
STUDY OF A LEAST-SQUARES-BASED ALGORITHM
FOR AUTOREGRESSIVE SIGNALS
SUBJECT TO WHITE NOISE

WEI XING ZHENG

Received 16 October 2002

A simple algorithm is developed for unbiased parameter identification of autoregressive
(AR) signals subject to white measurement noise. It is shown that the corrupting noise
variance, which determines the bias in the standard least-squares (LS) parameter estima-
tor, can be estimated by simply using the expected LS errors when the ratio between the
driving noise variance and the corrupting noise variance is known or obtainable in some
way. Then an LS-based algorithm is established via the principle of bias compensation.
Compared with the other LS-based algorithms recently developed, the introduced algo-
rithm requires fewer computations and has a simpler algorithmic structure. Moreover,
it can produce better AR parameter estimates whenever a reasonable guess of the noise
variance ratio is available.

1. Introduction

Estimation of the parameters of autoregressive (AR) signals from noisy measurements
has been an important topic of research in the field of signal processing [2, 4, 6]. Since
the standard least-squares (LS) method is unable to produce unbiased estimates of the AR
parameters in the presence of noise, many identification algorithms have been developed
with a view to achieving unbiasedness in AR signal estimation; for instance, the modi-
fied Yule-Walker (MYW) equations method [1], the maximum likelihood (ML) method
[7], the recursive prediction error (RPE) method [3], the modified least-squares (MLS)
method [5], and the improved least-squares (ILS) methods [8, 9]. It is of interest to note
that the ILS-type algorithms are built on the simple idea of estimating the variance of
the corrupting noise in an efficient way and then removing the noise-induced bias from
the standard LS estimator in a straightforward way so as to attain unbiased AR param-
eter estimates. The good performances of the ILS-type algorithms are as follows. Firstly,
as a linear regression-based method, the ILS-types methods require much less numeri-
cal efforts than the ML method, the RPE method, and the MLS method. Secondly, the
ILS-type algorithms not only are well suited for online estimation, but also have much
better numerical robustness than the MYW method. Thirdly, unlike the ML method and
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the MYW method, the ILS-type algorithms can simultaneously estimate the corrupting
noise variance and the signal power that may be required in certain signal processing
applications.

The objective of the present paper is to develop a simple algorithm for unbiased pa-
rameter identification of AR signals subject to white measurement noise. Note that the
assumption on the measurement noise is a restriction, but it is not unrealistic. Like the
other ILS-type algorithms, central to this new algorithm is the estimation of the corrupt-
ing noise variance, which determines the bias in the LS parameter estimator. However,
it is observed that the other ILS algorithms need to compute some extra autocovariance
estimates for the purpose of getting an estimate of the corrupting noise variance. This ap-
parently requires added computations. In this paper, it is assumed that the ratio between
the AR driving noise variance and the corrupting noise variance is given or obtainable
in some way. Note that, on the one hand, this assumption may be considered as restric-
tive in some practical situations since it may be difficult to have information on both
the driving noise and the corrupting one simultaneously. On the other hand, however,
it may still conform to a number of signal processing application cases. For example, in
speech processing, the level of background noise relative to a speech signal is sometimes
predictable beforehand according to the experience so that a reasonable description of
the noisy scenario (or the noise variance ratio) is admissible [4]. Under the imposed as-
sumption, the corrupting noise variance can be estimated by simply using the expected
LS errors. Then a new LS-based algorithm is established via the principle of bias compen-
sation. Compared with the other ILS-type algorithms, the developed algorithm requires
fewer computations and has a simpler algorithmic structure. Moreover, it can produce
better AR parameter estimates once a sensible conjecture of the noise variance ratio is
given. The sensitivity of the developed algorithm with respect to the noise variance ratio
is also studied via computer simulations.

2. Signal model

Assume that the AR signal x(t) is generated by a model of the form

x(t)=
p∑

i=1

aix(t− i) + v(t), (2.1)

where p is the order of the model, v(t) is the driving (white) noise with zero mean and
finite variance σ2

v , and {ai, i= 1, . . . , p} are the AR parameters.
Let

y(t)= x(t) +w(t) (2.2)

be a noisy measurement of the AR signal, where w(t) is the corrupting (white) noise with
zero mean and finite variance σ2

w.
The noisy AR model, which consists of (2.1) and (2.2), can be expressed in a vector

form as

y(t)= y�t a + ε(t), (2.3)
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where

a� = [a1 ···ap
]

(2.4)

is the parameter vector which contains the p parameters of the AR signal, and

y�t =
[
y(t− 1)··· y(t− p)

]
(2.5)

is the regression vector which contains the p delayed noisy measurements of the AR sig-
nal. Moreover, in (2.3), ε(t) is the equation error which is defined by

ε(t)= v(t) +w(t)−w�
t a, (2.6)

where

w�
t =

[
w(t− 1)···w(t− p)

]
. (2.7)

3. LS estimation and analysis

The objective of noisy AR signal identification is to estimate the AR parameters {ai,
i = 1, . . . , p}, including the driving noise variance σ2

v and the corrupting noise variance
σ2
w, from a sample of N noisy measurements {y(t), t = 1, . . . ,N}.

To solve this parameter estimation problem, several assumptions are needed. First, the
signal order p is assumed to be known. Second, the driving noise v(t) and the corrupting
noise w(t) are statistically uncorrelated. Note that the first assumption may be relaxed
so that only an upper bound of p is given, whereas the second assumption can easily be
satisfied in practical circumstances.

The standard LS parameter estimation is based on minimizing the mean squared error
criterion

J(a)= E
[
ε(t)2], (3.1)

which gives rise to the LS estimate of a (see [1]):

aLS = R−1r, (3.2)

where

R= E
[

yty�t
]
, r= E

[
yt y(t)

]
. (3.3)

To analyze the asymptotic property of aLS, a regression vector of the (noise-free) AR
signal x(t) is introduced:

x�t =
[
x(t− 1)···x(t− p)

]
. (3.4)

With (2.5), (2.7), and (3.4), the noisy measurement equation (2.2) may be rewritten in a
vector form as

yt = xt + wt . (3.5)
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Following the assumptions that v(t) and w(t) are white noises and are mutually uncorre-
lated, it is straightforward to derive

E
[

xtε(t)
]= E

[
xtv(t)

]
+E
[

xtw(t)
]−E

[
xtwt

]
a

= 0 + 0− 0a

= 0,

E
[

wtε(t)
]= E

[
wtv(t)

]
+E
[

wtw(t)
]−E

[
wtwt

]
a

= 0 + 0− σ2
wIpa

=−σ2
wa,

(3.6)

where Ip is an identity matrix of order p. By means of (3.5) and (3.6), it is easy to get

E
[

ytε(t)
]= E

[
xtε(t)

]
+E
[

wtε(t)
]

= 0− σ2
wa

=−σ2
wa.

(3.7)

Equation (3.7) shows that E[ytε(t)] is not a zero vector, that is, ε(t) is no longer orthog-
onal to the projection space spanned by yt due to the presence of the corrupting noise
w(t). In fact, substituting (2.2) and (3.7) into (3.2) immediately yields

aLS = a +∆a, ∆a=−σ2
wR−1a. (3.8)

The above asymptotic expression for aLS clearly shows that aLS is biased, and the bias ∆a
is determined by the corrupting noise variance σ2

w.

4. Unbiased parameter estimation

By using the principle of bias compensation, an unbiased estimate of the AR parameter
vector a can be obtained as follows:

a= aLS−∆a. (4.1)

However, the bias ∆a still remains unknown unless the corrupting noise variance σ2
w is

given or may be estimated in some way.
To this end, it is necessary to take a close look at the expected LS errors

J
(

aLS
)= E

[
ξ2(t,aLS

)]
, (4.2)

where the LS error ξ(t,aLS) is defined by

ξ
(
t,aLS

)= y(t)− y�t aLS. (4.3)

As shown in [8], J(aLS) is expressible as

J
(

aLS
)= σ2

v + σ2
w

(
1 + a�LSa

)
. (4.4)
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The above asymptotic expression shows that the driving noise variance σ2
v and the cor-

rupting noise variance σ2
w are closely related to each other. If one of them is known, the

other is immediately obtainable. In [8, 9], it is shown that the corrupting noise variance
σ2
w may be first estimated by using some extra autocovariances of y(t).

In this paper, in order to implement the bias compensation procedure (4.1), it is pro-
posed to assume that the ratio between the driving noise variance σ2

v and the corrupting
noise variance σ2

w, namely,

κ2 = σ2
v

σ2
w

(4.5)

is given or a proper estimate of it is available. As explained in Section 1, although this
assumption may be considered as a restrictive condition in some practical situations, it
may still conform to a number of signal processing application cases. For example, in
quite a number of practical situations, it is possible to know that the corrupting noise
just accounts for a fraction of the signal power, so that a priori information of the ratio
κ2 may be readily available. Further, this assumption greatly simplifies the estimation
problem.

Given this assumption, substitution of (4.5) into (4.4) gives rise to

J
(

aLS
)= σ2

w

(
κ2 + 1 + a�LSa

)
. (4.6)

This immediately reveals that the corrupting noise variance σ2
w can be estimated by using

the following equation:

σ2
w =

J
(

aLS
)

κ2 + 1 + a�LSa
. (4.7)

By means of (4.1), (4.2), and (4.7), a new ILS algorithm may be proposed for unbiased
parameter identification of AR signals subject to white measurement noise. This is called
the ILSR algorithm as it assumes the known ratio κ2.

The ILSR Algorithm

Step 0. Initialization.

(1) Make the standard LS estimation of the AR parameter vector a:

âLS = R̂−1
N r̂N , (4.8)

where the autocovariance estimates R̂N and r̂N are calculated from the noisy
observations {y(1), . . . , y(N)} as

R̂N = 1
N

N∑

t=1

yty�t , r̂N = 1
N

N∑

t=1

yt y(t). (4.9)

(2) Make estimation of the expected LS errors J(aLS):

ĴN
(

âLS
)= 1

N

N∑

t=1

(
y(t)− y�t âLS

)2
. (4.10)

(3) Set k = 0 and âILS(0)= âLS.
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Step 1. Make estimation of the corrupting noise variance σ2
w:

σ̂2
w(k)= ĴN

(
âLS
)

κ2 + 1 + â�LSâILS(k− 1)
. (4.11)

Step 2. Make the ILS estimation of the AR parameter vector a:

âILS(k)= âLS + σ̂2
w(k)R−1

N âILS(k− 1). (4.12)

Step 3. Make estimation of the driving noise variance σ2
v :

σ̂2
v (k)= κ2σ̂2

w(k). (4.13)

Step 4. If the stop criterion
∥∥âILS(k)− âILS(k− 1)

∥∥
∥∥âILS(k)

∥∥ < δ, (4.14)

where δ is a small positive number, is satisfied, output âILS(k), σ̂2
v (k), and σ̂2

w(k) and stop;
otherwise, set k = k+ 1 and go to Step 1.

The consistent convergence of the proposed algorithm can be established in a similar
way to that for the other ILS-type algorithms (see [8, 9]). Moreover, it is easy to see that
the ILSR algorithm can retain the advantages of the ILS-type algorithms over the MYW
method, the ML method, the RPE method, and the MLS method as stated before.

A comparison is now made between the developed ILSR algorithm and the other ILS-
type algorithms. First, the ILSR algorithm has a better estimation accuracy than the other
ILS-type algorithms. Second, since the developed algorithm does not need to compute
any extra autocovariance estimates (except R, r, and J(aLS)), it is more computationally
attractive than the other ILS-type algorithms. Third, the ILSR algorithm has a simpler
and more compact algorithmic structure than the other ILS-type algorithms, which en-
ables easier implementation. Fourth, however, the other ILS-type algorithms are work-
able without the assumption of the known ratio κ2 of the noise variances, thus having a
wider domain of application than the ILSR algorithm.

5. Numerical illustrations

Computer simulations have been conducted for empirical assessment of the performance
of the ILSR algorithm, in comparison with the standard LS method, the MYW method,
the ML method, the ILSNP algorithm [8], and the ILSD algorithm [9] in terms of accu-
racy and computational complexity. The accuracy is described by bias and variance, while
the computational complexity is measured approximately by the Matlab code flops. For
an overall description of the performance, the relative error (RE) and the normalized root
mean squared error (RMSE) are introduced, respectively, as follows:

RE=
∥∥m
(

â
)− a

∥∥
‖a‖ , RMSE=

√√√√√ 1
M

M∑

m=1

∥∥âm− a
∥∥2

‖a‖2
, (5.1)
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where m(â) represents the sample mean of an estimator â, and âm stands for an estimator
of a in the mth test over a total of M Monte Carlo tests.

The example used for illustration is a fourth-order AR signal as in (2.1) and (2.2). The
AR parameters were selected as

a1 = 1.352, a2 =−1.338, a3 = 0.662, a4 =−0.24, (5.2)

while the noise variances were chosen as

σ2
v = 1.0, σ2

w = 0.38. (5.3)

So the signal-to-noise ratio (SNR) is set approximately at 10 dB. To examine how a priori
information on the noise variance ratio κ2 will affect the behavior of the ILSR algorithm,
the following eleven guessed values of κ2 were used:

κ̂2
0 = 2.6316,

κ̂2
a = 2.2, κ̂2

f = 2.7,

κ̂2
b = 2.3, κ̂2

g = 2.8,

κ̂2
c = 2.4, κ̂2

h = 2.9,

κ̂2
d = 2.5, κ̂2

i = 3.0,

κ̂2
e = 2.6, κ̂2

j = 3.1.

(5.4)

Note that κ̂2
0 corresponds to the case when the noise variance ratio κ2 is exactly known,

while κ̂2
a, . . . , κ̂

2
j describe the cases when an exact knowledge of κ2 is not available. In par-

ticular, κ̂2
a, . . . , κ̂

2
e show that κ2 is underestimated, with an estimation error ranging from

more serious 16.4% in κ̂2
a to smaller 1.2% in κ̂2

e . Similarly, κ̂2
f , . . . , κ̂

2
j shows that κ2 is over-

estimated, with an estimation error ranging from smaller 2.6% in κ̂2
f to more serious

17.8% in κ̂2
j . The simulation results based on 500 Monte Carlo tests using 2500 data points

each are summarized in Table 5.1.
In agreement with the analysis given in the preceding section, the computational costs

with the ILSR algorithm in all the cases considered are reduced quite significantly from
those of the ILSNP algorithm and the ILSD algorithm. When κ2 with a smaller estimation
error (e.g., κ̂2

e , κ̂2
0, or κ̂2

f ) is utilized, the ILSR algorithm also shows a better accuracy for
the parameter estimates than the other ILS-type algorithms in terms of relatively low
variance and small RMSE value. It is very interesting to note that the results of ILSRe

and ILSR f are almost the same as those of ILSR0. This illustrates that the performance
of the ILSR algorithm may not be affected by a slight error in the information about
the noise variance ratio κ2. Moreover, even in the presence of fairly serious error with
the noise variance ratio (e.g., 8.8% in κ̂2

c and 10.1% in κ̂2
h), the results given by ILSRc

and ILSRh are still quite acceptable, especially as far as the corresponding RMSE values
are concerned. These observations not only have confirmed that the ILSR algorithm can
achieve a much improved performance, but also have justified the practical applicability
of the ILSR algorithm.
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Table 5.1. Simulation results (SNR ≈ 10 dB, 2500 samples, 500 Monte Carlo tests, NFPT = number
of flops per test).

Method a1 a2 a3 a4 σ2
v σ2

w RE RMSE NFPT

LS 0.8307 −0.5342 −0.0358 0.0407 — — 60.05% 60.09% 70301

±0.0197 ±0.0271 ±0.0258 ±0.0184 — —

MYW 1.6801 −1.6064 0.8232 −0.2683 — — 22.40% 342.92% 140333

±4.5669 ±4.4074 ±2.7033 ±0.7614 — —

ML 1.0498 −0.9681 0.4020 −0.1549 — — 27.13% 58.07% 8424721

±0.5857 ±0.6901 ±0.4804 ±0.1852 — —

ILSNP 1.3440 −1.3280 0.6543 −0.2374 1.0127 0.3723 0.74% 10.71% 134295

±0.0897 ±0.1418 ±0.1263 ±0.0538 ±0.1505 ±0.0513

ILSD 1.3446 −1.3288 0.6550 −0.2376 1.0105 0.3732 0.68% 10.49% 103746

±0.0875 ±0.1388 ±0.1240 ±0.0530 ±0.1404 ±0.0472

ILSRa 1.4354 −1.4847 0.8008 −0.3048 0.8810 0.4004 11.24% 12.64% 92852

±0.0375 ±0.0705 ±0.0742 ±0.0436 ±0.0355 ±0.0161

ILSRb 1.4138 −1.4461 0.7640 −0.2872 0.9097 0.3955 8.27% 10.11% 92843

±0.0377 ±0.0710 ±0.0745 ±0.0437 ±0.0363 ±0.0157

ILSRc 1.3933 −1.4096 0.7292 −0.2707 0.9374 0.3906 5.46% 7.99% 92832

±0.0379 ±0.0712 ±0.0747 ±0.0437 ±0.0369 ±0.0154

ILSRd 1.3738 −1.3750 0.6963 −0.2552 0.9641 0.3856 2.81% 6.48% 92819

±0.0380 ±0.0713 ±0.0747 ±0.0436 ±0.0375 ±0.0150

ILSRe 1.3546 −1.3443 0.6687 −0.2436 0.9878 0.3799 0.50% 5.79% 92827

±0.0385 ±0.0715 ±0.0733 ±0.0417 ±0.0381 ±0.0146

ILSR0 1.3490 −1.3344 0.6593 −0.2392 0.9957 0.3784 0.26% 5.77% 92823

±0.0384 ±0.0714 ±0.0732 ±0.0417 ±0.0383 ±0.0145

ILSR f 1.3371 −1.3135 0.6396 −0.2299 1.0126 0.3750 1.85% 6.04% 92814

±0.0384 ±0.0712 ±0.0729 ±0.0415 ±0.0386 ±0.0143

ILSRg 1.3205 −1.2845 0.6123 −0.2172 1.0364 0.3701 4.07% 7.02% 92799

±0.0383 ±0.0709 ±0.0725 ±0.0411 ±0.0391 ±0.0139

ILSRh 1.3047 −1.2571 0.5865 −0.2052 1.0594 0.3653 6.17% 8.39% 92783

±0.0382 ±0.0705 ±0.0720 ±0.0408 ±0.0395 ±0.0136

ILSRi 1.2897 −1.2312 0.5622 −0.1940 1.0814 0.3604 8.15% 9.91% 92773

±0.0380 ±0.0700 ±0.0714 ±0.0405 ±0.0399 ±0.0133

ILSR j 1.2755 −1.2068 0.5394 −0.1835 1.1027 0.3557 10.01% 11.47% 92767

±0.0378 ±0.0695 ±0.0707 ±0.0400 ±0.0403 ±0.0130

True value 1.352 −1.338 0.662 −0.24 1.0 0.38

6. Concluding remarks

In this paper, a simple algorithm has been proposed to make unbiased parameter es-
timation of noisy AR signals. The sensitivity problem of the ILS-based estimator with
respect to the variation of the noise variance ratio has been investigated. The importance
of the work presented in this paper is that when a partial information of the driving noise
versus the corrupting noise (such as the variance ratio κ2) becomes available in realistic
situations, the use of the developed ILSR algorithm can be very appealing with regard to
estimation accuracy and numerical requirements.



Wei Xing Zheng 101

Acknowledgment

This work was supported in part by a Research Grant from the Australian Research Coun-
cil and in part by a Research Grant from the University of Western Sydney, Australia.

References

[1] S. M. Kay, Modern Spectral Estimation, Prentice-Hall, New Jersey, 1988.
[2] , Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice-Hall, New

Jersey, 1993.
[3] A. Nehorai and P. Stoica, Adaptive algorithms for constrained ARMA signals in the presence of

noise, IEEE Trans. Acoust. Speech Signal Process. 36 (1988), no. 8, 1282–1291.
[4] T. F. Quatieri, Discrete-Time Speech Signal Processing: Principles and Practice, Prentice-Hall,

New Jersey, 2001.
[5] H. Sakai and M. Arase, Recursive parameter estimation of an autoregressive process disturbed by

white noise, Internat. J. Control 30 (1979), no. 6, 949–966.
[6] M. D. Srinath, P. K. Rajasekaran, and R. Viswanathan, Introduction to Statistical Signal Process-

ing with Applications, Prentice-Hall, New Jersey, 1996.
[7] H. Tong, Autoregressive model fitting with noisy data by Akaike’s information criterion, IEEE

Trans. Inform. Theory 21 (1975), no. 4, 476–480.
[8] W. X. Zheng, An efficient algorithm for parameter estimation of noisy AR processes, Proc. 30th

IEEE International Symposium on Circuits and Systems (Hong Kong, 1997), vol. 4, IEEE
Press, New Jersey, June 1997, pp. 2509–2512.

[9] , On implementation of a least-squares based algorithm for noisy autoregressive signals,
Proc. 31st IEEE International Symposium on Circuits and Systems (Calif, 1998), vol. 5,
IEEE Press, New Jersey, June 1998, pp. V-21–V-24.

Wei Xing Zheng: School of Quantitative Methods and Mathematical Sciences (QMMS), University
of Western Sydney, Penrith South DC, NSW 1797, Australia

E-mail address: w.zheng@uws.edu.au

mailto:w.zheng@uws.edu.au


Hindawi Publishing Corporation
410 Park Avenue, 15th Floor, #287 pmb, New York, NY 10022, USA

http://www.hindawi.com/journals/denm/

Differential Equations 
& Nonlinear Mechanics

Website: http://www.hindawi.com/journals/denm/
Aims and Scope

Differential equations play a central role in describing natural phenomena 
as well as the complex processes that arise from science and technology. 
Differential Equations & Nonlinear Mechanics (DENM) will provide a 
forum for the modeling and analysis of nonlinear phenomena. One of the 
principal aims of the journal is to promote cross-fertilization between the 
various subdisciplines of the sciences: physics, chemistry, and biology, as 
well as various branches of engineering and the medical sciences.

Special efforts will be made to process the papers in a speedy and fair 
fashion to simultaneously ensure quality and timely publication.

DENM will publish original research papers that are devoted to modeling, 
analysis, and computational techniques. In addition to original full-length 
papers, DENM will also publish authoritative and informative review 
articles devoted to various aspects of ordinary and partial differential 
equations and their applications to sciences, engineering, and medicine.

Open Access Support

The Open Access movement is a relatively recent development in 
academic publishing. It proposes a new business model for academic 
publishing that enables immediate, worldwide, barrier-free, open access 
to the full text of research articles for the best interests of the scientific 
community. All interested readers can read, download, and/or print any 
Open Access articles without requiring a subscription to the journal in 
which these articles are published.

In this Open Access model, the publication cost should be covered by the 
author’s institution or research funds. These Open Access charges replace 
subscription charges and allow the publishers to give the published 
material away for free to all interested online visitors.

Instructions for Authors

Original articles are invited and should be submitted through the 
DENM manuscript tracking system at http://www.mstracking.com/
denm/. Only pdf files are accepted. If, for some reason, submission 
through the manuscript tracking system is not possible, you can contact  
denm.support@hindawi.com.

Associate Editors
N. Bellomo 
Italy
J. L. Bona 
USA
J. R. Cannon 
USA
S.-N. Chow 
USA
B. S. Dandapat 
India
E. DiBenedetto 
USA
R. Finn 
USA
R. L. Fosdick 
USA
J. Frehse 
Germany
A. Friedman 
USA
R. Grimshaw 
UK
J. Malek 
Czech Republic
J. T. Oden 
USA
R. Quintanilla 
Spain
K. R. Rajagopal 
USA
G. Saccomandi 
Italy
Y. Shibata 
Japan
Ivar Stakgold 
USA
Swaroop Darbha  
USA
A. Tani 
Japan
S. Turek 
Germany
A. Wineman 
USA

Editor-in-Chief
K. Vajravelu 
USA

An Open Access Journal



Mathematical Problems in Engineering

Special Issue on

Time-Dependent Billiards

Call for Papers
This subject has been extensively studied in the past years
for one-, two-, and three-dimensional space. Additionally,
such dynamical systems can exhibit a very important and still
unexplained phenomenon, called as the Fermi acceleration
phenomenon. Basically, the phenomenon of Fermi accelera-
tion (FA) is a process in which a classical particle can acquire
unbounded energy from collisions with a heavy moving wall.
This phenomenon was originally proposed by Enrico Fermi
in 1949 as a possible explanation of the origin of the large
energies of the cosmic particles. His original model was
then modified and considered under different approaches
and using many versions. Moreover, applications of FA
have been of a large broad interest in many different fields
of science including plasma physics, astrophysics, atomic
physics, optics, and time-dependent billiard problems and
they are useful for controlling chaos in Engineering and
dynamical systems exhibiting chaos (both conservative and
dissipative chaos).

We intend to publish in this special issue papers reporting
research on time-dependent billiards. The topic includes
both conservative and dissipative dynamics. Papers dis-
cussing dynamical properties, statistical and mathematical
results, stability investigation of the phase space structure,
the phenomenon of Fermi acceleration, conditions for
having suppression of Fermi acceleration, and computational
and numerical methods for exploring these structures and
applications are welcome.

To be acceptable for publication in the special issue of
Mathematical Problems in Engineering, papers must make
significant, original, and correct contributions to one or
more of the topics above mentioned. Mathematical papers
regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in
Engineering manuscript format described at http://www
.hindawi.com/journals/mpe/. Prospective authors should
submit an electronic copy of their complete manuscript
through the journal Manuscript Tracking System at http://
mts.hindawi.com/ according to the following timetable:

Manuscript Due March 1, 2009

First Round of Reviews June 1, 2009

Publication Date September 1, 2009

Guest Editors

Edson Denis Leonel, Department of Statistics, Applied
Mathematics and Computing, Institute of Geosciences and
Exact Sciences, State University of São Paulo at Rio Claro,
Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP,
Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State
University, Vorob’evy Gory, Moscow 119992, Russia;
loskutov@chaos.phys.msu.ru

Hindawi Publishing Corporation
http://www.hindawi.com

http://www.hindawi.com/journals/mpe/
http://www.hindawi.com/journals/mpe/
http://mts.hindawi.com/
http://mts.hindawi.com/

	1Call for Papers-4pt
	Guest Editors

