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Sliding mode control schemes of the static and dynamic types are proposed for the con-
trol of a magnetic levitation system. The proposed controllers guarantee the asymptotic
regulation of the states of the system to their desired values. Simulation results of the
proposed controllers are given to illustrate the effectiveness of them. Robustness of the
control schemes to changes in the parameters of the system is also investigated.

1. Introduction

Magnetic levitation systems have practical importance in many engineering systems such
as in high-speed maglev passenger trains, frictionless bearings, levitation of wind tunnel
models, vibration isolation of sensitive machinery, levitation of molten metal in induc-
tion furnaces, and levitation of metal slabs during manufacturing. The maglev systems
can be classified as attractive systems or repulsive systems based on the source of levi-
tation forces. These kind of systems are usually open-loop unstable and are described by
highly nonlinear differential equations which present additional difficulties in controlling
these systems. Therefore, it is an important task to construct high-performance feedback
controllers for regulating the position of the levitated object.

In recent years, a lot of works have been reported in the literature for controlling mag-
netic levitation systems. The feedback linearization technique has been used to design
control laws for magnetic levitation systems [2, 9, 30]. The input-output, input-state, and
exact linearization techniques have been used to develop nonlinear controllers [6, 11, 38].
Other types of nonlinear controllers based on nonlinear methods have been reported
in the literature [14, 18, 35, 40]. Robust linear controller methods such as H∞ optimal
control, µ-synthesis, and Q-parameterization have also been applied to control magnetic
levitation systems [12, 13, 23]. Control laws based on phase space [39], linear controller
design [10], the gain scheduling approach [21], and neural network techniques [22] have
also been used to control magnetic levitation systems.

During the last two decades, variable structure systems (VSS) and sliding mode control
(SMC) have received significant interest and have become well-established research areas
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with great potential for practical applications. The theoretical development aspects of
SMC are well documented in many books and articles [3, 19, 29, 31, 32, 33, 34, 37, 41, 42].
The discontinuous nature of the control action in SMC is claimed to result in outstanding
robustness features for both system stabilization and output tracking problems. The very
good performance also includes insensitivity to parameter variations and rejection of
disturbances. VSS has been applied in many control fields which include robot control
[36], motor control [15], flight control [17], control of power systems [4], and process
control [20]. In addition, SMC has been used in magnetic bearing systems [1, 24, 25];
however, the proposed controllers have been designed based on linearized models about
nominal operating points, and thus the tracking performance deteriorates rapidly with
increasing deviations from the nominal operating points.

One of the first applications of SMC to magnetic levitation systems was carried out by
Cho et al. [8]. They showed that a sliding mode controller provides better transient re-
sponse than classical controllers. However, they neglected the current dynamics in their
model and limited the ball’s motion to a range of 1 mm. Chen et al. [7] designed an
adaptive sliding mode controller for a rather different type of magnetic levitation systems
called dual-axis maglev positioning system. Buckner [5] introduced a procedure for es-
timating the uncertainty bounds using artificial neural network and then applied it to
SMC of a magnetic levitation system. Hassan and Mohamed [16] used the reaching law
method complemented with the sliding mode equivalence technique to design a variable
structure controller for the magnetic levitation system.

In this paper, we propose one static and two dynamic SMC schemes for the mag-
netic levitation system. The proposed controllers are based on the SMC schemes devel-
oped by Sira-Ramı́rez et al. [27, 28] and Sira-Ramı́rez [26]; these control schemes have
been shown to enjoy advantageous insensitivity with respect to variations in the system’s
parameters and to external perturbations. Simulation results indicate that the proposed
control schemes work well and are robust to changes in the system’s parameters.

The rest of the paper is organized as follows. Section 2 contains the mathematical
model of the magnetic levitation system. Section 3 deals with the design of a static SMC
for the magnetic levitation system. Sections 4 and 5 deal with the design of dynamic
sliding mode controllers for the system. Section 6 presents and discusses the simulation
results of the proposed control schemes. Finally, the conclusion is given in Section 7.

2. Model of the magnetic levitation system

The magnetic levitation system considered in this paper consists of a ferromagnetic ball
suspended in a voltage-controlled magnetic field. Only the vertical motion is considered.
The objective is to keep the ball at a prescribed reference level. The schematic diagram of
the system is shown in Figure 2.1. The dynamic model of the system can be written as [2]

dp

dt
= v, Ri+

d
(
L(p)i

)
dt

= e,

m
dv

dt
=mgc−C

(
i

p

)2

,
(2.1)
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Figure 2.1. Schematic diagram of the magnetic levitation system.

where p denotes the ball’s position, v is the ball’s velocity, i is the current in the coil of the
electromagnet, e is the applied voltage, R is the coil’s resistance, L is the coil’s inductance,
gc is the gravitational constant, C is the magnetic force constant, and m is the mass of the
levitated ball.

The inductance L is a nonlinear function of the ball’s position p. The approximation

L(p)= L1 +
2C
p

(2.2)

will be used; L1 is a parameter of the system.
Let the states and the control input be chosen such that x1 = p, x2 = v, x3 = i, u = e,

and x = (x1 x2 x3)T is the state vector. Thus, the state-space model of the magnetic
levitation system can be written as

dx1

dt
= x2,

dx2

dt
= gc− C

m

(
x3

x1

)2

,

dx3

dt
=−R

L
x3 +

2C
L

(
x2x3

x2
1

)
+

1
L
u.

(2.3)

The state-space model of the magnetic levitation system (2.3) will be used in the design
of the SMC schemes.

Let x1d, x2d, and x3d be the desired values of x1, x2, and x3, respectively. Note, from
(2.3), that the equilibrium point for the system is xe = (x1e 0 x3e)T , where x3e satisfies

x3e =
√
gcm/Cx1e. Therefore, one may conclude that x2d is equal to zero.

The objective of the control schemes is to drive the states x1, x2, and x3 to their desired
constant values x1d, x2d, and x3d, respectively.
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Now, consider the following nonlinear change of coordinates:

z1 = x1− x1d,

z2 = x2,

z3 = gc− C

m

(
x3

x1

)2

.

(2.4)

Remark 2.1. If z1, z2, z3 are driven to zero as t→∞, then x1 will converge to x1d, x2 will

converge to zero, and x3 will converge to x3d =
√
gcm/Cx1d as t→∞.

The dynamic model of the magnetic levitation system in the new coordinates system
can be written as

ż1 = z2,

ż2 = z3,

ż3 = f (z) + g(z)u,

(2.5)

where

f (z)= 2
(
gc− z3

)((
1− 2C

L
(
z1 + x1d

)
)

z2(
z1 + x1d

) +
R

L

)
,

g(z)= −2
L
(
z1 + x1d

)
√

C

m

(
gc− z3

)
.

(2.6)

It should be noted that the functions f (z) and g(z) correspond in the original coordinates
to the following functions, respectively:

f1(x)= 2C
m

((
1− 2C

Lx1

)
x2x

2
3

x3
1

+
R

L

x2
3

x2
1

)
,

g1(x)=− 2Cx3

Lmx2
1

,

(2.7)

where f1(x)= f (z) and g1(x)= g(z).
Let the output of the system be

y = z1 = x1− x1d. (2.8)

Using (2.5), (2.7), and (2.8), the relationship between the input and the output of the
system can be found as

y(3) = f1(x) + g1(x)u. (2.9)

Using model (2.5), (2.6), (2.7), (2.8), and (2.9), the design of SMC schemes for the mag-
netic levitation system will be considered in the next sections.
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3. Design of a static sliding mode control

The design of a static SMC scheme for the magnetic levitation system is discussed in this
section.

The first step in designing an SMC scheme for the system is to design the switching
surface. Let the switching surface � be

�= ÿ + λ1 ẏ + λ2y = z̈1 + λ1ż1 + λ2z1 = z3 + λ1z2 + λ2z1, (3.1)

where λ1 and λ2 are positive scalars.
Using (2.4), the switching surface � can be written as a function of x1, x2, and x3 such

that

�= gc− C

m

(
x3

x1

)2

+ λ1x2 + λ2
(
x1− x1d

)
. (3.2)

Note that the choice of the switching surface guarantees that y = z1 = x1− x1d converges
to 0 as t→∞ when we have sliding (i.e., �= 0).

The following proposition gives the first result of the paper.

Proposition 3.1. The discontinuous static feedback controller,

u= 1
g1

[
− f1− λ1

(
gc− C

m

(
x3

x1

)2)
− λ2x2

−W sign
(
gc− C

m

(
x3

x1

)2

+ λ1x2 + λ2
(
x1− x1d

))]
,

(3.3)

when applied to the magnetic levitation system (2.3), asymptotically stabilizes x1, x2, and x3

to their desired values as t→∞.

Proof. Differentiating (3.1) with respect to time and using (2.5), (2.6), (2.7), (2.8), and
(2.9), we can write the following:

�̇= y(3) + λ1 ÿ + λ2 ẏ = f1(x) + g1(x)u+ λ1z3 + λ2z2. (3.4)

Substituting u by its value from (3.3), it follows that

�̇= f1 + λ1z3 + λ2z2 +

[
− f1− λ1

(
gc− C

m

(
x3

x1

)2)
− λ2x2

−W sign
(
gc− C

m

(
x3

x1

)2

+ λ1x2 + λ2
(
x1− x1d

))]

=−W sign
(
gc− C

m

(
x3

x1

)2

+ λ1x2 + λ2
(
x1− x1d

))

=−W sign(�).

(3.5)
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The dynamics in (3.5) guarantees the finite-time reachability of � to zero from any given
initial condition �(0) provided that the constant gain W is chosen to be strictly posi-
tive. Moreover, the dynamics in (3.5) guarantees that ��̇ < 0 (the condition needed to
guarantee switching).

Since � is driven to zero in finite time, the output y = z1 is governed after such finite
amount of time by the second-order differential equation ÿ + λ1 ẏ + λ2y = 0. Thus the
output y(t) = z1(t) will converge asymptotically to 0 as t →∞ because λ1 and λ2 are
positive scalars. Since z1 converges to zero, then z2 and z3 will converge to zero as t→∞.
Thus x1, x2, and x3 will also converge to their desired values as t→∞.

Therefore, it can be concluded that the static sliding mode controller given by (3.3)
guarantees the asymptotic convergence of the states x1, x2, and x3 to their desired values
as t→∞. �

Remark 3.2. Like any other variable structure controller, the proposed controller is con-
fronted with the problem of chattering, which is undesirable in practice. To cope with this
problem, the boundary layer concept (see [29]) or dynamic SMC schemes can be used.

4. Design of a dynamic sliding mode control

To reduce the chattering due to the static sliding mode controller, a dynamic sliding mode
controller is proposed in this section.

Differentiating (2.9) with respect to time, it follows that

y(4) = ḟ1 + ġ1u+ g1u̇, (4.1)

where

ḟ1(x)= 2C
m

[
−2R2

L2

x2
3

x2
1

+
(
gc− 4R

L
x2

)
x2

3

x3
1

+
(

10RC
L2

x2− 3x2
2 −

2Cgc
L

)
x2

3

x4
1

+
(

12C
L

x2
2 −

C

m
x2

3

)
x2

3

x5
1

+
(

2C2

Lm
x2

3 −
12C2

L2
x2

2

)
x2

3

x6
1

+
(

2
L

x2

x1
− 4C

L2

x2

x2
1

+
2R
L2

)
x3

x2
1
u

]
,

ġ1(x)=
(
−R
L
− 2x2

x1
+

4C
L

x2

x2
1

)
g1(x)− 2C

mL2x2
1
u.

(4.2)

To design the dynamic sliding mode controller, we will choose the switching surface σ
such that

σ = y(3) +m1 ÿ +m2 ẏ +m3y, (4.3)

where m1, m2, and m3 are parameters to be chosen by the designer such that the polyno-
mial p1(s)= s3 +m1s2 +m2s+m3 is a Hurwitz polynomial.
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Using (2.4) and (2.9), the switching surface σ can be written as

σ = f1 + g1u+m1

(
gc− C

m

(
x3

x1

)2)
+m2x2 +m3

(
x1− x1d

)
. (4.4)

The following proposition gives the second result of the paper.

Proposition 4.1. The dynamic control scheme,

u̇= 1
g1

[
− ḟ1− ġ1u−m1

(
f1 + g1u

)−m2

(
gc− C

m

(
x3

x1

)2)
−m3x2−Γsign(σ)

]
, (4.5)

when applied to the magnetic levitation system (2.3), asymptotically stabilizes the states to
their desired values as t→∞.

Proof. Differentiating (4.3) with respect to time and using (2.4), (2.5), (2.8), and (4.1), it
follows that

σ̇ = y(4) +m1y
(3) +m2 ÿ +m3 ẏ

= ḟ1 + ġ1u+ g1u̇+m1
(
f1 + g1u

)
+m2

(
gc− C

m

(
x3

x1

)2)
+m3x2.

(4.6)

Substituting u̇ by its value from (4.5), we get

σ̇ = ḟ1 + ġ1u+m1
(
f1 + g1u

)
+m2

(
gc− C

m

(
x3

x1

)2)
+m3x2

+
[
− ḟ1− ġ1u−m1

(
f1 + g1u

)−m2

(
gc− C

m

(
x3

x1

)2)
−m3x2−Γsign(σ)

]

=−Γsign(σ).

(4.7)

The dynamics in (4.7) guarantees the finite-time reachability of σ to zero from any given
initial condition σ(0) provided that the constant gain Γ is chosen to be strictly positive.
Moreover, the dynamics in (4.7) guarantees that σσ̇ < 0 (the condition needed to guaran-
tee switching).

Since σ is driven to zero in finite time, the output y = z1 is governed after such fi-
nite amount of time by the third-order differential equation y(3) +m1 ÿ +m2 ẏ +m3y = 0.
Thus the output y(t)= z1 will converge to zero as t→∞ because m1, m2, and m3 are pos-
itive scalars chosen such that the polynomial p1(s) = s3 +m1s2 +m2s+m3 is a Hurwitz
polynomial. Since z1 converges to zero, then z2 and z3 will converge to zero as t →∞.
Thus x1, x2, and x3 will also converge to their desired values as t→∞.

Therefore, it can be concluded that the dynamic sliding mode controller given by (4.5)
guarantees the asymptotic convergence of the states x1, x2, and x3 to their desired values.

�
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The controller developed in this section needs the computation of the derivatives of the
system’s dynamics. However, the computation of the derivatives might be problematic.
Hence, a dynamic SMC scheme that does not require the computation of the derivatives
of the system’s dynamics is proposed in the next section.

5. Design of a modified dynamic sliding mode control

Sira-Ramı́rez et al. [28] proposed the use of a robust redundant feedback controller, based
on dynamical sliding mode control, for nonlinear systems for which a smooth feedback
control policy is available. Motivated by this work, a modified dynamic sliding mode
controller is now designed for the magnetic levitation system.

Recall that the dynamic model of the magnetic levitation system in the z-coordinates
system can be written as (2.5), where the output of the system is chosen as

y = z1. (5.1)

It can be shown that the feedback linearization controller

u=−1
g

(
f + c1z1 + c2z2 + c3z3

)
(5.2)

guarantees the asymptotic convergence of z1, z2, and z3 to zero as t→∞.
The scalars c1, c2, and c3 are real positive constants such that the polynomial p2(s) =

s3 + c3s2 + c2s+ c1 = 0 is a Hurwitz polynomial.
Let the input-dependent switching surface ρ(z,u) be

ρ(z,u)= u+
1
g

(
f + c1z1 + c2z2 + c3z3

)
(5.3)

and let W2 be a sufficiently large, strictly positive scalar.
The following proposition gives the third result of the paper.

Proposition 5.1. The dynamic control scheme,

u=−1
g

(
f + c1z1 + c2z2 + c3z3

)
+ v, (5.4)

with

v̇ =−W2 sign

(
u+

1
g

(
f + c1z1 + c2z2 + c3z3

))
, (5.5)

when applied to the magnetic levitation system (2.5), guarantees the asymptotic convergence
of z1, z2, and z3 to zero as t→∞.

Proof. The dynamics in (5.3), (5.4), and (5.5) guarantees the finite-time reachability of
ρ to zero from any given initial condition provided that the constant gain W2 is chosen
to be strictly positive. Moreover, the dynamics in (5.3), (5.4), and (5.5) guarantees that
ρ(z,u)ρ̇(z,u) < 0 (the condition needed to guarantee switching).



N. F. Al-Muthairi and M. Zribi 101

Since ρ(z,u) is driven to zero in finite time, the output y = z1 is governed on the sliding
surface (ρ(x,u) = 0) by the third-order differential equation y(3) + c3 ÿ + c2 ẏ + c1y = 0.
Thus, the output y(t) = z1 will converge asymptotically to zero as t→∞ because c1, c2,
and c3 are chosen to be positive scalars such that the polynomial p2(s)= s3 + c3s2 + c2s+ c1

is a Hurwitz polynomial. Since z1 converges to zero, then z2 and z3 will also converge to
zero as t→∞. �

Using (2.4), it is clear that x1, x2, x3 will also converge to their desired values as t→∞.
Thus, it can be concluded that the dynamic sliding mode controller (5.4), (5.5) guarantees
the asymptotic convergence of the states x1, x2, and x3 to their desired values as t→∞.

Remark 5.2. The controller given in Proposition 5.1 can be transformed into the original
coordinates of the system by using transformation (2.4). Hence, controller (5.4), (5.5) in
the original coordinates is such

u=− 1
g1

(
f1 + c1

(
x1− x1d

)
+ c2x2 + c3

(
gc− C

m

(
x3

x1

)2))
+ v (5.6)

with

v̇ =−W2 sign
(
u+

1
g1

[
f1 + c1(x1− x1d) + c2x2 + c3

(
gc− C

m

(
x3

x1

)2)])
. (5.7)

6. Simulation results of the sliding mode controllers

Simulations are performed for the static and the two dynamic sliding mode controllers
proposed in the paper. The results are shown in this section.

The parameters of the magnetic levitation system are as follows [2]. The coil’s resis-
tance R= 28.7Ω, the inductance L1 = 0.65 H, the gravitational constant gc = 9.81 milli-
seconds−2, the magnetic force constant C = 1.410−4, and the mass of the ball m= 11.87 g.

First, the static sliding mode controller (3.3) is applied to the magnetic levitation sys-
tem (2.3). The parameters of the controller are chosen such that W = 350, λ1 = 61, and
λ2 = 930 (which correspond to closed-loop poles of the reduced-order system of−30 and
−31). The simulation results are shown in Figure 6.1. The figure shows the position ver-
sus time and the control (the applied voltage) versus time for the system when the mass
value is nominal and when the mass value is changed by ±25%. It can be seen from the
figure that the position converges to its desired value when the mass value is nominal.
However, there is a small steady-state error in the position when the mass is changed.
Also, some chattering can be seen due to this controller. To further reduce the magnitude
of the steady-state error, the value of W can be increased. However, increasing the value
of W will lead to a larger control magnitude and more chattering. The value of W was
selected so that the magnitudes of the three controllers have similar ranges.

Second, the dynamic sliding mode controller (4.5) is applied to the magnetic levitation
system (2.3). The parameters of the controller are chosen such that Γ= 50000, m1 = 93,
m2 = 2882, and m3 = 29760 (which correspond to closed-loop poles of −30, −31, and
−32). The simulation results are shown in Figure 6.2. The figure shows the position versus
time and the control versus time for the system when the mass value is nominal and
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Figure 6.1. The position and the control versus time when using the static sliding mode scheme.
(a) Position for m = 11.87g, (b) control for m = 11.87g, (c) position for m = 11.87g+ 25%,
(d) control for m = 11.87g + 25%, (e) position for m = 11.87g − 25%, and (f) control form =
11.87g − 25%.

when the mass value is changed by±25%. It can be seen from Figure 6.2 that the position
converges to its desired value even when the mass of the object varies by ±25%. Hence,
the controlled system is robust to changes in the mass value. Also, it can be seen from
the figure that the chattering in the control signal is greatly reduced when the dynamic
sliding mode controller is applied.

Third, the modified dynamic sliding mode controller (5.6), (5.7) is applied to the
magnetic levitation system (2.3). The parameters of the controller are chosen such that
W2 = 100, c3 = 93, c2 = 2882, and c1 = 29760 (which correspond to closed-loop poles
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Figure 6.2. The position and the control versus time when using the dynamic sliding mode scheme.
(a) Position for m = 11.87g, (b) control for m = 11.87g, (c) position for m = 11.87g+ 25%,
(d) control for m = 11.87g + 25%, (e) position for m = 11.87g − 25%, and (f) control for m =
11.87g − 25%.

of −30, −31, and −32). The simulation results are shown in Figure 6.3. The figure shows
the position versus time and the control versus time for the system when the mass value
is nominal and when the mass value is changed by ±25%. It can be seen from Figure 6.3
that the position converges to its desired value even when the mass of the object varies
by ±25%. Hence, the controlled system is robust to changes in the mass value. Also, it
can be seen from the figure that the chattering in the control signal is almost eliminated
when applying the modified dynamic sliding mode controller. Finally, Figure 6.4 shows
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Figure 6.3. The position and the control versus time when using the modified dynamic sliding mode
scheme. (a) Position for m = 11.87g, (b) control for m = 11.87g, (c) position for m = 11.87g+
25%, (d) control for m = 11.87g + 25%, (e) position for m = 11.87g − 25%, and (f) control for
m= 11.87g − 25%.

the position versus time for the three proposed controllers for the case when the mass
value is nominal.

Therefore, the simulation results indicate that the proposed control schemes work well
when applied to the magnetic levitation system. It can be concluded from the simulations
that the static control scheme is somewhat robust to changes in the mass of the object.
However, the dynamic controllers are very robust. It is also clear that the dynamic con-
trollers greatly reduce the chattering.
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Figure 6.4. The position versus time for the three proposed controllers.

7. Conclusion

The problem of static and dynamic SMC of a magnetic levitation system is addressed in
this paper. A static SMC scheme is derived first. To reduce the chattering problem, two dy-
namic sliding mode controllers are designed. Simulation results of the proposed control
schemes are given to show the effectiveness of these controllers. Moreover, the robustness
of the developed control schemes to variations in the parameters of the system is inves-
tigated. It is found that the three control schemes are robust to parameter variations.
However, the third control scheme (the modified dynamic sliding mode scheme) gives
the best results among the three controllers. Future work will address the experimental
implementation of the proposed control schemes.
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