ON STRONG UNIFORM DISTRIBUTION IV

R. NAIR

Received 24 January 2003

Let $a=\left(a_{i}\right)_{i=1}^{\infty}$ be a strictly increasing sequence of natural numbers and let \mathscr{A} be a space of Lebesgue measurable functions defined on $[0,1)$. Let $\{y\}$ denote the fractional part of the real number y. We say that a is an \mathscr{A}^{*} sequence if for each $f \in \mathscr{A}$ we set $A_{N}(f, x)=$ $(1 / N) \sum_{i=1}^{N} f\left(\left\{a_{i} x\right\}\right)(N=1,2, \ldots)$, then $\lim _{N \rightarrow \infty} A_{N}(f, x)=\int_{0}^{1} f(t) d t$, almost everywhere with respect to Lebesgue measure. Let $V_{q}(f, x)=\left(\sum_{N=1}^{\infty}\left|A_{N+1}(f, x)-A_{N}(f, x)\right|^{q}\right)^{1 / q}(q \geq$ 1). In this paper, we show that if a is an $\left(L^{p}\right)^{*}$ for $p>1$, then there exists $D_{q}>0$ such that if $\|f\|_{p}$ denotes $\left(\int_{0}^{1}|f(x)|^{p} d x\right)^{1 / p},\left\|V_{q}(f, \cdot)\right\|_{q} \leq D_{q}\|f\|_{p}(q>1)$. We also show that for any $\left(L^{1}\right)^{*}$ sequence a and any nonconstant integrable function f on the interval $[0,1)$, $V_{1}(f, x)=\infty$, almost everywhere with respect to Lebesgue measure.

1. Introduction

Let $a=\left(a_{i}\right)_{i=1}^{\infty}$ be a strictly increasing sequence of natural numbers and let \mathscr{A} be a space of Lebesgue measurable functions defined on $[0,1)$. Let $\{y\}$ denote the fractional part of the real number y. Following Marstrand [3] we say that a is an \mathscr{A}^{*} sequence if for each $f \in \mathscr{A}$ we set

$$
\begin{equation*}
A_{N}(f, x)=\frac{1}{N} \sum_{i=1}^{N} f\left(\left\{a_{i} x\right\}\right) \quad(N=1,2, \ldots), \tag{1.1}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{N \rightarrow \infty} A_{N}(f, x)=\int_{0}^{1} f(t) d t, \tag{1.2}
\end{equation*}
$$

almost everywhere with respect to Lebesgue measure. We know that any strictly increasing sequence of integers $\left(a_{n}\right)_{n=1}^{\infty}$ is a C^{*} sequence where C denotes the space of continuous functions on $[0,1)$. This is because of Weyl's theorem [9] that for any strictly increasing sequence of integers $\left(a_{n}\right)$, the fractional parts $\left(\left\{a_{n} x\right\}\right)_{n=1}^{\infty}$ are uniformly distributed modulo one for almost all x with Lebesgue measure. On the other hand as shown in [3], the sequence $a_{n}=n(n=1,2, \ldots)$ is not an $\left(L^{\infty}\right)^{*}$. There are however examples of sequences of
integers that are $\left(L^{p}\right)^{*} p \geq 1$ and indeed $\left(L^{1}(\log L)^{k}\right)^{*}$. These are constructed by primarily ergodic means $[3,4,5,6,8]$. Here of course L^{p} denotes the space of functions f such that the norm $\|f\|_{p}=\int_{0}^{1}|f(x)|^{p} d x$ is finite and $L^{1}\left(\log _{+} L\right)^{k}$ denotes the space of L^{1} functions such that $\int_{0}^{1}|f|\left(\log _{+}|f|\right)^{k-1}(x) d x$ is finite. As usual $\log _{+} x$ denotes $\log \max (1, x)$. While it is possible to pose many of the questions considered in this subject and indeed this paper for many Banach spaces of measurable functions \mathscr{A}, they are perhaps primarily of interest in the context of L^{p} spaces and perhaps $L^{1}\left(\log _{+} L\right)^{k}$. Note that

$$
\begin{equation*}
\operatorname{Span}\left(\cup_{p>1} L^{p}\right) \subseteq L\left(\log _{+} L\right)^{d} \subseteq L^{1} \tag{1.3}
\end{equation*}
$$

where the inclusions are strict in both cases for each $d \geq 1$. Here $\operatorname{Span}(A)$ denotes the linear space spanned by the set A. A natural question which arises is whether if (1.2) is known for a particular sequence $a=\left(a_{n}\right)_{n=1}^{\infty}$ and a particular function f, anything can be said about the rate at which the averages $\left(A_{N}(f, x)\right)_{N=1}^{\infty}$ converge to $\int_{0}^{1} f(t) d t$ almost everywhere. Using [1, Theorem 1] and the Denjoy-Koksma inequality [2] it can be shown that if f is of bounded variation, for any strictly increasing sequence of integers $\left(a_{n}\right)_{N=1}^{\infty}$, then given $\epsilon>0$,

$$
\begin{equation*}
A_{N}(f, x)=\int_{0}^{1} f(t) d t+O\left(N^{-1 / 2}(\log N)^{3 / 2+\epsilon}\right) \tag{1.4}
\end{equation*}
$$

almost everywhere with respect to Lebesgue measure. As standard, for two sequences, $\left(f_{n}\right)_{n=1}^{\infty}$ and $\left(g_{n}\right)_{n=1}^{\infty}$, by $f_{n}=O\left(g_{n}\right)$ we mean there exists a constant $C>0$ such that $\left|f_{n}\right| \leq$ $C\left|g_{n}\right|$ for all $n \geq 1$. The class of functions of bounded variation is however quite restrictive and if we look at a broader class of functions, problems arise. For instance, it can be shown that there exist sequences of integers $a=\left(a_{n}\right)_{n=1}^{\infty}$ for which (1.2) is true for all elements f of some L^{q} class, but for which for any null sequence $\left(b_{n}\right)_{n=1}^{\infty}$,

$$
\begin{equation*}
A_{N}(f, x)=\int_{0}^{1} f(t) d t+O\left(b_{N}\right) \tag{1.5}
\end{equation*}
$$

almost everywhere with respect to Lebesgue measure fails to be true for some f in L^{∞} [7]. This means that assuming (1.2) to get more information about the sequence $\left(A_{N}(f, x)\right)_{N=1}^{\infty}$ as N tends to infinity, we will have to consider something other than pointwise convergence. We could, for instance, consider norm convergence, that is, ask if it were true that

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left\|A_{N}(f, x)-\int_{0}^{1} f(t) d t\right\|_{p}=0 \tag{1.6}
\end{equation*}
$$

Using Lemma 2.2 below and the dominated convergence theorem, (1.6) follows immediately from (1.2) if $a=\left(a_{n}\right)_{n=1}^{\infty}$ is an $\left(L^{p}\right)^{*}$ sequence and hence is not of much additional interest. However (1.6) implies that

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left\|A_{N+1}(f)-A_{N}(f)\right\|_{p}=0 \tag{1.7}
\end{equation*}
$$

It is (1.7) which admits a nontrivial refinement. One can prove that for a particular $a=$ $\left(a_{n}\right)_{N=1}^{\infty}$ and a particular $p>1$ if a is $\left(L^{p}\right)^{*}$, then (1.7) follows from (1.2) without recourse to the rather sophisticated Lemma 2.2. To see this argue as follows. First note that, in light of the bounded convergence theorem if g is in L^{∞}, then (1.2) implies that

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left\|A_{N}(g)-\int_{0}^{1} g(t) d t\right\|_{p}=0 \tag{1.8}
\end{equation*}
$$

Now if we are given $\epsilon>0$, there exists a natural number $n=n(\epsilon, g)$ such that if $N>n$ and k is a positive integer, then

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left\|A_{N+k}(g)-A_{N}(g)\right\|_{p}=0 . \tag{1.9}
\end{equation*}
$$

Now consider a general function f in L^{p}. Notice that for each $N \geq 1$,

$$
\begin{equation*}
\left\|A_{N}(f)\right\|_{p} \leq\|f\|_{p} \tag{1.10}
\end{equation*}
$$

Suppose we are given $\epsilon>0$ and g is an L^{∞} function with $\|f-g\|_{p} \leq \epsilon / 3$. Then

$$
\begin{align*}
& \left\|A_{N+1}(f)-A_{N}(f)\right\|_{p} \\
& \quad \leq\left\|A_{N}(f)-A_{N}(g)\right\|_{p}+\left\|A_{N+1}(f)-A_{N+1}(g)\right\|_{p}+\left\|A_{N+1}(g)-A_{N}(g)\right\|_{p} \tag{1.11}
\end{align*}
$$

which is less than ϵ if $N>n(\epsilon, g)$. Thus (1.7) is proved.
Let

$$
\begin{equation*}
V_{q}(f, x)=\left(\sum_{N=1}^{\infty}\left|A_{N+1}(f, x)-A_{N}(f, x)\right|^{q}\right)^{1 / q} \quad(q \geq 1) . \tag{1.12}
\end{equation*}
$$

Our refinement of (1.7) is the following theorem.
Theorem 1.1. Suppose $a=\left(a_{n}\right)_{n=1}^{\infty}$ is an $\left(L^{p}\right)^{*}$ sequence for each $p>1$, then if $q>1$, then there exists a constant $D_{q}>0$ such that

$$
\begin{equation*}
\left\|V_{q}(f, \cdot)\right\| \leq D_{q}\|f\|_{p} \quad(q>1) . \tag{1.13}
\end{equation*}
$$

When $q=1$, this seems to break down.
Theorem 1.2. For any $\left(L^{1}\right)^{*}$ sequence $a=\left(a_{n}\right)_{N=1}^{\infty}$ and any nonconstant integrable function f defined on $[0,1)$,

$$
\begin{equation*}
V_{1}(f, x)=\infty, \tag{1.14}
\end{equation*}
$$

almost everywhere with respect to Lebesgue measure.
Let $M=\left(M_{t}\right)_{t=1}^{\infty}$ denote a strictly increasing sequence of integers and let

$$
\begin{equation*}
V_{q}(f, M, x)=\left(\sum_{N=1}^{\infty}\left|A_{M_{t+1}}(f, x)-A_{M_{t}}(f, x)\right|^{q}\right)^{1 / q} \quad(q \geq 1) . \tag{1.15}
\end{equation*}
$$

It would be interesting to know if Theorem 1.1 can be generalised to show that for each M and $q>1$ there exists $D_{p}^{\prime}>0$ such that

$$
\begin{equation*}
\left\|V_{q}(f, M, \cdot)\right\|_{q} \leq D_{p}^{\prime}\|f\|_{p} \tag{1.16}
\end{equation*}
$$

By a modification of the proof of Theorem 1.1, the author has verified the special case of (1.16) where $M_{t} \approx t^{\rho}$ for $\rho \geq 1$. For two sequences $\left(a_{t}\right)_{t=1}^{\infty}$ and $\left(b_{t}\right)_{t=1}^{\infty}, a_{t} \approx b_{t}$ means $a_{t}=O\left(b_{t}\right)$ and $b_{t}=O\left(a_{t}\right)$ as t tends to infinity. Henceforth in this paper C refers to a constant, not necessarily the same on each occurrence.

2. Proof of Theorem 1.1

From the definition of $A_{N}(f, x)$ we have

$$
\begin{equation*}
\left(A_{N+1}(f, x)-A_{N}(f, x)\right)=\frac{1}{N+1}\left(f\left(\left\langle a_{N} x\right\rangle\right)-A_{N}(f, x)\right) . \tag{2.1}
\end{equation*}
$$

So using the $l^{q}(\mathbf{Z})$ triangle inequality,

$$
\begin{align*}
V_{q}(f, x) \leq & \left(\sum_{N \geq 1}\left(\frac{f\left(\left\{a_{N} x\right\}\right)}{N+1}\right)^{q}\right)^{1 / q}+\left(\sum_{N \geq 1}\left(\frac{A_{N}(f, x)}{N+1}\right)^{q}\right)^{1 / q} \tag{2.2}\\
& \times G_{1}(f, x)+G_{2}(f, x) .
\end{align*}
$$

For a subset A of $[0,1)$, we use $|A|$ to denote its Lebesgue measure. We use the following lemma [6].

Lemma 2.1. Suppose $a=\left(a_{n}\right)_{n=1}^{\infty}$ is an $\left(L^{p}\right)^{*}$ sequence, then there exists $C>0$ such that if f is in L^{p}, then if

$$
\begin{gather*}
M_{a} f(x)=\sup _{N \geq 1}\left|\frac{1}{N} \sum_{k=1}^{N} f\left(\left\{a_{k} x\right\}\right)\right|, \tag{2.3}\\
|\{x \in[0,1): M f(x):>\alpha\}| \leq \frac{C}{\alpha^{p}}\|f\|_{p} . \tag{2.4}
\end{gather*}
$$

Before we proceed we need another lemma. Recall that

$$
\begin{equation*}
\|f\|_{\infty}=\inf \{M:|\{x:|f(x)|>M\}|=0\} . \tag{2.5}
\end{equation*}
$$

Lemma 2.2. Suppose f is in $L^{p}([0,1))$ and that (2.4) holds with $p>1$ and $p^{\prime}>p$, then there exists C such that

$$
\begin{equation*}
\left\|M_{a} f\right\|_{p^{\prime}} \leq C\|f\|_{p^{\prime}} \tag{2.6}
\end{equation*}
$$

Proof. First notice that by the way $\|\cdot\|_{\infty}$ norm is defined there exists C such that

$$
\begin{equation*}
\left\|M_{a} f\right\|_{\infty} \leq C\|f\|_{\infty} \tag{2.7}
\end{equation*}
$$

Lemma 2.2 now follows in light of the Marcinkiewiez interpolation theorem [10, page 111].

Notice that there exists $C>0$ such that

$$
\begin{equation*}
G_{2} f(x) \leq C M(f)(x) \tag{2.8}
\end{equation*}
$$

This means that G_{2} inherits the estimates of $M f$ so

$$
\begin{equation*}
\left\|G_{2} f\right\|_{p} \leq C\|f\|_{p} \quad(p>1) \tag{2.9}
\end{equation*}
$$

We now show that for $p>1$

$$
\begin{equation*}
\left\|G_{1} f\right\|_{p} \leq C\|f\|_{p} . \tag{2.10}
\end{equation*}
$$

Set

$$
\begin{equation*}
f\left(\left\{a_{k} x\right\}\right)=e_{k}(x)+f_{k}(x), \tag{2.11}
\end{equation*}
$$

where

$$
\begin{align*}
& e_{k}(x)=f\left(\left\{a_{k} x\right\}\right) I_{\left[f\left(\left\{a_{k} x\right\}\right) \leq(k+1)\right]} \\
& f_{k}(x)=f\left(\left\{a_{k} x\right\}\right) I_{\left[f\left(\left\{a_{k} x\right\}\right)>(k+1)\right]} \tag{2.12}
\end{align*}
$$

with I_{A} denoting the indicator function of the set A. This means by Minkowski's inequality that

$$
\begin{equation*}
G_{1} f(x) \leq B_{1} f(x)+B_{2} f(x) \tag{2.13}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{1} f(x)=\left(\sum_{n \geq 0}\left(\frac{e_{n}(x)}{n+1}\right)^{q}\right)^{1 / q}, \quad B_{2} f(x)=\left(\sum_{n \geq 0}\left(\frac{f_{n}(x)}{n+1}\right)^{q}\right)^{1 / q} . \tag{2.14}
\end{equation*}
$$

We therefore know that

$$
\begin{equation*}
\left\|G_{1} f\right\|_{p} \leq\left\|B_{1} f\right\|_{p}+\left\|B_{2} f\right\|_{p} \tag{2.15}
\end{equation*}
$$

hence our result is proved if we show that there exists $C_{p}>0$ such that

$$
\begin{equation*}
\left\|B_{i} f\right\|_{p} \leq C_{p}\|f\|_{p} \tag{2.16}
\end{equation*}
$$

for each $i=1,2$. We prove something slightly stronger. That is, we show that

$$
\begin{equation*}
\left|\left\{x \in X: B_{i} f(x) \geq \lambda\right\}\right| \leq C_{p} \frac{\int_{0}^{1}|f| d x}{\lambda} . \tag{2.17}
\end{equation*}
$$

The Marcinkiewiez interpolation gives (2.16). The bound (2.10) follows from (2.16). We first prove (2.16) with $i=1$,

$$
\begin{equation*}
\mu\left(\left\{x \in X: B_{1} f(x)>\frac{\lambda}{2}\right\}\right) \leq \frac{C}{\lambda q} \int_{0}^{1} \sum_{n=0}\left(\frac{e_{n}(x)}{n+1}\right)^{q} d x=C \lambda^{-q} \sum_{n \geq 0}\left(\frac{1}{n+1}\right)^{q} \int_{0}^{1} e_{n}(x)^{q} d x \tag{2.18}
\end{equation*}
$$

which, as

$$
\begin{equation*}
\int_{0}^{1} e_{n}^{q}(x) d x \leq C \int_{0}^{\infty} y^{q-1}\left|\left\{x \in X: e_{n}(x)>y\right\}\right| d y \tag{2.19}
\end{equation*}
$$

is

$$
\begin{equation*}
\frac{C}{\lambda^{q}} \sum_{n \geq 0}\left(\frac{1}{n+1}\right)^{q} \int_{0}^{\infty} y^{q-1}\left|\left\{x \in X: e_{n}(x)>y\right\}\right| d y . \tag{2.20}
\end{equation*}
$$

The map $x \rightarrow\left\{a_{n} x\right\}$ preserves, Lebesgue measure on $[0,1)$, that is, for any Lebesgue measurable set A in $[0,1)$,

$$
\begin{equation*}
|A|=\left|\left\{x:\left\{a_{n} x\right\} \in A\right\}\right| . \tag{2.21}
\end{equation*}
$$

From this it follows that $\int_{0}^{1} f\left(\left\{a_{n} x\right\}\right) d x=\int_{0}^{1} f(x) d x$ for any L^{1} function f. The identity is evident where $f=I_{A}$, for some Lebesgue measurable A and for simple f by taking linear combinations. The case for general integrable f follows by approximating f by a sequence of simple functions in L^{1} norm. This and the definition of e_{n} tells us that (2.20) is less than or equal to

$$
\begin{equation*}
\frac{C}{\lambda^{q}} \sum_{n \geq 0}\left(\frac{1}{n+1}\right)^{q} \int_{0}^{\lambda(n+1)} y^{q-1}|\{x \in X: f(x)>y\}| d y \tag{2.22}
\end{equation*}
$$

which is less than or equal to

$$
\begin{equation*}
\frac{C}{\lambda^{q}} \int_{0}^{\infty} \sum_{n \geq[y / \lambda]}\left(\frac{1}{n+1}\right)^{q} y^{q-1}|\{x \in X: f(x)>y\}| d y \tag{2.23}
\end{equation*}
$$

This is less than or equal

$$
\begin{equation*}
\frac{C}{\lambda q} \int_{0}^{\infty} y^{q-1}\left(\frac{\lambda}{y}\right)^{1-q}|\{x \in X: f(x)>y\}| d y \tag{2.24}
\end{equation*}
$$

and is equal to

$$
\begin{equation*}
\frac{C}{\lambda} \int_{0}^{\infty}|\{x: f(x)>y\}| d y \tag{2.25}
\end{equation*}
$$

which is equal to

$$
\begin{equation*}
C \int_{0}^{1}|f|(y) d y \tag{2.26}
\end{equation*}
$$

Because $q>1$, this is finite and we have shown (2.16). We now show (2.16), $i=2$. Here

$$
\begin{equation*}
\mu\left(\left\{B_{2} f(x)>0\right\}\right) \leq \sum_{n \geq 0}\left|\left\{x: e_{n}(x)>0\right\}\right| \tag{2.27}
\end{equation*}
$$

which using the fact $x \rightarrow\left\{a_{n} x\right\}$ is Lebesgue measure preserving is less than or equal to

$$
\begin{align*}
& \sum_{n \geq 0}|\{x: f(x)>\lambda(n+1)\}| \\
& \leq \int_{0}^{\infty}|\{x: f(x)>y\}| d y \tag{2.28}\\
& \leq \frac{1}{\lambda} \int_{0}^{1}|f|(y) d y .
\end{align*}
$$

This completes the proof of Theorem 1.1.
The proof of Theorem 1.1 crucially uses the fact that $G_{2}(f, x) \leq C M_{a} f(x)$. It is natural to ask if

$$
\begin{equation*}
V_{q}(f, x) \leq C M_{a} f(x) \tag{2.29}
\end{equation*}
$$

It turns out this is not true in general. To see this argue as follows. We consider the sequence $a_{k}=2^{k}(k=1,2, \ldots)$. For a natural number k and a set contained in $[0,1)$ let

$$
\begin{equation*}
k B=\{\{k x\}: x \in B\} . \tag{2.30}
\end{equation*}
$$

For a large natural number L let C denote the interval $\left[\left(2^{L}-2\right) / 2^{L},\left(2^{L}-1\right) / 2^{L}\right]$. Note that

$$
\begin{equation*}
C, 2^{1} C, \ldots, 2^{(L-1)} C \tag{2.31}
\end{equation*}
$$

are pairwise disjoint,

$$
g_{l}(x)= \begin{cases}2^{l} & \text { if } x \in 2^{\left(2^{l}-1\right)} C, 1 \leq 2^{l}-1<L \tag{2.32}\\ 0 & \text { otherwise }\end{cases}
$$

Note that

$$
\begin{align*}
M_{a} f(x) & =\sup _{l \geq 1}\left|\frac{1}{l} \sum_{k=0}^{l} f\left(\left\{2^{k} x\right\}\right)\right|=\sup _{\substack{l \geq 1 \\
2^{l}<N+1}} \frac{1}{2^{l}} \sum_{k=1}^{l} f\left(\left\{2^{2^{k}-1} x\right\}\right) \\
& =\sup _{\substack{l \geq 1 \\
2^{l}<l+1}} \frac{1}{2^{l}} \sum_{k=1}^{l} 2^{k}=\frac{2^{l+1}}{2^{l}}=2 . \tag{2.33}
\end{align*}
$$

On the other hand if $2^{m} \leq N<2^{m+1}$, for x in C,

$$
\begin{align*}
V_{q}(f, x) & =\left(\sum_{N=0}^{\infty}\left|A_{N+1}(f, x)-A_{N}(f, x)\right|^{q}\right)^{1 / q} \\
& =\left(\sum_{N=0}^{\infty}\left|g_{N+1}(x)-g_{N}(x)\right|^{q}\right)^{1 / q} \\
& \geq\left(\sum_{N=0}^{2 m}\left|g_{N+1}(x)-g_{N}(x)\right|^{q}\right)^{1 / q} \tag{2.34}\\
& \geq\left(\sum_{N=0}^{m}\left|g_{2^{N+1}}(x)-g_{2^{N}}(x)\right|^{q}\right)^{1 / q} \\
& \geq\left(\sum_{N=0}^{m}\left|\frac{2^{N+1}}{2^{N}}-\frac{2^{N}}{2^{N}}\right|^{q}\right)^{1 / q} \\
& =m^{1 / q} .
\end{align*}
$$

This tells us that (2.29) is not true in general.

3. Proof of Theorem 1.2

Let

$$
\begin{equation*}
E(\delta)=\left\{x \in X:\left|f(x)-\int_{0}^{1} f(x) d x\right|>\delta\right\}, \tag{3.1}
\end{equation*}
$$

and note that

$$
\begin{equation*}
\left|A_{N+1} f(x)-A_{N} f(x)\right|=\frac{1}{N+1}\left|A_{N+1} f(x)-f\left(\left\{a_{n} x\right\}\right)\right| . \tag{3.2}
\end{equation*}
$$

Because a is $\left(L^{1}\right)^{*}$, there exists $N_{0}(x)$ such that if $N>N_{0}(x)$, for almost all x we have

$$
\begin{equation*}
\left|A_{N} f(x)-\int_{0}^{1} f(x) d x\right|<\frac{\delta}{2} . \tag{3.3}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left|A_{N+1} f(x)-A_{N} f(x)\right| \geq \frac{1}{N+1}\left|A_{N} f(x)-f\left(\left\{a_{n} x\right\}\right)\right|-\frac{\delta}{2(N+1)} \tag{3.4}
\end{equation*}
$$

So if $\left\{a_{n} x\right\}$ is in $E(\delta)$, we have

$$
\begin{equation*}
\left|A_{N+1}(f, x)-A_{N}(f, x)\right| \geq \frac{\delta}{2(N+1)} \tag{3.5}
\end{equation*}
$$

This means that

$$
\begin{align*}
V_{1}(f, x) \geq & \sum_{N \geq N_{0}(x)} \frac{\delta}{2(N+1)} \chi_{E(\delta)}\left(\left\{a_{n} x\right\}\right) \\
& \times \frac{\delta}{2}\left(\sum_{l \geq N_{0}(x)} \frac{1}{l+2}\left(\frac{1}{l+1} \sum_{n=N_{0}(x)}^{l} \chi_{E(\delta)}\left(\left\{a_{n} x\right\}\right)\right)\right) \tag{3.6}
\end{align*}
$$

which for suitably large $N_{0}(x)$ is greater than or equal to

$$
\begin{equation*}
\frac{\delta}{2}\left(\frac{\mu(E(\delta))}{2}\right) \sum_{l \geq N_{0}(x)} \frac{1}{N+1}=\infty \tag{3.7}
\end{equation*}
$$

as required.

References

[1] H. Kamarul Haili and R. Nair, The discrepancy of some real sequences, Math. Scand. 93 (2003), no. 2, 268-274.
[2] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Pure and Applied Mathematics, John Wiley \& Sons, New York, 1974.
[3] J. M. Marstrand, On Khinchin's conjecture about strong uniform distribution, Proc. London Math. Soc. (3) 21 (1970), 540-556.
[4] R. Nair, On strong uniform distribution, Acta Arith. 56 (1990), no. 3, 183-193.
[5] \qquad , On strong uniform distribution. II, Monatsh. Math. 132 (2001), no. 4, 341-348.
[6] _ On strong uniform distribution. III, Indag. Math. (N.S.) 14 (2003), no. 2, 233-240.
[7] O_ On strong uniform distribution. V, unpublished manuscript.
[8] F. Riesz, Sur la théorie ergodique, Comment. Math. Helv. 17 (1945), 221-239 (French).
[9] H. Weyl, Über de Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313-352 (German).
[10] A. Zygmund, Trigonometric Series. Vols. I, II, 2nd ed., Cambridge University Press, New York, 1959.
R. Nair: Department of Mathematical Sciences, The University of Liverpool, Liverpool L69 7ZL, UK

E-mail address: nair@liverpool.ac.uk

