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We present a real-time feedback control strategy to optimize the dynamic performance
of a computer communication network. In previous studies closely related to this topic,
feedback delay, arising from communication delay, was shown to degrade system perfor-
mance. Considering this negative impact of delay, we propose a new control law which
predicts the traffic in advance and exercises control based on the predicted traffic. We
demonstrate through simulation experiments that the predictive feedback control law
substantially improves the system performance.

1. Introduction

With the explosive growth of the Internet over the past twenty years, excessive network
congestion occurs frequently. This kind of congestion results in packet losses, transmis-
sion delay, and delay variation. Moreover, the increasing integrated applications (e.g.,
web surfing, teleconferencing, and e-commerce) are sensitive to delay and packet losses.
Therefore, it becomes important to efficiently manage and optimally control the traffic,
and to ultimately offer a guarantee of quality of service (QoS) for multimedia applica-
tions.

A number of different control mechanisms have been proposed to solve these prob-
lems. The token bucket (TB) algorithm is one of the methods widely used in the network
access control field (see [14, 16, 17]; see also http://www.cisco.com/univercd/cc/td/doc/
product/software/ios120/12cgcr/qos c/qcpart4/qcpolts.htm, and it can dynamically al-
locate bandwidth and efficiently minimize packet losses. Previous studies [1, 2] used
TB to construct a dynamic system model. Additionally, different control strategies were
proposed to manage traffic flow into the backbone network. The results showed that
the feedback control laws can improve network performance by improving throughput,
reducing packet losses, and relaxing congestion. On the other hand, in [2], it was ob-
served that the system performance was highly degraded in the presence of feedback de-
lay (arising from communications). Due to the time delay, what we capture in real time
is the lagged or delayed traffic information. Control based on delayed information leads
to excessive degradation of network performance. Thus, in practice, its impact cannot be

Copyright © 2005 Hindawi Publishing Corporation
Mathematical Problems in Engineering 2005:1 (2005) 7–32
DOI: 10.1155/MPE.2005.7

http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/12cgcr/qos_c/qcpart4/qcpolts.htm
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/12cgcr/qos_c/qcpart4/qcpolts.htm
http://dx.doi.org/10.1155/S1024123X04407121


8 Real-time feedback control of computer networks

ignored and must be taken into consideration and compensated for. However, in [1, 2] no
attempt was made to deal with this problem and solve the impact of the communication
delay.

Traffic prediction methods have been widely used in network management [4, 6, 7,
8, 9, 12, 13, 15]. By use of prediction techniques, that is, forecasting the future behav-
ior of the traffic, one can effectively prevent traffic jams, traffic congestion, and net-
work crashes. In [4], a method combining the single-step-ahead (SSP) and multi-step-
ahead (MSP) predictors was developed to forecast MPEG-4 video traffic trace, which
employed a nonlinear estimation tool and offline training. To solve the admission con-
trol problem in wireless mobile networks, the authors of [7] predicted cell bandwidth
requirements subject to the constant bit-rate traffic. In [15], the evolutionary genetic ap-
proach (EGA) was used to predict the short-term bandwidth demand in virtual paths
(VPs), which enabled intelligent controllers to improve transmission efficiency. Inspired
by these ideas, we have applied prediction techniques to solve the problem encountered
in [1, 2].

For this purpose, we propose a real-time feedback control mechanism based on the
predicted state and traffic. The traffic and state information are predicted for different
values of prediction times based on their past history (the traffic history measured on-
line). An accurate prediction for the future traffic and state (short-term prediction) is
able to provide better control compensating for time delay. Thus the impact of time delay
can be minimized and the system performance improved.

In this paper, we developed an online predictor based on the principle of the least mean
square error (LMSE), which is one of the simplest methods. It was noted in [6] that LMSE
can achieve better accuracy compared to those complex long-memory predictors [9, 13]
for online measurements. Without the requirement of complex computation, it can be
implemented at a high speed. As a result of traffic prediction, the system performance
degradation due to delay is reduced by use of proper control actions. According to our
results, it is possible to optimize the system performance and minimize the cost function
by implementing the new method.

The paper is organized as follows. Section 2 briefly describes TB-based system model
in current practice. In Section 3, a cost functional is defined for network performance
evaluation. Section 4 presents different control strategies (feedback with time delay and
without delay). In Section 5, we propose a real-time feedback control based on the pre-
dicted state and traffic. An LMSE predictor is introduced here. Traffic used for simulation
is illustrated in Section 6. After choosing different predictor parameters, we seek to op-
timize the network performance and reduce the system losses. Simulation results will be
discussed in Section 7, where we present results showing improvements on system per-
formance using predicted state feedback control. In Section 8, conclusion and suggestions
for future work are discussed.

2. System model with control

In order to understand and solve the performance-related problems in computer commu-
nication network, it is critical to build a dynamic model of the information flow through
the system. Further, the basic statistical properties of measured trace data must be known.
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Figure 2.1. A general model.

Over the last two decades, a number of traffic models have been proposed and studied
in the traffic management area. Traditional characterization of the Internet traffic is based
on the Poisson process (which exhibits short-range dependence), Bernoulli process, or
more generally doubly stochastic Poisson process (DSPP).

A recent study [11] shows that network traffic has self-similarity characteristics and
long-range dependence. Self-similarity means that a certain property of traffic behavior
is preserved over space and/or time scales, and long-range dependence is said to exhibit
long-term correlations which decay at rates slower than exponential ones. On the other
hand, the correlation functions of traditional traffic models decay exponentially or faster.

In this paper, a general model is constructed to simulate the incoming traffic illus-
trated in Figure 2.1, which is similar to those in [1, 2]. A discrete time series represents a
traffic {V(tk), k = 0,1,2, . . . ,K} generated by the users’ applications, where V(tk) denotes
the packet size (measured in bytes) arriving during the non-overlapping time intervals
[tk, tk+1). This can be modeled as a marked point process where the event times are the
points and the sizes of the packets are the marks. For simplicity we assume that the time
intervals are of equal length.

The following notations are used throughout the paper:
(1) {x∧ y} ≡Min{x, y}, {x∨ y} ≡Max{x, y}, for x, y ∈R;
(2) {x∧ y} ≡ {xi ∧ yi, i = 1,2, . . . ,N}, {x∨ y} = {xi ∨ yi, i = 1,2, . . . ,N}, for x, y ∈

Rn;
(3)

I(S)=
1 if the statement S is true,

0 otherwise.
(2.1)

2.1. Basic model for a token bucket. A TB is described by a pair of parameters (token
generation rate u and bucket capacity T). TBs are usually implemented to shape or po-
lice traffic between the host and the network or between the routers (see [14, 16, 17]; see
also http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/12cgcr/qos c/
qcpart4/qcpolts.htm). Here TB is used as a traffic policer. Figure 2.2 illustrates a TB model
used in our previous work. The incoming tokens keep accumulating until they reach the
capacity of the bucket. The number of tokens offered during the kth time interval is de-
noted by u(tk) and the number of tokens (status) in TB is ρ(tk). If the incoming tokens
exceed the capacity, tokens in excess of the capacity will be dropped. Thus the acceptable
tokens can be represented by u(tk)∧ [T − ρ(tk)].

http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/12cgcr/qos_c/qcpart4/qcpolts.htm
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/12cgcr/qos_c/qcpart4/qcpolts.htm
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Figure 2.2. A token bucket model.

If the packet size of the arriving trafficV(tk) is less than the number of tokens available,
the traffic is marked as conforming (traffic) and is immediately passed on to the network
for queuing up in the multiplexor. At the same time, a number of tokens equal to the size
of the packet is taken out of the token pool. Thus the state of TB at any time is determined
by the algebraic sum of three terms: tokens left over from the previous time interval, new
tokens added, and tokens consumed during the current time interval. As a result, the
dynamics governing the status of the TB is given by the following expression:

ρ
(
tk+1

)= ρ
(
tk
)

+
{
u
(
tk
)∧ [T − ρ

(
tk
)]}

−V
(
tk
)
I
{
V
(
tk
)≤ [ρ(tk)+u

(
tk
)∧ [T − ρ

(
tk
)]]}

.
(2.2)

Note that the last term in the above equation gives the conforming traffic denoted by

g
(
tk
)=V

(
tk
)
I
{
V
(
tk
)≤ [ρ(tk)+u

(
tk
)∧ [T − ρ

(
tk
)]]}

, (2.3)

and hence the nonconforming traffic is given by

r
(
tk
)=V

(
tk
)− g

(
tk
)
. (2.4)

2.2. Complete system model. To simulate a network, we construct a mathematical
model comprised of N individual users (traffic streams), served by N corresponding TBs,
all of which are coupled to a multiplexor connected to an outgoing link having (band-
width) capacity C. This is illustrated in Figure 2.3 [1, 2].

Each TB implements its algorithm to police the arriving packet. The nonconforming
traffic streams are dropped while all the conforming traffic are multiplexed and queued
up for entering the multiplexor. As a matter of fact, not all conforming traffic from TBs
will be accepted because of the size limitation of the multiplexor (buffer size Q) and the
link capacity (speed) of the accessing node. If the sum of these traffics exceeds the multi-
plexor size, some part of the conforming traffic may be dropped. The discarded traffic is
defined as the traffic loss at the multiplexor L(tk).
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Figure 2.3. Dynamic system model.

The dynamics for a single TB is given by (2.2). For a system consisting of N TBs, served
by a single multiplexor, the associated variables are given by multidimensional vectors
from RN which are listed as follows:

T ≡ (T1,T2, . . . ,TN
)′

,

ρ
(
tk
)≡ (ρ1

(
tk
)
,ρ2
(
tk
)
, . . . ,ρN

(
tk
))′

,

V
(
tk
)≡ (V1

(
tk
)
,V2

(
tk
)
, . . . ,VN

(
tk
))′

,

u
(
tk
)≡ (u1

(
tk
)
,u2
(
tk
)
, . . . ,uN

(
tk
))′

,

g
(
tk
)≡ (g1

(
tk
)
,g2
(
tk
)
, . . . ,gN

(
tk
))′

,

r
(
tk
)≡ (r1

(
tk
)
,r2
(
tk
)
, . . . ,rN

(
tk
))′

.

(2.5)

Since the sources are independent, the dynamics of the system of TBs is now given by a
system of identical equations

ρi
(
tk+1

)= ρi
(
tk
)

+
{
ui
(
tk
)∧ [Ti− ρi

(
tk
)]}

−Vi
(
tk
)
I
{
Vi
(
tk
)≤ [ρi(tk)+ui

(
tk
)∧ [Ti− ρi

(
tk
)]]}

,
(2.6)

where i= 1,2, . . . ,N .
The conforming traffic is accumulated in the multiplexor. The state of the multiplexor,

denoted by q(tk), is given by the volume of traffic waiting in the buffer for service during
the kth time interval. Based on the sum of all the conforming traffic and the available
buffer space, the multiplexor can only accept the traffic given by

N∑
i=1

gi
(
tk
)∧ [Q− ([q(tk)−C∗ τ

]∨ 0
)]
. (2.7)

Thus the state dynamics of the multiplexor can be written as follows:

q
(
tk+1

)= [q(tk)−C∗ τ
]∨ 0 +

N∑
i=1

gi
(
tk
)∧ [Q− ([q(tk)−C∗ τ

]∨ 0
)]
. (2.8)
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The first term on the right-hand side represents packets leftover from the previous (k−
1)th time interval, the second term represents packets accepted by the multiplexor during
the kth time interval. This is a scalar equation governing the dynamics of the queue in
the multiplexor. Thus the dynamics of the whole access control protocol is governed by
the system of (N + 1) difference equations (2.6) and (2.8). This leads to the following
nonlinear state-space model:

X
(
tk+1

)≡ F
(
tk,X

(
tk
)
,u
(
tk
)
,V
(
tk
))

, (2.9)

where X ≡ (ρ,q)′ denotes the state vector, u is the control vector, V represents the input
traffic vector, and F is the state transition operator determined by the expressions on the
right-hand sides of equations (2.6) and (2.8).

3. Objective function and performance measures

3.1. Objective function. In general, the traffic loss at the TBs during the kth time interval
is given by

LT
(
tk
)≡ N∑

i=1

ri
(
tk
)≡ N∑

i=1

[
Vi
(
tk
)− gi

(
tk
)]

, (3.1)

while the multiplexor loss during the same time interval is given by

LM
(
tk
)≡ N∑

i=1

gi
(
tk
)− N∑

i=1

gi
(
tk
)∧ [Q− ([q(tk)−C∗ τ

]∨ 0
)]
. (3.2)

In addition to these losses, it is also important to include a penalty for the waiting
time or time spent on the queue before being served. For simplicity we assume that it is
linearly proportional to queue length.

Adding all these, we obtain the cost functional. Since the incoming source (or user
demand) is a random process, we must compute the average cost as being the expected
value of the sum of all the costs described above. This is given by

J(u)≡ E

{ K∑
k=0

α
(
tk
)
LM
(
tk
)

+
K∑
k=0

β
(
tk
)
LT
(
tk
)

+
K∑
k=0

γ
(
tk
)
q
(
tk
)}

, (3.3)

where u is the control law which determines the state of the system and hence the indi-
vidual losses and finally the total cost. The functions α, β, γ represent the relative weights
or relative importance given to each of the three distinct losses.

Since the exact stochastic characterization of our traffic is not available or is unknown,
the Monte Carlo method is employed to compute the expected values of the performance
measures. For applying the Monte Carlo [5, 10] technique, we letNs denote the number of
samples used and let Ω≡ {wj , j = 1,2,3, . . . ,Ns} denote the elementary events or sample
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paths with finite cardinality Ns. The objective functional (3.3) is then given by

J(u)∼= 1
Ns

Ns∑
j=1

{ K∑
k=0

α
(
tk
)
LM
(
tk,ωj

)
+

K∑
k=0

β
(
tk
)
LT
(
tk,ωj

)
+

K∑
k=0

γ
(
tk
)
q
(
tk,ωj

)}
. (3.4)

The first term of the expression gives the average weighted loss at the multiplexor, the
second gives that for TBs, and the last one is the penalty assigned to the average waiting
time in the multiplexor.

3.2. Performance measure. In addition to the objective functional, we also use the net-
work utilization to evaluate the overall system performance. The total amount of data
successfully transferred to the network is marked as the actual transferred traffic, while
the maximum transfer capacity is given by the link capacity. Utilization is then defined as
the ratio of the two, measured in percentage by

η =
∑K

k=0

∑N
i=1Vi

(
tk
)− [∑K

k=0LM
(
tk
)

+
∑K

k=0LT
(
tk
)]

C
(
tK − t0

) × 100. (3.5)

4. Feedback controls

4.1. General feedback control law. Unlike open-loop controls which do not consider the
status of the network resources shared by competing users, the feedback control mecha-
nism (closed-loop control) exercises controls based on available information on the cur-
rent traffic and system state [8, 12, 18]. By analyzing the current status of the system, the
feedback controller can make proper decisions on resource allocation to achieve superior
performance. In general, a feedback control law without communication (plus service)
delay is of the form

u
(
tk
)≡G

(
V
(
tk
)
,ρ
(
tk
)
,q
(
tk
))

, k = 0,1,2, . . . ,K − 1, (4.1)

where G is a suitable function (to be determined) that maps the available data into a
control action. The data may be given by the collection {V ∈RN , ρ ∈RN , q ∈R1}which
denotes the input traffic, state of TBs, and the multiplexor, respectively.

In the presence of communication and service delay, if the same control law G is used,
the actual control action would be different. This is given by the following expression,
which is nothing but the delayed version ud of the control u without delay:

ud
(
tk
)≡G

(
V
(
tk−m1

)
,ρ
(
tk−m2

)
,q
(
tk−m3

))
, k = 0,1,2, . . . ,K − 1, (4.2)

where mi, i= 1,2,3, denotes the number of time slots by which information reaching the
controller is delayed. It is clear from this expression that the current control is decided
on the basis of past status information and therefore cannot be expected to be as effective
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Figure 4.1. System performance (costs and utilization, Cases 1–5)—Bellcore traffic.

0%

5%

15%

25%

35%

U
ti

liz
at

io
n

0E + 00

0.5E + 05

1E + 06

1.5E + 06

2E + 06

2.5E + 06

3E + 06

3.5E + 06

C
os

t

1 2 3 4 5
Weighted waiting cost
Weighted losses at TB

Cost
Utilization

5.14E + 05
0E + 00

5.14E + 05
30.08%

9.53E + 02
3.44E + 06
3.44E + 06

12.88%

4E + 03
2.99E + 06
2.99E + 06

15.14%

3.1E + 04
1.04E + 06
1.07E + 06

24.9%

3.78E + 04
6.36E + 05
6.74E + 05

26.9%

Figure 4.2. System performance (costs and utilization, Cases 1–5)—DSPP1.

as the control without delay. In fact, system performance is significantly degraded if this
control is used; see Case 2 in Figures 4.1, 4.2, and 4.3.

4.2. A simple control law in the absence of time delay. To avoid cell losses at the multi-
plexor and monopoly by any users, we include a permission parameter and compute the
maximum permissible allocation as follows. The maximum possible allocation for the ith
user is given by

Θi
(
tk
)≡{ Vi

(
tk
)∑N

i=1Vi
(
tk
) ∧ ei

N

}[
Q− [(q(tk)−C∗ τ

)∨ 0
]]

, (4.3)
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Figure 4.3. System performance (costs and utilization, Cases 1–5)—DSPP2.

where each user’s share is determined by the smaller of the fraction of his demand and
the fraction of the resource allocation permitted times the available multiplexor space.
Comparing with the real traffic Vi(tk), the true allocation for the ith user during the kth
time interval is given by

Ai
(
tk
)= {Θi

(
tk
)∧Vi

(
tk
)}
. (4.4)

If 1 ≤ ei < N (for one special i), the network provider withdraws the ith user’s full
permission and allows other users to utilize the supplementary bandwidth. Thus by an
appropriate choice of this parameter, the network provider can control monopoly and
even assign priorities.

A simple feedback control law that was suggested in our previous papers [1] was found
to be very effective. This is given by the following expression:

ui
(
tk
)=Gi

(
V
(
tk
)
,ρ
(
tk
)
,q
(
tk
))≡ {Ai

(
tk
)− ρi

(
tk
)}
I
{
Ai
(
tk
)≥ ρi

(
tk
)
, Ai

(
tk
)=Vi

(
tk
)}

,
(4.5)

where Ai is given by the expressions in (4.4).

4.3. Feedback control in the presence of time delay. Considering all the delays (labeled
as communication delay) in real time, the actual control action is given by

udi
(
tk
)≡

Gi
(
V
(
tk
)
,ρ
(
tk
)
,q
(
tk
))

for 0≤mj < 1, j = 1,2,3, i= 1,2, . . . ,N ,

Gi
(
V
(
tk−m1

)
,ρ
(
tk−m2

)
,q
(
tk−m3

))
for mj ≥ 0, j = 1,2,3, i= 1,2, . . . ,N ,

(4.6)

where delay less than one time slot, 0≤m< 1, is simply considered as no delay.
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5. Prediction scheme and predictive feedback control

In the presence of feedback delay, it is difficult to make a proper decision to effectively
allocate network resources or prevent traffic congestion on the basis of delayed infor-
mation, which results in degradation of system performance [2]. To reduce the impact
of delay, traffic prediction, that is, accurately providing the statistical characteristics of
traffic, becomes one of the key issues in network control engineering.

5.1. Prediction scheme. Recently a number of traffic predictors have been proposed
[4, 6, 7, 8, 9, 12, 13, 15]. However, those predictors either realize the offline control or
focus only on constant bit-rate traffic. Here we develop a real-time predictor which is
model-free and independent of the statistical properties of the traffic. The algorithm pro-
posed to improve the system performance is called predictive feedback control (PFC).
Monitoring the past history of the system (the traffic and the system state), we are able
to make short time prediction of the future traffic and system state. By applying the pre-
dicted information to the feedback control law in place of delayed information, excessive
packet losses and waste of network resources can be prevented.

Our aim is to find a model-free predictor which does not require excessive compu-
tation and can be implemented online. The experiments carried out by Ghaderi, Capka
and Boutaba [6, 7] have demonstrated that the LMSE predictor can achieve satisfactory
performance. The LMSE predictor does not require much computation and is simple to
implement. This adaptive predictor is independent of the traffic model (statistics) and is
useful for both the short-range- and long-range-dependent processes. In this study, we
apply this technique for traffic prediction.

Let V(tk), k = 0,1,2, . . . ,K , denote any history of the traffic process measured in terms
of packets. Our objective is to predict the process by some specified units of time ahead,
denoted by Td, based on a segment (window) of the past history of the process denoted
by Ws. This is mathematically described by the following expression:

V̂
(
tk
)= Ws+Td∑

r=Td

αrV
(
tk−r

)
, Td ≥ 0, Ws ≥ 0, Td +Ws < k, (5.1)

where Td denotes the number of time slots (ahead of the current time), and Ws denotes
the length of observation, which is also called observation window width. This is the
number of past samples used to predict the future traffic. Here the vector α denotes the
weight or importance given to past samples observed.

The major objective of traffic prediction is to minimize the mean square difference
(error) between the predicted traffic and the actual traffic measured. The choice of the
weight vector α determines the level of prediction error. In order to determine the best
weight vector, we define the estimation error as follows:

J(α)≡ E
∥∥V(tk)− V̂

(
tk
)∥∥2

. (5.2)



N. U. Ahmed and H. Song 17

Then

J(α)= E

∥∥∥∥∥V(tk)−
Td+Ws∑
r=Td

αrV
(
tk−r

)∥∥∥∥∥
2

= E
∥∥V(tk)∥∥2− 2

Td+Ws∑
r=Td

αrE
(
V
(
tk−r

)
,V
(
tk
))

+
Td+Ws∑
l=Td

Td+Ws∑
r=Td

αrαlE
(
V
(
tk−r

)
,V
(
tk−l

))
,

(5.3)

where (x, y) = ∑xi yi denotes the standard inner product in RN . If X , Y are two N-
dimensional random vectors having finite second moments, then E(X ,Y) denotes the
expected value of their inner product. Since there are no constraints on α∈Rd, (d =Ws),
differentiating J with respect to α and setting it equal to zero, we obtain

Td+Ws∑
l=Td

αlE
(
V
(
tk−l,V

(
tk−r

)))= E
(
V
(
tk−r

)
,V
(
tk
))
. (5.4)

Let A and b denote the matrix and vector as defined below:

A≡



E
(
V
(
tk−Td

)
,α
) ··· E

(
V
(
tk−Td

)
,β
) ··· E

(
V
(
tk−Td

)
,γ
)

...
...

...
...

...
E
(
V
(
tk−(Td+l)

)
,α
) ··· E

(
V
(
tk−(Td+l)

)
,β
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(5.5)

where

α=V
(
tk−Td

)
,

β =V
(
tk−(Td+l)

)
,

γ =V
(
tk−(Td+Ws)

)
.

(5.6)
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Then (5.4) can be written compactly as Aα = b, and, if A is nonsingular, the solu-
tion is given by α= A−1b. Hence the estimated traffic can be computed by the following
expression:

V̂
(
tk
)= Td+Ws∑

r=Td

(
A−1b

)
rV
(
tk−r

)
, Td ≥ 0, Ws ≥ 0, Td +Ws < k, (5.7)

where (A−1b)r denotes the rth component of the vector A−1b.

5.2. Predictive feedback control. After we have the best mean square estimate of the
future trafficTd steps ahead of current time, based on observation of past history of length
Ws, the control law can be adapted in advance corresponding to the predicted states of
the future traffic. Assuming that the state (ρ,q) is monitored in real time, to minimize the
impact of delay we choose the new control law as

û
(
tk
)≡G

(
ρ
(
tk
)
,q
(
tk
)
,V̂
(
tk
))

, 0 < Td < k− 1. (5.8)

6. Basic data used for numerical simulations

Implementation of our system approach to computer communication network is de-
scribed in this section. Fractional Brownian motion (FBM) is realized by use of Mat-
lab. Using the basic idea of the algorithm introduced in [3], we have developed the traf-
fic models in C++ programming language. Finally, the entire system including feedback
control is implemented using Matlab.

6.1. System parameters and configurations. In order to compare the results with previ-
ous work [2], we use an identical system to the one in [2]. The system consists of three
users (sources) regulated by three TBs, which are served by a multiplexor connected to
the outgoing link. Three individual traffic traces, each of 4-second duration, are fed into
the three TBs directing conformed traffic to the multiplexor. The experiments also follow
the previous assumptions of [2] as follows: (a) the three independent traffic traces share
the same statistical characteristics, (b) packet size is measured in terms of bytes and one
token is consumed for each byte, (c) the traffic traces last 4 seconds.

While calculating the objective function, we have to consider the weights assigned to
the costs associated with the losses at TB, the multiplexor, and waiting time. They are
chosen as follows: α(tk)= 10, β(tk)= 5, and γ(tk)= 0.3 for all tk.

The system parameters are listed in Table 6.1.

6.2. Specification of traffic traces. Two major types of traffic are used in our simulation:
(1) Bellcore trace and (2) DSPP generated by FBM as described below.

The traffic traces used here are partitioned into small time slots, which individually
contain the information for 4 seconds and are described in bytes. These 4-second data
are used as the traffic from the network users.
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Table 6.1. System configuration and parameters.

Parameters Bellcore traffic DSPP-1/2 Traffic

Ti, i= 1,2,3 15180 bytes 15180 bytes

C 8 Mbps 8 Mbps

Q 45540 bytes 45540 bytes

τ 0.005 second 0.005 second

K 800 800

M 100 1000

ei, i= 1,2,3 3 3
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Figure 6.1. Bellcore traffic.

6.2.1. Bellcore traffic trace. Bellcore traffic trace (see http://ita.ee.lbl.gov/html/contrib/
BC.html) was captured on an Ethernet at the Bellcore Morristown Research and Engi-
neering facility, which lasts 3142.82 seconds and contains one million packets. Figure 6.1
shows part of the trace which is divided into 4-second segments.

6.2.2. DSPP traffic traces. We also construct a self-similar traffic model using a nonneg-
ative function of FBM as the input rate of a Poisson process. This yields a DSPP which
exhibits self-similarity and long-range dependence properties. FBM denoted by BH(t) is
a self-similar process itself. It depends on the parameter H called the Hurst parameter. In
general, its values lie in the interval (0,1), and it represents a measure of self-similarity in
the traffic, and “burstiness.” We construct the FBM through the following integral trans-
formation of the standard Brownian motion {B(t), t ≥ 0}:

BH(t)=
∫ t

0
KH(t− s)dB(s), t ≥ 0, (6.1)

where KH(t) is given by

KH(t)= CHt
(H−1/2),

1
2
<H < 1, (6.2)

http://ita.ee.lbl.gov/html/contrib/BC.html
http://ita.ee.lbl.gov/html/contrib/BC.html
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Figure 6.2. DSPP1 intensity (H = 0.6).
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Figure 6.3. DSPP2 intensity (H = 0.8).

and CH is any constant. Then we generate a Poisson process with the intensity function
given by the absolute value of the FBM:

λ(t)≡ ∣∣BH(t)
∣∣, t ≥ 0. (6.3)

Figure 6.2 shows λ(t) which is generated by the absolute value of the FMB with the
Hurst parameter H = 0.6 and CH = 15. Another set of λ(t) with H = 0.8 is plotted in
Figure 6.3. They are chosen as the intensity (rate) of a Poisson process. The DSPP traces
with the intensities as defined above are generated, and the samples of the traces are plot-
ted in Figures 6.4 and 6.5, respectively.
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Figure 6.4. DSPP traffic trace (H = 0.6).
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Figure 6.5. DSPP traffic trace (H = 0.8).

7. Simulation results and numerical analysis

In this section, we show the prediction performance of the LMSE predictor and the im-
provement of the overall performance of the system by use of the predictive feedback
control.

7.1. Performance of LMSE predictor. To illustrate the dependence of estimation error
on the observation window size Ws and the prediction time Td, we use the Monte Carlo
technique to compute the expected value of the (estimation) error given by

E
(
Td,Ws

)= √(E∥∥V̂(tk)−V
(
tk
)∥∥)2 =

√√√√√( 1
Ns

Ns∑
j=1

(
V̂
(
tk,wj

)−V
(
tk,wj

)))2

, (7.1)

where wj denotes the jth sample path and Ns denotes the number of sample paths used.
The inverse of the signal-to-noise ratio (ENSR) is used as another measure to evaluate

the quality of prediction results:

ENSR ≡
(

SNR
)−1 =

∑
e2∑(

V
(
tk
))2 =

((
1/Ns

)∑Ns
j=1

(
V̂
(
tk,wj

)−V
(
tk,wj

)))2∑(
V
(
tk
))2 . (7.2)

Numerical results of prediction based on the LMSE method are presented in the fol-
lowing section for both the Bellcore traffic and DSPP traffic.
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Figure 7.1. Prediction error versus Ws—Bellcore.

7.1.1. Bellcore traffic trace. Here the performance of the LMSE predictor is evaluated for
different observation window sizes and prediction times. Similar studies were reported
in [6, 7] for a fixed window size and a fixed prediction time. In contrast, we evaluate the
prediction performance for different window sizes and prediction times. Since prediction
times required vary with the communication delay causing delayed control actions, our
results corresponding to required prediction times can be used to evaluate the perfor-
mance of the system described by (2.6), (2.8), and (5.8).

Dependence of ENSR on observation window size. Figure 7.1 shows the plots of ENSR as a
function of observation window size for fixed prediction times (as parameters). It is clear
that for a fixed prediction time, the error decreases with the increase of (observation)
window size. This is expected. On the other hand, it is also clear from this figure that,
for a fixed window size, prediction error increases with the increase of prediction time.
Furthermore, for a fixed prediction time, as the window size increases, the prediction
error tends to reach a lower limit possibly greater than zero. This means that by simply
increasing the window size we cannot expect to improve the performance beyond a limit.

Dependence of ENSR on prediction time. In Figure 7.2, we plot ENSR as a function of pre-
diction time for fixed values of window size. From the plot, it is clearly seen that for any
fixed window size, ENSR increases with the increase of prediction time. This is also ex-
pected. Again for a fixed prediction time, as the window size increases, the prediction
error decreases.

7.1.2. DSPP (H = 0.6,0.8) traffic traces. In this subsection, we present the prediction re-
sults of the DSPP traffic with the Hurst parameter equal to 0.6 and 0.8, respectively. The
result are shown in Figures 7.3, 7.4, 7.5, and 7.6.
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Figure 7.2. Prediction error versus Td—Bellcore.

Dependence of ENSR on observation window size. Again, it is clear from Figure 7.3, plot-
ted for two different Hurst parameters, that the prediction error decreases when the ob-
servation window size increases for a fixed prediction time. This is similar to what was
observed in the case of Bellcore traffic. We also find that with the increase of the Hurst
parameter, ENSR decreases. Figure 7.4 demonstrates the relationship between ENSR and
the Hurst parameter for fixed prediction times and three different window sizes. The re-
sult illustrates that the long-range dependence property exists in the traces. The larger
the Hurst parameter, the stronger the correlation with the past information resulting in
reduced prediction error with increasing observation window size.

Dependence of ENSR on prediction time. Figure 7.5 offers another insight. For any fixed
window size, ENSR increases with the increase of prediction time and appears to reach a
plateau. As expected, ENSR is smaller for larger Hurst parameters. This is further illus-
trated in Figure 7.6.

7.2. Simulation results and numerical analysis of system performance. As described in
the introduction and Section 4, communication delay in the network, resulting in delay
in control actions, adversely affects the performance of the system [2]. By use of predictor
controls, we demonstrate improved performance. Here simulation results are presented
in Figures 4.1, 4.2, 4.3, 7.7, 7.8, 7.9, and 7.10 to illustrate the improvement of the overall
performance of the system.

7.2.1. Dependence of system performance on control policies. In this subsection, we present
performance results corresponding to predictive feedback control and compare them
with those corresponding to feedback controls with or without delay. The results clearly
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Figure 7.3. Prediction error versus Ws—DSPP traffic. (a) H = 0.6, (b) H = 0.8.
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Figure 7.4. Prediction error versus Hurst parameter—DSPP traffic (for Td = 1τ).

demonstrate that by use of the predictive feedback control law, one can achieve substan-
tial improvement of system performance. We consider the following five cases to compare
with the results reported in [2].

(1) Case 1: feedback control (without delay, Td = 0).
(2) Case 2: feedback control (with delay, Td = 1).
(3) Case 3: feedback control (predictive feedback control, Td = 1, Ws = 1).
(4) Case 4: feedback control (predictive feedback control, Td = 1, Ws = 6).
(5) Case 5: feedback control (predictive feedback control, Td = 1, Ws = 11).

Bellcore traffic trace. Numerical results for the system performance are shown in Figure
4.1. Here we have listed the weighted TB losses, waiting-time losses, total cost, and
utilization. It is clear from Figure 4.1 that feedback control without (communication) de-
lay (Case 1) achieves the minimum cost and the highest utilization. The worst situation
occurs in Case 2 with one unit of communication delay. Provided with the delayed (traf-
fic) information, the controller cannot supply the required number of tokens to match
the incoming traffic. This leads to significant packet losses at the TB resulting in degra-
dation of performance and utilization. On the other hand, by use of predictive feedback
control law (Cases 3–5), it is possible to reduce the performance degradation significantly.
In all these cases we use predictive feedback control law with increasing window size. It
is clear (Case 3) that use of this control law substantially improves the performance de-
spite communication delay. This is further improved by use of larger window sizes as seen
in Cases 4–5. System utilization given by the thin curve shows that utilization is highest
in the absence of communication delay and lowest in its presence (Case 2) and then in-
creases if predictive feedback control is used with increasing window size (Cases 3–5).
This is explained further on.
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Figure 7.5. Prediction error vsersus Td—DSPP traffic. (a) H = 0.6, (b) H = 0.8.
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Figure 7.6. Prediction error versus Hurst parameter—DSPP traffic (for Ws = 1τ).
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Figure 7.7. System cost versus Ws—Bellcore traffic.

DSPP (H = 0.6,0.8) traffic traces. Here we present performance results corresponding
to DSPP traffic using the same five cases as in Bellcore traffic. Performance results cor-
responding to the traffic with H = 0.6 and H = 0.8 are shown in Figures 4.2 and 4.3.
The results have similar general patterns to those of Bellcore traffic shown in Figure 4.1.
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Figure 7.8. System cost versus Ws—DSPP traffic. (a) H = 0.6, (b) H = 0.8.
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Figure 7.9. Utilization versus Ws—Bellcore traffic.

Among the five cases, Case 1 maintains the lowest system cost and the highest utilization,
and with predictive feedback control law, system performance gets better with increasing
window sizes.

Similar results are plotted in Figures 4.2 and 4.3 corresponding to Hurst parame-
ters H = 0.6 and H = 0.8, respectively. The time average of the expected traffic intensity
λH(t)≡ |BH(t)| is given by

mH = 1
T

∫ T

0
E
∣∣BH(t)

∣∣dt = CH

H(2H + 1)
T2H. (7.3)

For CH = 15,T = 4000 (milliseconds) and H = 0.6, mH = 2.39× 105 and for H = 0.8,
mH = 4.8× 106. Note that the waiting cost, losses at TBs, and the total cost shown in the
first row of Figure 4.2 are lower than those in Figure 4.3. Also Figure 4.3, corresponding
to H = 0.8, shows higher utilization. These differences are clearly due to difference in the
volume of traffic in the two cases.

7.2.2. Dependence of cost on observation window size. The cost function is a measure of
overall system performance. This is plotted as a function of window size for 3 different
values of communication delay.

Bellcore traffic trace. Figure 7.7 shows the plots of total cost as a function of the obser-
vation window size (Ws) with fixed feedback delay (Td). It is clear from this figure that
system cost decreases with increasing (observation) window size for any given communi-
cation delay and it increases with increasing delay for any fixed window size.

DSPP (H = 0.6,0.8) traffic traces. Again in Figures 7.8a and 7.8b, we plot the system cost
as a function of the window size for two different values of Hurst parameters. It is clear
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Figure 7.10. Utilization versus Ws—DSPP traffic. (a) H = 0.6, (b) H = 0.8.
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that these results show similar patterns to those of Bellcore traffic shown in Figure 7.7.
Comparing Figures 7.8a and 7.8b, we observe that the cost reduction, with the increase of
observation window size, is again more pronounced for larger Hurst parameters. This is
due to the fact that the process with larger Hurst parameter has stronger correlation with
the past and hence the larger window size contains more useful information for more
accurate prediction of the future traffic.

7.2.3. Dependence of utilization on observation window size. The system utilization de-
pends on the volume of traffic successfully transferred to the network. Here we present
the utilization as a function of observation window size for three different values of com-
munication delay (Figures 7.9 and 7.10).

Bellcore traffic trace. Figure 7.9 gives another aspect of system performance. It is clear
from these curves that utilization increases with increasing window size. Note that as the
window size increases to a certain level, the growth of utilization slows down. It illustrates
that by simply increasing the window size the performance cannot be improved beyond
a limit. Again this is due to the same reason as mentioned in Section 7.2.2.

DSPP (H = 0.6,0.8) traffic traces. Again from Figure 7.10, it is clear that as the window
size increases, utilization increases, which has been observed also in Figure 7.9 for Bell-
core traffic.

8. Conclusion

In this paper, we have demonstrated that by use of predictive feedback control, it is possi-
ble to compensate the impact of communication delay causing performance degradation
as reported in [2]. The method presented in this paper improves the overall system per-
formance and prevents network instability. The numerical simulation results presented in
Section 7 have shown the effectiveness of the proposed predictive feedback control law.
We also explore the relationship between the Hurst parameter of the traffic and predic-
tion performance. It was found that processes with larger Hurst parameter have better
prediction performance. In addition, dependence of system cost and utilization on ob-
servation window size, corresponding to different values of Hurst parameters, has also
been discussed. The results of this paper also lead to a better understanding of the impact
of Hurst parameters on network performance. In summary, this work provides a useful
tool for design and optimization of future networks using predictive feedback control law
thereby avoiding instability.
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