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A Melnikov analysis of single-degree-of-freedom (DOF) oscillators is performed by tak-
ing into account the first (classical) and higher-order Melnikov functions, by considering
Poincaré sections nonorthogonal to the flux, and by explicitly determining both the dis-
tance between perturbed and unperturbed manifolds (“one-half” Melnikov functions)
and the distance between perturbed stable and unstable manifolds (“full” Melnikov func-
tion). The analysis is developed in an abstract framework, and a recursive formula for
computing the Melnikov functions is obtained. These results are then applied to various
mechanical systems. Softening versus hardening stiffness and homoclinic versus hetero-
clinic bifurcations are considered, and the influence of higher-order terms is investigated
in depth. It is shown that the classical (first-order) Melnikov analysis is practically inac-
curate at least for small and large excitation frequencies, in correspondence to degenerate
homo/heteroclinic bifurcations, and in the case of generic periodic excitations.

1. Introduction

The exact- or reduced-order nonlinear dynamics of many mechanical models or infinite-
dimensional systems can be described by single-degree-of-freedom (DOF) oscillators,
that is, by second-order ordinary nonlinear differential equations. Examples of the first
kind are the mathematical pendulum [23], the inverted pendulum with lateral barriers
[10, 11], rocking rigid blocks [9], and many others, whereas buckled beams [16], shal-
low arches [21], and cables [4] are just some samples of the second type. These systems
are usually conservative plus damping, excitations, and possibly other kinds of perturba-
tions which can be considered small in the first approximation. They are described by the
equation

ẍ = f (x) + εg1(x, ẋ, t) + ε2g2(x, ẋ, t) + ··· , x ∈R, (1.1)

where ε is a dimensionless smallness parameter measuring the amplitude of perturba-
tions. Furthermore, in practical applications one often deals with smooth (or at least
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piecewise smooth) systems, and is interested in periodic excitations. This yields the fol-
lowing hypothesis on (1.1):

(H1) f (x) and gi(x, ẋ, t), i≥ 2, are sufficiently smooth and bounded on bounded sets,
and gi(x, ẋ, t) are T-periodic in t.

In (1.1) the mechanical differences between various systems are taken into account by
considering different nonlinear stiffnesses, that is, different restoring forces f (x). These
have strong consequences in terms of the dynamical response. For example, for soften-
ing versus hardening systems, we have left versus right bending of the nonlinear reso-
nance curve, escape versus scattered chaotic attractor for large excitation amplitude, and
so forth. In spite of these important distinctions, there are some common dynamical fea-
tures which permit a unified approach to the analysis of various oscillators.

Among others, we consider the saddles embedded in the system dynamics, physically
representing unstable equilibrium positions, and their stable and unstable invariant man-
ifolds. Indeed, it is well known that they play a central role in the nonlinear behaviour,
being at the heart of such complex phenomena as multistability, chaotic dynamics [5, 26],
fractal basin boundaries [14], safe basin erosion and escape from potential wells [13, 22],
and so on.

Since the aim of this paper is to investigate some properties of the invariant manifolds
of the system (1.1), we make the second hypothesis:

(H2) for ε = 0, the system possesses an orbit xu(t) backward-asymptotic to a hyperbolic
saddle point p0 = [p0,0]T , that is, limt→−∞ xu(t) = p0, f (p0) = 0, and f,x(p0) =
λ2 > 0.

Here and in the following, f,x(·) means the derivative of f (x) with respect to its argu-
ment x.

Remarks. (1) Equation (1.1) is equivalent to the first-order system

ẋ = z,

ż = f (x) + εg1(x,z, t) + ε2g2(x,z, t) + ··· ,

[
x
z

]
∈R

2, (1.2)

which is sometimes useful from both a theoretical and a numerical point of view.
(2) Hypothesis (H1) guarantees the existence of the solution on a bounded region of

the phase plane R2, where we restrict our analysis.
(3) For ε = 0, the system is called “unperturbed.” It is Hamiltonian with H(x, ẋ) =

ẋ2/2 +
∫
f (x)dx − C, where the constant C is chosen in such a way that H(p0,0) = 0.

Thus, the orbit xu(t) can be computed by solving the first-order equation

ẋ =±
√

2
(
C−

∫
f (x)dx

)
(1.3)

with boundary condition limt→−∞ xu(t)= p0.
(4) The function t→ q0(t)= [xu(t), ẋu(t)]T parametrically describes in the phase space

the unstable manifold Wu(p0) of p0.
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x

Σt0

p0

pε

S

n t

q0 quε

T

t0

Wu(p0)
W u(pε )

Figure 1.1. Unperturbed and perturbed manifolds and relevant Poincaré sections.

(5) Since the unperturbed system is autonomous, xu(t + t̂) is a solution for all t̂ ∈ R.
This property is used in the variational approach to homo/heteroclinic bifurcations [2].
t̂ is a parameter which permits to choose freely the point q0 = q0(0)= [xu(0), ẋu(0)]T ∈∑

t0∩Wu(p0) around which we develop our analysis (see Figure 1.1 and Section 2 for
further details). Note that t̂ = 0 is usually assumed, but other choices can be made [9].

(6) xu(t) solves ẍu(t) = f (xu(t)). By taking the derivative of both sides with respect
to t, we get

...
x u(t) = f,x(xu(t))ẋu(t), namely, ẋu(t) is one solution of the homogeneous

variational equation ÿ = f,x(xu(t))y.
(7) Since p0 is a hyperbolic fixed point, ẋu(t) vanishes exponentially for t→−∞, that

is, ẋu(t)∼= eλt, where λ is defined in hypothesis (H2).
(8) The analysis is initially developed by referring to the unstable manifold Wu(p0).

The study of the stable manifold Ws(p0) is analogous and is summarized at the end of
Section 2. Further results on stable and unstable manifolds of the unperturbed equa-
tion (1.1) can be found in [8]. Combining results for stable and unstable manifolds per-
mits detecting perturbed homo or heteroclinic distance (see the end of Section 2) in both
smooth [13] and nonsmooth systems [9].

(9) The extension to multi-DOF (and even infinite-dimensional [6]) dynamical sys-
tems requires more sophisticated mathematical tools [25], but in some cases this entails
only technicalities.

The object of this work is detecting the effects of the perturbations εg1(x, ẋ, t) + ε2g2(x,
ẋ, t) + ··· on the invariant manifolds. This is usually done by the classical Melnikov
method [15], which is a perturbative technique permitting us to calculate the first-order
distance (in ε) between stable and unstable manifolds (see remark (8)). This method is
specially conceived for determining homo/heteroclinic bifurcation thresholds, an issue
which is very important from both a theoretical and a practical point of view because
it permits the enlightenment of the associated dynamical phenomena and the skillful
pursuit of their elimination or, possibly, their enhancement. This question has been sys-
tematically investigated in the recent past (see [9, 10, 11, 13, 18]).
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The present analysis mimics the spirit of the classical Melnikov’s method, which is
illustrated, for example, in [5, Section 4.5] and [26, Section 4.5], two works which are
our basic references. The perturbative approach is similar to that used by Vakakis [24],
some results of which are also extended. More recent interesting results on the Melnikov
function can be found in [3], while other works related to the present analysis are, for
example, [7, 19, 20].

Three specific points, which seem not to have been investigated in classical analyses [5,
26], are studied in this paper. (i) We consider Poincaré sections which are not orthogonal
to the unperturbed unstable manifold Wu(p0) (resp., Ws(p0)). (ii) We also consider the
distance between perturbed and unperturbed unstable (stable) manifolds (related to the
so-called “one-half” Melnikov function). (iii) Moreover, we do not restrict to a first-order
perturbative analysis but consider higher-order terms.

The first two extensions are motivated by the necessity of dealing with piecewise
smooth systems (nonsmooth in the following for conciseness), where the Poincaré sec-
tion can be chosen on the discontinuity manifold, thus circumventing the difficulties of
nonsmoothness. In this respect, it is worth stressing that the smoothness required in hy-
pothesis (H1) must hold up to the discontinuity manifold. Among various applications,
this permits the detection of heteroclinic bifurcations in the nonlinear dynamics of a
generic rigid block [9], an issue which represents one of the motivations for this work.

The last point, on the other hand, is suggested by the fact that Melnikov method pro-
vides a reliable approximation of the true distance for small ε, but when ε increases,
or when the homo/heteroclinic bifurcation is degenerate (i.e., two distinct, simultane-
ous points of tangency occur, see Section 6), the error becomes appreciable. An example,
which actually represents another motivation of this work, is reported at the end of [13,
Section 4.3]. This paper is thus also aimed at overcoming this drawback by considering
further terms in the ε-series of the distance.

Some results of the present work were anticipated in [12].

2. The perturbative analysis

Before proceeding with the detection of the perturbed unstable manifolds, we need few
preliminary comments. After having chosen one representation of the backward-asymp-
totic orbit xu(t), that is, after having chosen t̂, see remark (5), we consider

xu
(
t− t0

)
, (2.1)

where t0 is the time where we fix the stroboscopic Poincaré section
∑

t0 (see Figure 1.1).
Another Poincaré section is required. It is denoted by S and it is the plane passing

through q0 and orthogonal to the vector n= [cos(α), sin(α)]T (in the phase space (x, ẋ)),
as shown in Figure 1.1. In the classical Melnikov analysis, S is orthogonal to the vector
t = [ẋu(0), f (xu(0))]T tangent to the unperturbed flux at q0 (see (1.2) and remarks (4)
and (5)), but in this work this restriction is removed. S is only constrained to be transverse
to the flux, that is,

n · t= cos(α)ẋu(0) + sin(α) f
(
xu(0)

) �= 0. (2.2)
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Under the action of the perturbations εg1(x, ẋ, t) + ε2g2(x, ẋ, t) + ··· , the hyperbolic
fixed point p0 becomes a hyperbolic periodic orbit pε(t) ε-close to p0, which on

∑
t0 cor-

responds to the hyperbolic saddle point pε, as shown in Figure 1.1 [5, Lemma 4.5.1]. Fur-
thermore, Lemma 4.5.2 of [5] guarantees that the unstable manifold of p0 converts to the
unstable manifold of pε, whose intersection with

∑
t0 is also shown in Figure 1.1, where it

is denoted by Wu(pε). It intersects S in the point quε =Wu(pε)∩ S∩
∑

t0 (Figure 1.1).
Thanks to [5, Lemma 4.5.2], we have that on the time interval−∞ < t ≤ t0, the solution

of (1.1) ending at quε can be expressed in the perturbative form

quε (t)= xu(t− t0)+ εxu1 (t) + ε2xu2 (t) + ··· . (2.3)

To determine the correction terms xui (t), we insert (2.3) in (1.1), expand in ε-series, and
get (in the following xu means xu(t− t0) and xui stands for xui (t))

{
ẍu− f

(
xu
)}

+ ε
{
ẍu1 − f,x

(
xu
)
xu1 − g1

(
xu, ẋu, t

)}
+ ε2{ẍu2 − f,x

(
xu
)
xu2 −

1
2
f,xx
(
xu
)(
xu1
)2− g1,x

(
xu, ẋu, t

)
xu1

− g1,ẋ
(
xu, ẋu, t

)
ẋu1 − g2

(
xu, ẋu, t

)}
+ ··· = 0.

(2.4)

The first term is trivially zero by the definition of xu(t). Equating to zero the terms multi-
plying successive powers of ε, we obtain the variational equations permitting the compu-
tation of xui (t). They are the following linear second-order ordinary differential equations
with nonconstant coefficients:

ẍui (t)= f,x
(
xu
)
xui (t) + kui (t), ku1 (t)= g1

(
xu, ẋu, t

)
,

ku2 (t)= 1
2
f,xx
(
xu
)(
xu1
)2

+ g1,x
(
xu, ẋu, t

)
xu1 + g1,ẋ

(
xu, ẋu, t

)
ẋu1 + g2

(
xu, ẋu, t

)
, . . . .

(2.5)

First, we note that yu1 (t) = ẋu(t − t0) is one solution of the homogenous version of
(2.5), as shown in remark (6). The other can be computed by integrating the Wronskian
expression

ẏu1 (t)yu2 (t)− ẏu2 (t)yu1 (t)= 1. (2.6)

This is a first-order linear equation in the unknown yu2 (t), whose solution, computed by
the variation of constants method, can be written, at least formally, in the form

yu2 (t)=−yu1 (t)
∫

dτ[
yu1 (τ)

]2 . (2.7)

Remark 2.1. Since yu1 (t) ∼= eλt, λ > 0, for t → −∞ (see remark (7)), we have that yu2 (t)
∼= e−λt. Thus, yu1 (t) vanishes and yu2 (t) is unbounded for t→−∞.

Remark 2.2. Note that yu1 (t) and yu2 (t) do not depend on the order of the approximation
or on perturbations (the homogeneous equation is always the same) so that they must be
computed one time only.
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The knowledge of yu1 (t) and yu2 (t) permits to compute the general solution of (2.5),
which is given by [27, equation (5.6.6), with changing the sign to negative] (note that
equation (5.6.6) is correct up to the sign):

xui (t)= yu1 (t)
[
Nu
i +

∫ t
t0
yu2 (τ)kui (τ)dτ

]
+ yu2 (t)

[
Mu

i −
∫ t
t0
yu1 (τ)kui (τ)dτ

]
. (2.8)

For the following purposes, it is also useful to compute its derivative, which is

ẋui (t)= ẏu1 (t)
[
Nu
i +

∫ t
t0
yu2 (τ)kui (τ)dτ

]
+ ẏu2 (t)

[
Mu

i −
∫ t
t0
yu1 (τ)kui (τ)dτ

]
. (2.9)

The constants Nu
i and Mu

i can be determined by boundary conditions. The first one
is the boundedness of xui (t) for t→−∞, which, because yu2 (t) is unbounded for t→−∞
(see Remark 2.1), requires that the term multiplying yu2 (t) in (2.8) vanishes for t→−∞,
namely,

Mu
i =Mu

i

(
t0
)=

∫ −∞
t0

yu1 (τ)kui (τ)dτ

=−
∫ t0
−∞

ẋu
(
τ − t0

)
kui (τ)dτ

=−
∫ 0

−∞
ẋu(τ)kui

(
τ + t0

)
dτ.

(2.10)

OnceMu
i have been computed, it remains to determineNu

i . They follow from the require-
ment that

quε = quε
(
t = t0

)= [xu(0), ẋu(0)
]T

+ ε
[
xu1
(
t0
)
, ẋu1
(
t0
)]T

+ ε2[xu2(t0), ẋu2(t0)]T + ···
(2.11)

belongs to S (Figure 1.1), namely,

0= [quε −q0
] ·n= ε{xu1(t0)cos(α) + ẋu1

(
t0
)

sin(α)
}

+ ε2{xu2(t0)cos(α) + ẋu2
(
t0
)

sin(α)
}

+ ··· . (2.12)

Thus, the other boundary condition for (2.4) is

xui
(
t0
)

cos(α) + ẋui
(
t0
)

sin(α)= 0 (2.13)

which, by taking into account (2.8) and (2.9) (for t = t0), yields

[
yu1
(
t0
)
Nu
i + yu2

(
t0
)
Mu

i

]
cos(α) +

[
ẏu1
(
t0
)
Nu
i + ẏu2

(
t0
)
Mu

i

]
sin(α)= 0, (2.14)

Nu
i =Nu

i

(
t0,α

)=−Mu
i

(
t0
) yu2(t0)cos(α) + ẏu2

(
t0
)

sin(α)
yu1
(
t0
)

cos(α) + ẏu1
(
t0
)

sin(α)
. (2.15)
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Note that the denominator of (2.15) is just n · t, which is different from zero due to the
transversality condition (2.2). Three particular cases of (2.15) are worthy of attention: (i)
n parallel to t, a case which is the classical assumption of the Melnikov theory [5, 26] and
leads to Nu

i =−Mu
i [yu2 (t0)yu1 (t0) + ẏu2 (t0) ẏu1 (t0)]/{[yu1 (t0)]2 + [ ẏu1 (t0)]2}; (ii) n parallel to

the ẋ-axis, that is, α = π/2, which yields Nu
i = −Mu

i ẏ
u
2 (t0)/ ẏu1 (t0); (iii) n parallel to the

x-axis, that is, α= 0, which gives Nu
i =−Mu

i y
u
2 (t0)/yu1 (t0). Vakakis [24] notes that Nu

i �= 0
can be viewed as a time shift, because xu(t− t0) + εNu

1 y
u
1 (t) + ··· = xu(t− t0) + εNu

1 ẋ
u(t−

t0) + ··· ∼= xu(t− t0 + εNu
1 ), and assumes that Nu

i = 0. The condition (iii) is used in [9].
Thanks to (2.12), the vector quε − q0 has component only along the unit vector m =

[−sin(α),cos(α)]T orthogonal to n. This component, which actually represents the signed
distance on

∑
t0∩S between perturbed and unperturbed unstable manifolds, is finally

given by

du
(
t0,α

)= [quε −q0
] ·m

= ε{− xu1(t0)sin(α) + ẋu1
(
t0
)

cos(α)
}

+ ε2{− xu2(t0)sin(α) + ẋu2
(
t0
)

cos(α)
}

+ ···
= ε{− [yu1(t0)Nu

1 + yu2
(
t0
)
Mu

1

]
sin(α)

+
[
ẏu1
(
t0
)
Nu

1 + ẏu2
(
t0
)
Mu

1

]
cos(α)

}
+ ε2{− [yu1(t0)Nu

2 + yu2
(
t0
)
Mu

2

]
sin(α)

+
[{ ẏu1(t0)Nu

2 + ẏu2
(
t0
)
Mu

2

]
cos(α)

}
+ ···

=
[
yu1
(
t0
)
ẏu2
(
t0
)− ẏu1

(
t0
)
yu2
(
t0
)]{

εMu
1 + ε2Mu

2 + ···}
yu1
(
t0
)

cos(α) + ẏu1
(
t0
)

sin(α)

= −{εMu
1 + ε2Mu

2 + ···}
ẋu(0)cos(α) + f

[
xu(0)

]
sin(α)

,

(2.16)

where use is made of (2.8) and (2.9) for t = t0 and of (2.6). We explicitly report the ex-
pressions of the first two coefficients Mu

i which determine the distance du:

Mu
1

(
t0
)=−

∫ 0

−∞
ẋu(τ)g1

[
xu(τ), ẋu(τ),τ + t0

]
dτ,

Mu
2

(
t0
)=−1

2

∫ 0

−∞
ẋu(τ) f,xx

[
xu(τ)

][
xu1
(
τ + t0

)]2
dτ

−
∫ 0

−∞
ẋu(τ)g1,x

[
xu(τ), ẋu(τ),τ + t0

]
xu1
(
τ + t0

)
dτ

−
∫ 0

−∞
ẋu(τ)g1,ẋ

[
xu(τ), ẋu(τ),τ + t0

]
ẋu1
(
τ + t0

)
dτ

−
∫ 0

−∞
ẋu(τ)g2

[
xu(τ), ẋu(τ),τ + t0

]
dτ.

(2.17)

The functions Mu
i are the “one-half” Melnikov functions of order i.
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Remark 2.3. The Melnikov functions have been obtained by setting equal to zero the
coefficients of the unbounded part of (2.8). Generalizations of this idea in a functional
analysis abstract framework are reported in [17].

The analysis can be repeated analogously for the stable manifolds. In this case hy-
pothesis (H2) requires the existence of an orbit xs(t) forward-asymptotic to p0, that is,
limt→+∞ xs(t) = p0, and it is just t → q0(t) = [xs(t), ẋs(t)]T that parametrically describes
the stable manifold Ws(p0) of p0. On the time interval t0 ≤ t <∞, the solution of equa-
tion (1.1) starting from qsε =Ws(pε)∩ S∩

∑
t0 can be expressed in the perturbative form

(2.3), with a simple substitution of the apex “s” instead of “u”. The remaining part of
the analysis is basically identical, up to this change of label. In particular, the correction
terms xsi (t) are determined by solving “the same” variational problems (2.5). A slight dif-
ference is that the vanishing of ys1(t) and the unboundedness of ys2(t) for t→ +∞, instead
of t→−∞, are used in remark (7) and Remark 2.1. Thus, instead of (2.10), we have

Ms
i =Ms

i

(
t0
)=

∫∞
t0
ys1(τ)ksi (τ)dτ

=
∫∞
t0
ẋs
(
τ − t0

)
ksi (τ)dτ =

∫∞
0
ẋs(τ)ksi

(
τ + t0

)
dτ,

(2.18)

while the signed distance on
∑

t0∩S between perturbed and unperturbed stable mani-
folds is

ds
(
t0,α

)= [qsε−q0
] ·m= −{εMs

1 + ε2Ms
2 + ···}

ẋs(0)cos(α) + f
[
xs(0)

]
sin(α)

. (2.19)

The functions Ms
i , which are conceptually and numerically distinct from Mu

i , are the
other “one-half” Melnikov functions of order i. The explicit expressions of the first two
are

Ms
1

(
t0
)=

∫∞
0
ẋs(τ)g1

[
xs(τ), ẋs(τ),τ + t0

]
dτ,

Ms
2

(
t0
)= 1

2

∫∞
0
ẋs(τ) f,xx

[
xs(τ)

][
xs1
(
τ + t0

)]2
dτ

+
∫∞

0
ẋs(τ)g1,x

[
xs(τ), ẋs(τ),τ + t0

]
xs1
(
τ + t0

)
dτ

+
∫∞

0
ẋs(τ)g1,ẋ

[
xs(τ), ẋs(τ),τ + t0

]
ẋs1
(
τ + t0

)
dτ

+
∫∞

0
ẋs(τ)g2

[
xs(τ), ẋs(τ),τ + t0

]
dτ.

(2.20)

With (2.16) and (2.20), it is then possible to compute the distance, on S, between stable
and unstable perturbed manifolds:
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d
(
t0
)= [qsε−quε

] ·m= [(qsε−q0
)− (quε −q0

)] ·m= ds(t0)−du(t0)

=−ε
{

Ms
1

ẋs(0)cos(α) + f
[
xs(0)

]
sin(α)

− Mu
1

ẋu(0)cos(α) + f
[
xu(0)

]
sin(α)

}

− ε2

{
Ms

2

ẋs(0)cos(α) + f
[
xs(0)

]
sin(α)

− Mu
2

ẋu(0)cos(α) + f
[
xu(0)

]
sin(α)

}
−··· .

(2.21)

Remark 2.4. The functions xu(t) and xs(t) are the restrictions of the same homo/
heteroclinic orbit xh(t) to ]−∞, t0] and [t0,+∞[, respectively. However, for nonsmooth
systems [9], xs(0) �= xu(0) and ẋs(0) �= ẋu(0) in general, and expression (2.21) cannot be
further simplified. For smooth systems, on the other hand, xs(0) = xu(0) = xh(0) and
ẋs(0)= ẋu(0)= ẋh(0), and we have

d
(
t0
)= −{εM1 + ε2M2 + ···}

ẋh(0)cos(α) + f
[
xh(0)

]
sin(α)

, (2.22)

whereMi(t0)=Ms
i (t0)−Mu

i (t0) are the “full” Melnikov functions of order i. In particular,
we have

M1
(
t0
)=

∫∞
0
ẋs(τ)g1

[
xs(τ), ẋs(τ),τ + t0

]
dτ +

∫ 0

−∞
ẋu(τ)g1

[
xu(τ), ẋu(τ),τ + t0

]
dτ

=
∫∞
−∞

ẋh(τ)g1
[
xh(τ), ẋh(τ),τ + t0

]
dτ,

(2.23)

which is the classical Melnikov function (see [5, 26]).

Remark 2.5. Expression (2.21) applies to both homoclinic (the same unperturbed sad-
dle for stable and unstable manifolds) and heteroclinic (different saddles for stable and
unstable manifolds) orbits. In the case of heteroclinic orbits, however, the simple inter-
section of perturbed stable and unstable manifolds is not sufficient to give “chaos” in the
Smale’s horseshoe sense [26], and we must have a couple of intersecting manifolds (the
so-called heteroclinic loop).

3. A different expression for correction terms

The differential equations (2.5), which are at the base of the previous perturbative anal-
ysis, have the disadvantage that the known terms kui (t) do not vanish for t →−∞, and
this may be unpleasant in numerical calculations of the integrals giving the closed-form
expression of the solution. To overcome this point, the following trick is suggested.

First, we note that for t→−∞, the perturbed solution quε (t) must approach the saddle
pε(t), which can also be determined by a perturbative analysis,

pε(t)= p0 + εx̃1(t) + ε2x̃2(t) + ··· , (3.1)
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where, similarly to what has been done for qε(t), the terms x̃i(t) are the periodic solutions
of (remember that λ2 = f,x(p0), see remark (7))

¨̃xi(t)= λ2x̃i(t) + k̃i(t), k̃1(t)= g1
(
p0,0, t

)
,

k̃2(t)= 1
2
f,xx
(
p0
)
x̃2

1(t) + g1,x
(
p0,0, t

)
x̃1(t) + g1,ẋ

(
p0,0, t

)
˙̃x1(t) + g2

(
p0,0, t

)
, . . . .

(3.2)

On the basis of the previous considerations, we can write the corrections terms xui (t)
of quε (t) in the form

xui (t)= x̃i(t) + x̂ui (t), (3.3)

where x̃i(t) is the asymptotically oscillating part of xui (t), and x̂ui (t) is the decaying part.
By comparing (2.5) with (3.2), it is easy to see that x̂ui (t) are solutions of

¨̂xui (t)= f,x
(
xu
)
x̂ui (t) + k̂ui (t),

k̂ui (t)= [ f,x(xu)− λ2]x̃i(t) + kui (t)− k̃i(t).
(3.4)

Equations (3.4) are similar to (2.5) so that the same expressions for the solutions de-
veloped in the previous section apply, but now the known terms k̂ui (t), contrary to the
kui (t), vanish for t → −∞, and are therefore more easily handled. The same reasoning
applies to the stable manifold.

4. Preliminary examples

To illustrate the features of the proposed perturbative approach for computing perturbed
manifolds, in this section we consider two preliminary examples where computations can
be done analytically. Two more interesting cases, however requiring numerical computa-
tions of the involved integrals, will be discussed in the following sections.

We initially investigate the most simple case, that is, the linear equation

ẍ+ εδẋ− λ2x = εγ sin(ωt), (4.1)

which corresponds to f (x) = λ2x, g1(x, ẋ, t) = −δẋ + γ sin(ωt), and gi(x, ẋ, t) = 0, i ≥ 2.
In this case xu(t)= eλt, y1(t)= λeλ(t−t0), y2(t)= e−λ(t−t0)/(2λ2). After some computations
we get

xu1 (t)=−δ
2

(
t− t0

)
eλ(t−t0)− γ sin(ωt)− sin

(
ωt0
)
eλ(t−t0)

λ2 +ω2
, (4.2)

which, in the special case t0 = 0 and α= 0, provides

qε(t)= xh(t) + εxu1 (t) + ··· = eλt + ε
[
− δ

2
teλt − γ sin(ωt)

λ2 +ω2

]
+ ··· . (4.3)
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As expected, (4.3) contains the first two terms of the ε-power series of the exact per-
turbed solution

qε(t)= ezt − εγ
{(
λ2 +ω2

)
sin(ωt) + εδω

[
cos(ωt)− ezt]}

(εδω)2 +
(
λ2 +ω2

)2 , z = −εδ +
√

(εδ)2 + 4λ2

2
.

(4.4)

In this case the point q0 is q0 = [xu(0), ẋu(0)]T = [1,λ]T . By choosing α= 0, that is, the
section S perpendicular to the x-axis, the distance on S in q0 is given by

du
(
t0
)=− εδ

2
− εγωcos

(
ωt0
)− λsin

(
ωt0
)

λ2 +ω2
+

(εδ)2

8λ

+ (εδ)(εγ)
8λωcos

(
ωt0
)

+ 4
(
ω2− λ2

)
sin
(
ωt0
)

(
λ2 +ω2

)2 + ··· .
(4.5)

Note that the coupling between damping and excitation occurs only at second order.
The second preliminary example is the escape (Helmholtz) oscillator subjected to a

damping which, though small, is larger than the excitation. To take this fact into account,
we scale to different powers of ε the two perturbation terms and consider

ẍ+ εδẋ− x+ x2 = ε2γ sin(ωt). (4.6)

In this case we have f (x)= x− x2, g1(x, ẋ, t)=−δẋ, g2(x, ẋ, t)= γ sin(ωt), and gi(x, ẋ, t)=
0, i≥ 3. Easy computations give the expression of the homoclinic orbit and of the auxiliary
functions y1 and y2:

xh = 3
2

1

cosh2(t/2)
, y1 =−3

2
sinh(t/2)

cosh3(t/2)
,

y2 = 5
6

+
cosh2(t/2)

3
− 5

2cosh2(t/2)
+

5t sinh(t/2)

4cosh3(t/2)
.

(4.7)

If we look for the perturbations around the point described by t̂ = 0, that is, q0 = [3/2,0]T ,
and measure the distance on the section S perpendicular to the y-axis, that is, α = π/2,
we obtain

xu1 (t)= δ

10
et
(
e3t + 15e2t − 65et − 15

)
+ 30t

(
et − 1

)
(
et + 1

)3 ,

xs1(t)= δ

10
e−t
(− e−3t − 15e−2t + 65e−t + 15

)
+ 30t

(
e−t − 1

)
(
e−t + 1

)3 .

(4.8)

The functions xh(t) (unperturbed stable and unstable manifolds), xh(t) + εxu1 (t) (per-
turbed unstable manifold), and xh(t) + εxs1(t) (perturbed stable manifold) are depicted in
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Figure 4.1. The functions xh(t) (thin line), xh(t) + εxu1 (t) (thick continuous line), and xh(t) + εxs1(t)
(thick dashed line) for εδ = 0.05: (a) time histories and (b) phase space.

Figure 4.1 for εδ = 0.05. The distances, on the other hand, are given by

du
(
t0
)= 4

5
εδ +

(
49
75
− 8

5
ln2
)

(εδ)2

+ ε2γ
{

cos
(
ωt0
) 4πω2

sinh(πω)

+2sin
(
ωt0
)[− 1+ω2

(
ψ
iω

2
+ψ

−iω
2
−ψ
(

1
2

+
iω

2

)
−ψ
(

1
2
− iω

2

))]}
+··· ,

ds
(
t0
)=−4

5
εδ +

(
49
75
− 8

5
ln2
)

(εδ)2

+ ε2γ
{
− cos

(
ωt0
) 4πω2

sinh(πω)

+2sin
(
ωt0
)[−1+ω2

(
ψ
iω

2
+ψ

−iω
2
−ψ
(

1
2

+
iω

2

)
−ψ
(

1
2
− iω

2

))]}
+··· ,

d
(
t0
)=−8

5
εδ− ε2γ cos

(
ωt0
) 8πω2

sinh(πω)
+ ··· ,

(4.9)

where ψ(·) is the digamma function [1]. Owing to the considered powers of ε, there is no
coupling at second order between damping and excitation.

5. The mathematical pendulum

We consider the damped mathematical pendulum subjected to horizontal harmonic ex-
citation:

ẍ+ εδẋ+ sin(x) + εγ cos(ωt)cos(x)= 0. (5.1)
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Figure 5.1. (a) The functionsM1a(ω) andM1b(ω) involved in the expression ofMu
1 . (b) The functions

M2a(ω), M2b(ω), M2c(ω), M2d(ω), and M2e(ω) involved in the expression of Mu
2 .

In this case we have f (x)=−sin(x), g1(x, ẋ, t) =−δẋ− γ cos(ωt)cos(x), and gi(x, ẋ, t) =
0, i ≥ 2. Simple computations give the expression of the heteroclinic orbit and of the
auxiliary functions y1 and y2:

xh = 2arctan
[

sinh(t)
]
, y1 = 2

cosh(t)
, y2 =− sinh(t)

4
− t

4cosh(t)
. (5.2)

The saddle is p0 =−π, and we focus attention on the point q0 = [0,2]T which is obtained
for t̂ = 0. The section S is perpendicular to the x-axis, that is, α= 0, and is also orthogonal
to the tangent vector t. After some computations, we obtain

x̃1(t)=−γ cos(ωt)
1 +ω2

, k̂1(t)=−δ 2
cosh

(
t− t0

) − γ 2ω2

1 +ω2

cos(ωt)

cosh2 (t− t0) ,

xu1
(
s+ t0

)= a(s)δ + b(s,ω)γ cos
(
ωt0
)

+ c(s,ω)γ sin
(
ωt0
)
,

(5.3)

where the expressions of functions a(s), b(s,ω), and c(s,ω) are reported in the appendix.
On the basis of these results we can compute the first two “one-half” Melnikov functions,
which are given by

Mu
1 = 4δ +M1a(ω)γ cos

(
ωt0
)

+M1b(ω)γ sin
(
ωt0
)
,

Mu
2 = 2δ2 +M2a(ω)γ2 cos2 (ωt0)+M2b(ω)γ2 sin2 (ωt0)

+M2c(ω)γ2 sin
(
ωt0
)

cos
(
ωt0
)

+M2d(ω)δγ cos
(
ωt0
)

+M2e(ω)δγ sin
(
ωt0
)
,

(5.4)

respectively. The functions M1a(ω), M1b(ω), M2a(ω), M2b(ω), M2c(ω), M2d(ω), and
M2e(ω) are depicted in Figure 5.1, and their expressions are reported in the appendix.

Figure 5.1 shows that for ω→∞, all the functionsMij(ω) tend to zero so thatMu
1 → 4δ

and Mu
2 → 2δ2. This means that the unstable perturbed and unperturbed manifolds keep
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Figure 5.2. The distance du(t0) for ω = 1 and for various values of (εδ,εγ). Dotted lines: only first-
order terms in (5.5); continuous lines: first- and second-order terms in (5.5).

well disjoint for large frequencies. Physically, this can be justified by noting that when the
excitation oscillations are very fast, basically they do not affect the system, and only the
manifolds separation due to damping survives. Note that the phenomenon is captured by
the first-order term and then confirmed by the second-order term.

A different situation is observed in the opposite case of quasistatic excitation, ω →
0. Here, in fact, we still have Mu

1 → 4δ, but now Mu
2 → 2δ2 − 0.5γ2 + 2δγ. Thus, while

the excitation amplitude does not contribute to the first-order term, it appears in the
second-order term, which therefore adds not only a quantitative but also a qualitative
difference, and it is not negligible in this range of frequencies. In particular, if we take
into account only the first-order term, we miss the property that the distance may vanish
for sufficiently large excitation amplitudes.

The second-order term has an appreciable effect not only for small ω. To illustrate
this by an example, we consider ω = 1. The associated distance between perturbed and
unperturbed unstable manifolds is given by

du
(
t0
)= −

{
εMu

1 + ε2Mu
2 + ···}

ẋh(0)

=−1
2

{
4(εδ) + 1.252(εγ)cos

(
t0
)

+ 0.297(εγ)sin
(
t0
)

+ 2(εδ)2 + 0.219(εγ)2 cos2 (t0)
− 0.262(εγ)2 sin2 (t0)+ 0.139(εγ)2 sin

(
t0
)

cos
(
t0
)

+ 0.522(εδ)(εγ)cos
(
t0
)

+ 1.166(εδ)(εγ)sin
(
t0
)}
.

(5.5)

The distance (5.5) is reported in Figure 5.2 for various values of εδ and εγ. This picture
clearly shows the modifications due to the second-order terms. Note that the differences
are not negligible even for the relatively small values of damping and excitation amplitude
employed in the picture. The other “one-half” Melnikov functionsMs

1(t0) andMs
2(t0) can

be computed analogously. They share the same properties of Mu
1 (t0) and Mu

2 (t0), and are
not reported.
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6. The escape oscillator

Other aspects of the importance of higher-order Melnikov terms can be highlighted by
considering the damped asymmetric escape (Helmholtz) oscillator subjected to a generic
periodic excitation:

ẍ+ εδẋ− x+ x2 = εγ(t)= ε
N∑
j=1

γj sin
(
jωt+ψj

)
. (6.1)

We remark that, contrary to the Helmholtz oscillator analyzed in Section 4, here the
damping and the excitation have the same order of magnitude ε. Another difference is
that the excitation is no longer harmonic.

The functions f (x), xh, y1, and y2 are reported in Section 4, g1(x, ẋ, t) = −δẋ + γ(t),
and gi(x, ẋ, t)=0, i≥2. The saddle is p0=0, we focus attention on the point q0 = [3/2,0]T ,
and we consider α = π/2, that is, n orthogonal to the x-axis and S perpendicular to the
tangent vector t. When compared with that of Section 5, this case considers homoclinic
instead of heteroclinic orbits, and we focus directly on the “full” Melnikov functions in-
stead of dealing with “one half” as in Section 5.

After some algebra, the first two Melnikov functions can be expressed in the form

M1
(
t0
)=−6

5
δ− 6π

N∑
j=1

( jω)2

sinh( jωπ)
γj cos

(
jωt0 +ψj

)
,

M2
(
t0
)= δ N∑

j=1

χ( jω)γj sin
(
jωt0 +ψj

)

+
N∑
j=1

N∑
k=1

βjk(ω)γjγk sin
(
jωt0 +ψj

)
sin
(
kωt0 +ψk

)
.

(6.2)

The expression of M1(t0) is a known result, see [13], while the functions χ(s), β11(ω),
β12(ω), and β21(ω), whose expressions are reported in the appendix, are depicted in
Figure 6.1. Note that βkk(ω) = β11(kω), and this is why β22(ω) is not reported in Figure
6.1(b).

In (6.2) we do not have the term δ2 according to the fact that d(t0) must be an odd
function in δ. In fact, in the absence of the excitation, changing the sign of δ means
changing the direction of time (if x(t) is a solution for a given δ, then x(−t) is the solution
for−δ). This implies that stable and unstable manifolds exchange, that is, du(t0) becomes
ds(t0) and vice versa. Accordingly, d(t0)= ds(t0)−du(t0) changes sign, namely, it is odd in
δ. This of course does not require ds(t0) and du(t0) to be odd in δ (indeed, see (5.4)), but
simply that the coefficients of δ2i in du(t0) and ds(t0) are the same so that they disappear
in d(t0)= ds(t0)−du(t0).

Expressions (6.2) share the same asymptotic properties of (5.4). In fact, M1 →−1.2δ
and M2 → 0 for ω→∞, thus showing that stable and unstable perturbed manifolds keep
well disjoint for large frequencies. Contrary to (5.4), however, the second-order terms do
not affect the first-order analysis.
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Figure 6.1. (a) The function χ(ω). (b) The functions β11(ω), β12(ω), and β21(ω).

For ω→ 0, on the other hand, we have that

M1 −→−1.2δ, M2 −→−1.2δ
N∑
j=1

γj sin
(
ψj
)
. (6.3)

Thus, apart from the special case ψj = 0 for which M2 → 0, we have that the second-order
terms entail qualitative corrections to the first order as the superharmonics amplitudes
appear in the expression of the distance.

The Melnikov functions are usually of interest because the vanishing of the distance
d(t0) for some t0 implies transverse homoclinic intersection and, roughly, chaos (see [5,
26]). The smallest excitation value for which this can occur is the homoclinic bifurcation
threshold (actually, it corresponds to homoclinic tangency), whose detection has recently
been investigated in the case of classical Melnikov function [13].

To see the effects of higher-order Melnikov functions on this threshold, we initially
consider the harmonic excitation, that is, N = 1 in (6.1), with ψ1 = 0. Looking for zeros
of d(t0) means solving εM1(t0) + ε2M2(t0) = 0 (resp., εM1(t0) = 0 in the classical case).
When εγ1 is very small, the left-hand side is close to −(6/5)εδ < 0. When εγ1 increases,
the oscillating part becomes more and more important, and the maximum (with respect
to t0) of εM1(t0) + ε2M2(t0) (resp., εM1(t0)) increases until it vanishes for the first time in
correspondence to a given εγ1,cr which represents the homoclinic bifurcation threshold.
For a more detailed explanation, see [18].

The curves εγ1,cr(ω) obtained considering only first-order term and first- plus second-
order terms are reported in Figure 6.2. This picture clearly shows how the classical Mel-
nikov analysis (thin lines) is accurate only for medium values of ω around the chaotic
resonance ω = 0.6096, where the second-order correction basically does not modify the
classical results. For low and especially for high excitation frequencies, the error becomes
dramatically large, and the classical results largely overestimate the true εγ1,cr, even for
small values of the damping. As a matter of fact, it is believed that for very large ω, the
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Figure 6.2. (a) The theoretical homoclinic bifurcation thresholds εγ1,cr. The thin lines correspond to
εγ1,cr calculated with first-order terms only (classical Melnikov analysis); the thick lines take into ac-
count also the second-order terms. (b) The ratio between the second-order and first-order theoretical
predictions of εγ1,cr.

analysis based on second-order terms is still inaccurate, and further higher-order Mel-
nikov functions should be taken into account.

Contrary to what is suggested by Figure 6.2, the second-order Melnikov functions may
have nonnegligible effects also for medium excitation frequencies. This is seen by consid-
ering generic periodic excitations. In this case we can illustrate by an example the dif-
ferences between theoretical predictions based on first-order Melnikov function and nu-
merical simulations, a discrepancy which can be eliminated by considering M2. We refer
to the example of [13, Figure 15], which considers εδ = 0.1, ψ1 = 0, ω = 0.7, and N = 2,
and is therefore the simplest nonharmonic case. The explanation of the inconsistency of
[13, Figure 15] actually constitutes one of the initial motivations of this work.

We initially consider εγ2 = 0.8× εγ1 and ψ2 = 0. This choice arises in the framework
of optimal chaos control [13], but this is irrelevant to the purposes of this work. If we let
εγ1 increase from zero, computer simulations of (6.1) show the first homoclinic tangency
to occur at εγnum

1,cr = 0.0794, as shown in Figure 6.3(a), where the first touching point A is
emphasized. However, the first-order Melnikov function is always less than zero, as shown
by the thin line in Figure 6.4(a), and thus we theoretically predict no tangency, contrary
to the numerical evidence. If, however, we add the second-order Melnikov function (thick
line of Figure 6.4(a)), we theoretically recover the homoclinic tangency, that is, εM1(t0) +
ε2M2(t0)= 0 for a certain t0.

The theoretical analysis based on εM1(t0) predicts homoclinic tangency for εγ1 ord
1,cr

= 0.0818, as shown by the thin line in Figure 6.4(b). In this case, however, we numerically
observe homoclinic intersection (Figure 6.3(b)), with the point A beyond the unstable
manifold and the point B in front of Wu(pε), a circumstance which is theoretically re-
trieved if we consider also the second-order terms (thick line in Figure 6.4(b)).

An important aspect highlighted by Figure 6.4(b) is that a degenerate homoclinic bi-
furcation is expected by considering only first-order analysis, as the tangency is predicted
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Figure 6.3. The numerical saddle-manifolds phase portraits for εδ = 0.10, ω = 0.7, and different
excitations: (a) εγ(t) = 0.0794 × [sin(ωt) + 0.8 × sin(2ωt)]; (b) εγ(t) = 0.0818 × [sin(ωt) + 0.8 ×
sin(2ωt)]; (c) εγ(t) = 0.0818× [sin(ωt) + 0.8× sin(2ωt)− 0.048× cos(2ωt)] = 0.0818× [sin(ωt) +
0.8014× sin(2ωt− 0.06)]; (d) εγ(t)= 0.0818× [sin(ωt) + 0.8× sin(2ωt)− 0.1× cos(2ωt)]= 0.0818×
[sin(ωt) + 0.806× sin(2ωt− 0.124)].

to occur simultaneously in two distinct primary intersection points (PIP, see [26]). This
codimension-two event is highly sensitive to small parameters variations, and this shows
the inaccuracy of the first-order analysis and the necessity of considering at least second-
order terms.

If we want to recover the degenerate homoclinic bifurcations in real manifolds (this
has interest in the field of optimal chaos control [13]), we must correct the excitation
εγ(t) = 0.0818× [sin(ωt) + 0.8× sin(2ωt)] of Figures 6.3(b) and 6.4(b) by a term of the
form −µcos(2ωt). When µ increases, the point A is seen to move back while the point B
approaches the unstable manifold: at last, for µ= 0.0818× 0.048, there is a simultaneous
homoclinic tangency. This is seen numerically in Figure 6.3(c), and agrees very well with
the second-order (thick line) theoretical results of Figure 6.4(c), where the differences
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Figure 6.4. The functions εM1(t0) (thin lines) and εM1(t0) + ε2M2(t0) (thick lines) for εδ = 0.10, ω =
0.7, and the same excitations as in Figure 6.1, which can alternatively be expressed as (ψ1 = 0) (a)
εγ1 = 0.0794, εγ2 = 0.0635, ψ2 = 0; (b) εγ1 = 0.0818, εγ2 = 0.0654, ψ2 = 0; (c) εγ1 = 0.0818, εγ2 =
0.0655, ψ2 =−0.06; (d) εγ1 = 0.0818, εγ2 = 0.0659, ψ2 =−0.124.

with first-order theoretical analysis are confirmed. The singular character of the degen-
erate excitation of Figures 6.3(c) and 6.4(c) is demonstrated by the fact that, by further
increasing µ, the point A detaches from the unstable manifold while B intersects it, as
shown numerically in Figure 6.3(d) and theoretically in Figure 6.4(d).

We note that since the predictions based on εM1(t0) are corrected up to the ε order,
the difference between the theoretical and numerical “degenerate” excitations must be
of ε2 order. This agrees very well with the obtained results, since the amplitude of the
second-order “correction” terms is at least one order of magnitude smaller than the am-
plitudes of the first-order terms. However, we have shown that in the neighborhood of a
codimension-two homoclinic bifurcation, the ensuing corrections in the response ampli-
tudes, although small, are no longer negligible, even in the range of medium frequencies
where the first-order analysis is accurate with harmonic excitation. On the basis of these
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Figure 6.5. The homoclinic bifurcation thresholds in the plane (εγ1,εγ2) for ψ1 = ψ2 = 0. Thin line:
first-order analysis; thick line: second-order analysis. (a) εδ = 0.10, ω = 0.7, the dashed line is εγ2 =
0.8× εγ1 of Figures 6.3 and 6.4. (b) εδ = 0.05, ω = 1.1.

results, we conjecture that higher-order analysis is always required in the case of degener-
ate homo/heteroclinic bifurcations.

To investigate in more detail the effects on the homoclinic bifurcation threshold of
the first superharmonic εγ2 cos(2ωt +ψ2) added to the principal harmonic εγ1 cos(ωt +
ψ1), we have reported in Figure 6.5(a) the critical threshold in the plane (εγ1,εγ2) in the
case εδ = 0.1, ω = 0.7 (the same values of Figures 6.3 and 6.4), and ψ1 = ψ2 = 0. The
points inside the curves correspond to no homoclinic intersection, which instead occurs
for the excitations corresponding to outer points. The line εγ2 = 0.8× εγ1 along which we
developed the analysis of the previous point is also represented by a dashed line.

We see that first- and second-order analyses (represented by thin and thick lines, resp.)
basically coincide along the lines εγ2 = 0 and εγ1 = 0, that is, for harmonic excitations
with frequencies ω = 0.7 and ω = 1.4, respectively. This is consistent with the findings of
Figure 6.2. The noncoincidence, on the other hand, does not occur only in a neighbor-
hood of the degenerate excitations, which correspond to the dashed line, but it extends
to a very large range of combinations of εγ1 and εγ2. This shows that higher-order anal-
yses become always necessary in the case of generic excitations, where the simultaneous
presence of different harmonics needs a more accurate analysis in order to detect their
competitions and interactions.

The differences between the two analyses of Figure 6.5(a) are quantitatively modest
(of the order of 5%), although they have strong consequences in terms of homoclinic
bifurcations, as shown in Figures 6.3 and 6.4, and although they are important in the
field of optimal chaos control [13]. However, if we increase the excitation frequency, still
remaining in the central range of medium frequencies, the differences become large, even
reducing the damping, as shown by the example reported in Figure 6.5(b). They rapidly
become huge by further increasing ω.

As a final comment, we note that first-order analysis systematically overestimates the
“true” homoclinic threshold, a fact that can be justified by noticing that ε2M2(t0) contains
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only oscillating terms (see (6.2)), and thus its addition is likely to entail increasing the
maximum of the whole oscillating part of the distance, and thus enhances the possibility
to have homoclinic bifurcation. This does not occur only if the phases of the harmonics
are properly synchronized, a phenomenon which is not robust and which does not occur
in Figure 6.5.

7. Conclusions

A higher-order Melnikov analysis for single-DOF oscillators possessing homo- or hete-
roclinic loops has been developed in an abstract context. Classical Melnikov analysis has
been extended in various directions: (i) by considering higher-order Melnikov functions,
(ii) by measuring the distance on Poincaré sections nonperpendicular to the flux, and
(iii) by computing the distance between perturbed and unperturbed manifolds (“one-
half” Melnikov functions).

The last two points are required for dealing with nonsmooth systems, and their rele-
vance is shown by the application to the rigid block dynamics, which is investigated in
[9] and which shows how the present results permit to overcome the difficulties ensuing
from nonsmoothness.

Concerning the first point, on the other hand, a recursive formula furnishing closed-
form expression of higher-order Melnikov functions is obtained without referring to any
specific system. Then, the contributions of the second-order terms, which appear to be
nonnegligible even for relatively small values of the perturbation parameters ε, have been
investigated in given examples of smooth systems aimed at covering the main features of
the problem (homo- versus heteroclinic loops, “one-half” versus “full” Melnikov func-
tions, and so on). It has thus been proved that higher-order terms are sometimes neces-
sary to extend to a range of practical interest the mathematical results, like the homoclinic
bifurcation theorem [5, Theorem 4.5.3], holding for “ε sufficiently small.” Detecting some
of these cases constitutes one of the main achievements of the present work.

In fact, the analysis of the Helmholtz oscillator permits to draw some conclusions,
which could be conjectured to hold in general. In particular, it has been shown that the
classical (first-order) Melnikov analysis is inaccurate for detecting homoclinic bifurcation
under harmonic excitation for low and high excitation frequencies, where the relevant
threshold is overestimated. Furthermore, in the case of degenerate bifurcation ensuing
from generic periodic excitations, it is inaccurate also for medium frequencies. More gen-
erally, it has been shown that higher-order terms are required for accurately measuring
the interactions between various harmonics simultaneously exciting the system.

We do hope that the present investigation will permit to significantly enlarge the range
of application of the classical Melnikov method, and to improve all investigations and
achievements which are based on it.

Appendix

Here we report the expressions of the following functions:

a(s)=−
[

sinh(s)
(
1 + tanh(s)

)
+

s

cosh(s)

]
,
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b(s,ω)= 1
1 +ω2

{
− cos(ωs) +

1
cosh(s)

+
ω2

cosh(s)

∫ s
0

[
sinh(τ)

cosh2(τ)
+

τ

cosh3(τ)

]
cos(ωτ)dτ

−ω2
[

sinh(s) +
s

cosh(s)

]∫ s
−∞

cos(ωτ)

cosh3(τ)
dτ

}
,

c(s,ω)= 1
1 +ω2

{
sin(ωs)− ω2

cosh(s)

∫ s
0

[
sinh(τ)

cosh2(τ)
+

τ

cosh3(τ)

]
sin(ωτ)dτ

+ω2
[

sinh(s) +
s

cosh(s)

]∫ s
−∞

sin(ωτ)

cosh3(τ)
dτ

}
,

M1a(ω)=
∫ 0

−∞
2cos(ωt)

1− sinh2(t)

cosh3(t)
dt = πω2

cosh(πω/2)
,

M1b(ω)=
∫ 0

−∞
−2sin(ωt)

1− sinh2(t)

cosh3(t)
dt,

M2a(ω)=−2
∫ 0

−∞
sinh(t)

cosh3(t)

[
b2(t,ω) + 2cos(ωt)b(t,ω)

]
dt,

M2b(ω)=−2
∫ 0

−∞
sinh(t)

cosh3(t)

[
c2(t,ω)− 2sin(ωt)c(t,ω)

]
dt,

M2c(ω)=−4
∫ 0

−∞
sinh(t)

cosh3(t)

[
b(t,ω)c(t,ω) + cos(ωt)c(t,ω)− sin(ωt)b(t,ω)

]
dt,

M2d(ω)=−2
∫ 0

−∞
sinh(t)

cosh3(t)

[
2a(t)b(t,ω) + 2cos(ωt)a(t)− cosh(t)b(t,ω)

]
dt,

M2e(ω)=−2
∫ 0

−∞
sinh(t)

cosh3(t)

[
2a(t)c(t,ω)− 2sin(ωt)a(t)− cosh(t)c(t,ω)

]
dt,

χ(s)=
∫∞

0

[
4ẋh(τ) f1(τ,s) + 2ẍh(τ)

]
f2(τ,s)dτ,

βjk(ω)=−
∫∞

0
4ẋh(τ) f2(τ, jω) f3(τ,kω)dτ,

f1(t)= y1(t)
∫ t

0
y2(τ)y1(τ)dτ + y2(t)

∫∞
t
y1(τ)y1(τ)dτ,

f2(t,s)= y1(t)
∫ t

0
y2(τ)cos(sτ)dτ + y2(t)

∫∞
t
y1(τ)cos(sτ)dτ,

f3(t,s)= y1(t)
∫ t

0
y2(τ)sin(sτ)dτ + y2(t)

∫∞
t
y1(τ)sin(sτ)dτ.

(A.1)
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