s)≥ 0,

∣∣(I −C(s)
)−1∣∣= ∣∣I +C(s) +C2(s) + ···∣∣

≤ I +
∣∣C(s)

∣∣+
∣∣C2(s)

∣∣+ ···
≤ I +Cm +C2

m + ···
= (I −Cm

)−1
.

(3.11)

Now, using Lemma 2.3, together with (3.3), (3.8), (3.9),(3.10), and (3.11), we can obtain
for Re(s)≥ 0,

ρ
[
F(s)

(
B(s) +

(
I −C(s)

)−1(
C(s)A+C(s)B(s)

))]
≤ ρ
[∣∣F(s)

∣∣(∣∣B(s)
∣∣+

∣∣(I −C(s)
)−1(

C(s)A+C(s)B(s)
)∣∣)]

≤ ρ
[∣∣F(s)

∣∣(∣∣B(s)
∣∣+

∣∣(I −C(s)
)−1∣∣(∣∣C(s)A

∣∣+
∣∣C(s)B(s)

∣∣))]
≤ ρ
[
Fm
(
Bm +

(
I −Cm

)−1(
CAm +CBm1

))]
.

(3.12)

Therefore, condition (3.2) implies that (3.7) holds. The proof is completed. �

Corollary 3.2. The neutral delay-differential system (2.1) is asymptotically stable if ρ(Cm)
< 1 and

ρ
[
Fm
(
Bm +

(
I −Cm

)−1(
CAm +CBm2

))]
< 1. (3.13)
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Proof. Taking notice of

CBm1 =
m∑
j=1

m∑
k≥ j

∣∣CjBk +CkBj
(
1− δjk

)∣∣

≤
m∑
j=1

m∑
k≥ j

∣∣CjBk

∣∣+
∣∣CkBj

(
1− δjk

)∣∣= m∑
j,k=1

∣∣CjBk

∣∣= CBm2,

(3.14)

we have from Lemma 2.3(a)

ρ
[
Fm
(
Bm +

(
I −Cm

)−1(
CAm +CBm1

))]≤ ρ
[
Fm
(
Bm +

(
I −Cm

)−1(
CAm +CBm2

))]
< 1.
(3.15)

The result follows from Theorem 3.1. This proves the corollary. �

Moreover, taking notice of

CBm2 =
m∑

j,k=1

∣∣CjBk

∣∣≤ m∑
j=1

m∑
k=1

∣∣Cj

∣∣∣∣Bk

∣∣= m∑
j=1

∣∣Cj

∣∣ m∑
k=1

∣∣Bk

∣∣= m∑
j=1

∣∣Cj

∣∣Bm = CmBm,

(3.16)

we obtain the following corollary.

Corollary 3.3. The neutral delay-differential system (2.1) is asymptotically stable if ρ(Cm)
< 1 and

ρ
[
Fm
(
Bm +

(
I −Cm

)−1(
CAm +CmBm

))]
< 1. (3.17)

4. Illustrative examples

Example 4.1. Consider the linear neutral system with multiple time delays

ẋ(t)= Ax(t) +B1x
(
t− τ1

)
+C1ẋ

(
t− τ1

)
+B2x

(
t− τ2

)
+C2ẋ

(
t− τ2

)
, (4.1)

where τ1 > 0 and τ2 > 0 are constants,

A=
[
−3 −2
1 0

]
, B1 = α

[
0.2 0.1
−0.1 0.2

]
, C1 =

[
0.05 0.1

0 0.1

]
,

B2 = α

[
0.4 −0.3
−0.1 −0.05

]
, C2 =

[
0 0.1

0.05 0

]
,

(4.2)

and α is a nonzero constant.
Since the system matrix A is Hurwitz, the stability bounds can be calculated in terms

of α by using our new criteria. The rational function matrix F(s) is (Won and Park [13])

F(s)= 1
s2 + 3s+ 2

[
s −2
1 s+ 3

]
. (4.3)
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The modulus matrices are easily computed as

Fm =
[

0.3333 1
0.5 1.5

]
, Bm = |α|

[
0.6 0.4
0.2 0.25

]
, Cm =

[
0.05 0.2
0.05 0.1

]
,

CAm =
[

0.15 0.1
0.25 0.1

]
, CBm1 = |α|

[
0.01 0.03
0.03 0.035

]
, CBm2 = |α|

[
0.03 0.07
0.05 0.045

]
.

(4.4)

Then, the stability bounds can be obtained as

Theorem 3.1 : |α| < 0.3595,

Corollary 3.2 : |α| < 0.3364,

Corollary 3.3 : |α| < 0.3318.

(4.5)

As pointed out by Won and Park [13], the stability criteria derived by Hui and Hu [7] are
not available because the matrix measure µ(A)= 0.0811 > 0.

Example 4.2. Consider the linear neutral system (4.1) with

A=
[−2 1
−1 −1

]
, B1 = α

[
0.275 −0.1125
−0.35 0.325

]
, C1 =

[
0.1 0.05
0 0.1

]
,

B2 = α

[
0.4 −0.3
−0.1 −0.05

]
, C2 =

[
0 0.1

0.1 0.05

]
.

(4.6)

Since the system matrix A is Hurwitz, Fm can be obtained for some s on imaginary axis
by the maximum modulus theorem. The modulus matrices are computed as

Fm = 1
3

[
1.1961 1

1 2

]
, Bm = |α|

[
0.675 0.4125
0.45 0.375

]
, Cm =

[
0.1 0.15
0.1 0.15

]
,

CAm =
[

0.35 0.15
0.35 0.15

]
, CBm1 = |α|

[
0.02 0.01
0.07 0.065

]
, CBm2 = |α|

[
0.09 0.075
0.09 0.075

]
.

(4.7)

Then, the stability bounds can be obtained as

Theorem 3.1 : |α| < 0.5107,

Corollary 3.2 : |α| < 0.4658,

Corollary 3.3 : |α| < 0.4432.

(4.8)
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Moreover, taking notice of

2∑
j=1

∥∥Bj

∥∥= 1.0578|α|, c =
2∑
j=1

∥∥Cj

∥∥= 0.2562,

2∑
j=1

∥∥CjA
∥∥= 0.5389,

2∑
j,k=1

∥∥CjBk

∥∥= 0.1917|α|,
(4.9)

we obtain

µ(A) +
2∑
j=1

∥∥Bj

∥∥+
1

1− c

[ m∑
j=1

∥∥CjA
∥∥+

m∑
j,k=1

∥∥CjBk

∥∥]=−0.2755 + 1.3156|α|. (4.10)

Thus, the criterion presented by Hui and Hu [7] gives |α| < 0.2094. In this example, we
can see that our results are less conservative than that given in the previous work.

5. Conclusions

In this paper, we have studied the stability of linear neutral systems with multiple time
delays. Using the characteristic function, delay-independent stability criteria have been
derived in terms of scalar inequalities involving the spectral radius of modulus matrices.
A misleading statement in Won and Park [13] has been pointed out. Numerical examples
are given to show that the new stability criteria are less conservative and more powerful
compared to those in the literature.
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