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Let a= (ai)∞i=1 be a strictly increasing sequence of natural numbers and let � be a space
of Lebesgue measurable functions defined on [0,1). Let {y} denote the fractional part of
the real number y. We say that a is an �∗ sequence if for each f ∈� we set AN ( f ,x)=
(1/N)

∑N
i=1 f ({aix}) (N = 1,2, . . .), then limN→∞AN ( f ,x)= ∫ 1

0 f (t)dt, almost everywhere
with respect to Lebesgue measure. LetVq( f ,x)= (

∑∞
N=1 |AN+1( f ,x)−AN ( f ,x)|q)1/q (q ≥

1). In this paper, we show that if a is an (Lp)∗ for p > 1, then there exists Dq > 0 such that

if ‖ f ‖p denotes (
∫ 1

0 | f (x)|pdx)1/p, ‖Vq( f ,·)‖q ≤ Dq‖ f ‖p (q > 1). We also show that for
any (L1)∗ sequence a and any nonconstant integrable function f on the interval [0,1),
V1( f ,x)=∞, almost everywhere with respect to Lebesgue measure.

1. Introduction

Let a= (ai)∞i=1 be a strictly increasing sequence of natural numbers and let � be a space
of Lebesgue measurable functions defined on [0,1). Let {y} denote the fractional part of
the real number y. Following Marstrand [3] we say that a is an �∗ sequence if for each
f ∈� we set

AN ( f ,x)= 1
N

N∑
i=1

f
({
aix
})

(N = 1,2, . . .), (1.1)

then

lim
N→∞

AN ( f ,x)=
∫ 1

0
f (t)dt, (1.2)

almost everywhere with respect to Lebesgue measure. We know that any strictly increas-
ing sequence of integers (an)∞n=1 is aC∗ sequence where C denotes the space of continuous
functions on [0,1). This is because of Weyl’s theorem [9] that for any strictly increasing
sequence of integers (an), the fractional parts ({anx})∞n=1 are uniformly distributed mod-
ulo one for almost all x with Lebesgue measure. On the other hand as shown in [3], the
sequence an = n (n= 1,2, . . .) is not an (L∞)∗. There are however examples of sequences of
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integers that are (Lp)∗ p ≥ 1 and indeed (L1(logL)k)∗. These are constructed by primarily
ergodic means [3, 4, 5, 6, 8]. Here of course Lp denotes the space of functions f such that
the norm ‖ f ‖p =

∫ 1
0 | f (x)|pdx is finite and L1(log+L)k denotes the space of L1 functions

such that
∫ 1

0 | f |(log+ | f |)k−1(x)dx is finite. As usual log+ x denotes logmax(1,x). While it
is possible to pose many of the questions considered in this subject and indeed this paper
for many Banach spaces of measurable functions �, they are perhaps primarily of interest
in the context of Lp spaces and perhaps L1(log+L)k. Note that

Span
(∪p>1 L

p
)⊆ L

(
log+L

)d ⊆ L1, (1.3)

where the inclusions are strict in both cases for each d ≥ 1. Here Span(A) denotes the
linear space spanned by the set A. A natural question which arises is whether if (1.2) is
known for a particular sequence a = (an)∞n=1 and a particular function f , anything can
be said about the rate at which the averages (AN ( f ,x))∞N=1 converge to

∫ 1
0 f (t)dt almost

everywhere. Using [1, Theorem 1] and the Denjoy-Koksma inequality [2] it can be shown
that if f is of bounded variation, for any strictly increasing sequence of integers (an)∞N=1,
then given ε > 0,

AN ( f ,x)=
∫ 1

0
f (t)dt+O

(
N−1/2(logN)3/2+ε), (1.4)

almost everywhere with respect to Lebesgue measure. As standard, for two sequences,
( fn)∞n=1 and (gn)∞n=1, by fn =O(gn) we mean there exists a constant C > 0 such that | fn| ≤
C|gn| for all n≥ 1. The class of functions of bounded variation is however quite restrictive
and if we look at a broader class of functions, problems arise. For instance, it can be shown
that there exist sequences of integers a= (an)∞n=1 for which (1.2) is true for all elements f
of some Lq class, but for which for any null sequence (bn)∞n=1,

AN ( f ,x)=
∫ 1

0
f (t)dt+O

(
bN
)
, (1.5)

almost everywhere with respect to Lebesgue measure fails to be true for some f in L∞ [7].
This means that assuming (1.2) to get more information about the sequence
(AN ( f ,x))∞N=1 as N tends to infinity, we will have to consider something other than point-
wise convergence. We could, for instance, consider norm convergence, that is, ask if it
were true that

lim
N→∞

∥∥∥∥∥AN ( f ,x)−
∫ 1

0
f (t)dt

∥∥∥∥∥
p

= 0. (1.6)

Using Lemma 2.2 below and the dominated convergence theorem, (1.6) follows immedi-
ately from (1.2) if a= (an)∞n=1 is an (Lp)∗ sequence and hence is not of much additional
interest. However (1.6) implies that

lim
N→∞

∥∥AN+1( f )−AN ( f )
∥∥
p = 0. (1.7)



R. Nair 321

It is (1.7) which admits a nontrivial refinement. One can prove that for a particular a=
(an)∞N=1 and a particular p > 1 if a is (Lp)∗, then (1.7) follows from (1.2) without recourse
to the rather sophisticated Lemma 2.2. To see this argue as follows. First note that, in light
of the bounded convergence theorem if g is in L∞, then (1.2) implies that

lim
N→∞

∥∥∥∥∥AN (g)−
∫ 1

0
g(t)dt

∥∥∥∥∥
p

= 0. (1.8)

Now if we are given ε > 0, there exists a natural number n= n(ε,g) such that if N > n and
k is a positive integer, then

lim
N→∞

∥∥AN+k(g)−AN (g)
∥∥
p = 0. (1.9)

Now consider a general function f in Lp. Notice that for each N ≥ 1,

∥∥AN ( f )
∥∥
p ≤ ‖ f ‖p. (1.10)

Suppose we are given ε > 0 and g is an L∞ function with ‖ f − g‖p ≤ ε/3. Then

∥∥AN+1( f )−AN ( f )
∥∥
p

≤ ∥∥AN ( f )−AN (g)
∥∥
p +

∥∥AN+1( f )−AN+1(g)
∥∥
p +

∥∥AN+1(g)−AN (g)
∥∥
p

(1.11)

which is less than ε if N > n(ε,g). Thus (1.7) is proved.
Let

Vq( f ,x)=
( ∞∑

N=1

∣∣AN+1( f ,x)−AN ( f ,x)
∣∣q)1/q

(q ≥ 1). (1.12)

Our refinement of (1.7) is the following theorem.

Theorem 1.1. Suppose a= (an)∞n=1 is an (Lp)∗ sequence for each p > 1, then if q > 1, then
there exists a constant Dq > 0 such that

∥∥Vq( f ,·)∥∥≤Dq‖ f ‖p (q > 1). (1.13)

When q = 1, this seems to break down.

Theorem 1.2. For any (L1)∗ sequence a= (an)∞N=1 and any nonconstant integrable function
f defined on [0,1),

V1( f ,x)=∞, (1.14)

almost everywhere with respect to Lebesgue measure.

Let M = (Mt)∞t=1 denote a strictly increasing sequence of integers and let

Vq( f ,M,x)=
( ∞∑

N=1

∣∣AMt+1 ( f ,x)−AMt ( f ,x)
∣∣q)1/q

(q ≥ 1). (1.15)
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It would be interesting to know if Theorem 1.1 can be generalised to show that for each
M and q > 1 there exists D′p > 0 such that

∥∥Vq( f ,M,·)∥∥q ≤D′p‖ f ‖p. (1.16)

By a modification of the proof of Theorem 1.1, the author has verified the special case
of (1.16) where Mt ≈ tρ for ρ ≥ 1. For two sequences (at)∞t=1 and (bt)∞t=1, at ≈ bt means
at = O(bt) and bt = O(at) as t tends to infinity. Henceforth in this paper C refers to a
constant, not necessarily the same on each occurrence.

2. Proof of Theorem 1.1

From the definition of AN ( f ,x) we have

(
AN+1( f ,x)−AN ( f ,x)

)= 1
N + 1

(
f
(〈
aNx

〉)−AN ( f ,x)
)
. (2.1)

So using the lq(Z) triangle inequality,

Vq( f ,x)≤
( ∑

N≥1

(
f
({
aNx

})
N + 1

)q)1/q

+

( ∑
N≥1

(
AN ( f ,x)
N + 1

)q)1/q

×G1( f ,x) +G2( f ,x).

(2.2)

For a subset A of [0,1), we use |A| to denote its Lebesgue measure. We use the following
lemma [6].

Lemma 2.1. Suppose a = (an)∞n=1 is an (Lp)∗ sequence, then there exists C > 0 such that if
f is in Lp, then if

Ma f (x)= sup
N≥1

∣∣∣∣∣ 1
N

N∑
k=1

f
({
akx

})∣∣∣∣∣, (2.3)

∣∣{x ∈ [0,1) : M f (x) :> α
}∣∣≤ C

αp ‖ f ‖p. (2.4)

Before we proceed we need another lemma. Recall that

‖ f ‖∞ = inf
{
M :

∣∣{x :
∣∣ f (x)

∣∣ >M
}∣∣= 0

}
. (2.5)

Lemma 2.2. Suppose f is in Lp([0,1)) and that (2.4) holds with p > 1 and p′ > p, then
there exists C such that

∥∥Ma f
∥∥
p′ ≤ C‖ f ‖p′ . (2.6)

Proof. First notice that by the way ‖ · ‖∞ norm is defined there exists C such that
∥∥Ma f

∥∥∞ ≤ C‖ f ‖∞. (2.7)

Lemma 2.2 now follows in light of the Marcinkiewiez interpolation theorem [10, page
111]. �
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Notice that there exists C > 0 such that

G2 f (x)≤ CM( f )(x). (2.8)

This means that G2 inherits the estimates of M f so

∥∥G2 f
∥∥
p ≤ C‖ f ‖p (p > 1). (2.9)

We now show that for p > 1

∥∥G1 f
∥∥
p ≤ C‖ f ‖p. (2.10)

Set

f
({
akx

})= ek(x) + fk(x), (2.11)

where

ek(x)= f
({
akx

})
I[ f ({akx})≤(k+1)],

fk(x)= f
({
akx

})
I[ f ({akx})>(k+1)]

(2.12)

with IA denoting the indicator function of the set A. This means by Minkowski’s inequal-
ity that

G1 f (x)≤ B1 f (x) +B2 f (x), (2.13)

where

B1 f (x)=
(∑

n≥0

(
en(x)
n+ 1

)q)1/q

, B2 f (x)=
(∑

n≥0

(
fn(x)
n+ 1

)q)1/q

. (2.14)

We therefore know that

∥∥G1 f
∥∥
p ≤

∥∥B1 f
∥∥
p +

∥∥B2 f
∥∥
p, (2.15)

hence our result is proved if we show that there exists Cp > 0 such that

∥∥Bi f
∥∥
p ≤ Cp‖ f ‖p (2.16)

for each i= 1,2. We prove something slightly stronger. That is, we show that

∣∣{x ∈ X : Bi f (x)≥ λ
}∣∣≤ Cp

∫ 1
0 | f |dx

λ
. (2.17)

The Marcinkiewiez interpolation gives (2.16). The bound (2.10) follows from (2.16). We
first prove (2.16) with i= 1,

µ
({

x ∈ X : B1 f (x) >
λ

2

})
≤ C

λq

∫ 1

0

∑
n=0

(
en(x)
n+ 1

)q
dx = Cλ−q

∑
n≥0

(
1

n+ 1

)q ∫ 1

0
en(x)qdx

(2.18)
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which, as

∫ 1

0
e
q
n(x)dx ≤ C

∫∞
0
yq−1

∣∣{x ∈ X : en(x) > y
}∣∣dy, (2.19)

is

C

λq
∑
n≥0

(
1

n+ 1

)q ∫∞
0
yq−1

∣∣{x ∈ X : en(x) > y
}∣∣dy. (2.20)

The map x→ {anx} preserves, Lebesgue measure on [0,1), that is, for any Lebesgue mea-
surable set A in [0,1),

|A| = ∣∣{x :
{
anx

}∈ A
}∣∣. (2.21)

From this it follows that
∫ 1

0 f ({anx})dx =
∫ 1

0 f (x)dx for any L1 function f . The identity
is evident where f = IA, for some Lebesgue measurable A and for simple f by taking
linear combinations. The case for general integrable f follows by approximating f by a
sequence of simple functions in L1 norm. This and the definition of en tells us that (2.20)
is less than or equal to

C

λq
∑
n≥0

(
1

n+ 1

)q ∫ λ(n+1)

0
yq−1

∣∣{x ∈ X : f (x) > y
}∣∣dy (2.22)

which is less than or equal to

C

λq

∫∞
0

∑
n≥[y/λ]

(
1

n+ 1

)q
yq−1

∣∣{x ∈ X : f (x) > y
}∣∣dy. (2.23)

This is less than or equal

C

λq

∫∞
0
yq−1

(
λ

y

)1−q∣∣{x ∈ X : f (x) > y
}∣∣dy, (2.24)

and is equal to

C

λ

∫∞
0

∣∣{x : f (x) > y
}∣∣dy (2.25)

which is equal to

C
∫ 1

0
| f |(y)dy. (2.26)
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Because q > 1, this is finite and we have shown (2.16). We now show (2.16), i= 2. Here

µ
({
B2 f (x) > 0

})≤∑
n≥0

∣∣{x : en(x) > 0
}∣∣ (2.27)

which using the fact x→ {anx} is Lebesgue measure preserving is less than or equal to

∑
n≥0

∣∣{x : f (x) > λ(n+ 1)
}∣∣

≤
∫∞

0

∣∣{x : f (x) > y
}∣∣dy

≤ 1
λ

∫ 1

0
| f |(y)dy.

(2.28)

This completes the proof of Theorem 1.1.
The proof of Theorem 1.1 crucially uses the fact that G2( f ,x)≤ CMa f (x). It is natural

to ask if

Vq( f ,x)≤ CMa f (x). (2.29)

It turns out this is not true in general. To see this argue as follows. We consider the se-
quence ak = 2k (k = 1,2, . . .). For a natural number k and a set contained in [0,1) let

kB = {{kx} : x ∈ B
}
. (2.30)

For a large natural number L let C denote the interval [(2L− 2)/2L, (2L− 1)/2L]. Note that

C,21C, . . . ,2(L−1)C (2.31)

are pairwise disjoint,

gl(x)=

2l if x ∈ 2(2l−1)C, 1≤ 2l − 1 < L,

0 otherwise.
(2.32)

Note that

Ma f (x)= sup
l≥1

∣∣∣∣∣1
l

l∑
k=0

f
({

2kx
})∣∣∣∣∣= sup

l≥1
2l<N+1

1
2l

l∑
k=1

f
({

22k−1x
})

= sup
l≥1

2l<L+1

1
2l

l∑
k=1

2k = 2l+1

2l
= 2.

(2.33)
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On the other hand if 2m ≤N < 2m+1, for x in C,

Vq( f ,x)=
( ∞∑

N=0

∣∣AN+1( f ,x)−AN ( f ,x)
∣∣q)1/q

=
( ∞∑

N=0

∣∣gN+1(x)− gN (x)
∣∣q)1/q

≥
( 2m∑

N=0

∣∣gN+1(x)− gN (x)
∣∣q)1/q

≥
( m∑

N=0

∣∣g2N+1 (x)− g2N (x)
∣∣q)1/q

≥
( m∑

N=0

∣∣∣∣2N+1

2N
− 2N

2N

∣∣∣∣
q
)1/q

=m1/q.

(2.34)

This tells us that (2.29) is not true in general.

3. Proof of Theorem 1.2

Let

E(δ)=
{
x ∈ X :

∣∣∣∣∣ f (x)−
∫ 1

0
f (x)dx

∣∣∣∣∣ > δ

}
, (3.1)

and note that

∣∣AN+1 f (x)−AN f (x)
∣∣= 1

N + 1

∣∣AN+1 f (x)− f
({
anx

})∣∣. (3.2)

Because a is (L1)∗, there exists N0(x) such that if N >N0(x), for almost all x we have

∣∣∣∣AN f (x)−
∫ 1

0
f (x)dx

∣∣∣∣ < δ

2
. (3.3)

Thus

∣∣AN+1 f (x)−AN f (x)
∣∣≥ 1

N + 1

∣∣AN f (x)− f
({
anx

})∣∣− δ

2(N + 1)
. (3.4)

So if {anx} is in E(δ), we have

∣∣AN+1( f ,x)−AN ( f ,x)
∣∣≥ δ

2(N + 1)
. (3.5)
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This means that

V1( f ,x)≥
∑

N≥N0(x)

δ

2(N + 1)
χE(δ)

({
anx

})

× δ

2


 ∑
l≥N0(x)

1
l+ 2


 1
l+ 1

l∑
n=N0(x)

χE(δ)
({
anx

})



(3.6)

which for suitably large N0(x) is greater than or equal to

δ

2

(
µ
(
E(δ)

)
2

) ∑
l≥N0(x)

1
N + 1

=∞, (3.7)

as required.
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