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1 INTRODUCTION

The object of this note is to characterize weight functions Wi, 0, 1 and
v, for which the modular inequality

Q[Wl (X) Tf(x)lwo(x) dx < p-1 P[C f(x)]v(x) dx

(1.1)

*Author for correspondence.
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holds, where T is a linear operator defined on non-negative monotone
functions. P and Q are N-functions, where no order relations such as
QoP- convex- are assumed, and C > 0 is a constant. The characterizations,
via duality arguments are given in terms of modular inequalities of the form
(1.1) where T is replaced by the composition operators T o I and T o I*,
defined on arbitrary non-negative functions and with changes of weights.
Here I and I* are defined

fo
x

(Ih)(x) h, and (I*h)(x) h x > O.

Our results generalize to modulars the duality principle for weighted
LP-spaces and operators defined on non-negative non-increasing functions
given by E.T. Sawyer [15]. His results follow on taking Q(x) Ixlq/q,
P(x) Ixl p/p, 1 < p, q < cx, while the case p q and T the Hardy
operator yields a result of M. Arifio and B. Muckenhoupt [2].

Characterizations of weights for which (1.1) holds and T is a Volterra
convolution type operator defined on monotone functions was given recently
by J.Q. Sun [19] [20] in the case when Q e-1 is convex. Our methods
are different from those and except for some special cases, we do not obtain
these results for the general Volterra convolution operator. Conversely our
results (Proposition 2.2) for the Riemann-Liouville operator on increasing
functions and the Weyl fractional integral operator defined on decreasing
functions does not follow from his.
Our main result (Theorem 2.3) depends strongly on a duality principle

given in [7] and on an extension of a result by C. Herz [8] and S. Bloom and
R. Kerman [3], establishing an equivalence of a weighted modular inequality
and certain weighted Orlicz-Luxemburg norm inequality (Proposition 2.1).
This result may be of independent interest.
We conclude this section by giving some definitions and notation required

in the sequel.

DEFINITION 1.1 (a) A convex function P IR+ -+ IR+ is called a Young
function if P(0) 0 and limx P(x) o.

(b) A continuous Young function P is called an N-function if it has the
form

Ixl
P(x) p(t) dt
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where p is non-decreasing, right continuous, p(0+) 0 and p(o)
and p(t) > 0 if > 0. If p-1 denotes the right continuous inverse of p, then
the complementary function P of P is defined by

(x) p-l(t)dt

If P is an N-function, so is/5.
(c) If v is a non-negative measurable (weight) function defined on a

measure space X and P is an N-function, then the Orlicz space L P(v)

consists of those measurable f on X for which the (Luxemburg) norm

IlfllP(v) inf {Z > O fxP [ If(x)l] v(x) dx < 1 (1.2).
is finite. If v(x) dx is replaced by a positive Borel measure/z we write
also P(dlx), and if v 1 simply P, in (1.2).

For further properties of N-functions and Orlicz spaces we refer to

[9, 10, 141.

DEFINITION 1.2 (a) An N-function P satisfies the A2 condition (P e A2),
if there is a constant D > 0, such that P(2x) < D P(x), for all x > 0.

(b) The order relation -< is defined by P -< Q, (P, Q, N-functions) if
there is a constant C > 0, such that

-QP-l(ai)<-CQe-l(i
for every non-negative sequence {ai }.

Note that if Q o P- is convex, then P -< Q. For other properties see [5,
Lemma 1.1 ].

Finally we denote by )e the characteristic function ofthe set E, and define

i0 by io(x) x. Constants are denoted by A, B, C, D and inequalities,
such as (1.1) are interpreted to mean that if the right side is finite, so is
the left side and the inequality holds. Weight functions are non-negative
measurable functions on a measure space X (usually IR+) and are denoted
by w0, w, w, u, v. Non-negative non-increasing _= decreasing, respectively,
non-decreasing increasing functions f are denotedby 0 _< f$, respectively
0 < f’.
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2 RESULTS AND APPLICATIONS

We require the following result whose special case P Q and u w 1
was proved by C. Herz in the preprint [8] (see also [3, Proposition 2.5]).

PROPOSITION 2.1 Suppose (X, dtx), (Y, dr) are or-finite measure spaces and
T is a linear operator mapping measurable functions on X to measurable

functions on Y. If P and Q are N-functions, then the modular inequality

Q-l { fy Q[W(y) l(Tf)(Y)l]dv(Y) } <- P-l { fx P[Cu(x) lf(x)l]dtz(x) }
(2.1)

is satisfied, ifand only if, for every e > O,

Ilw Tflla(eodv) < CllufllP(,d) (2.2)

holds, where ea 1/Q(1/e), ep 1/P(1/e).

Proof Suppose (2.2) holds. Define e by P () fx then

IlufllP(d inf {Z > O" fxP [Ufz ]ePd <- I }
--inf >0" P - dl < P[uf]dl 1

and therefore w rfll (d) < C. From the homogeneity of the norm and
the linearity of T it follows that

IlwT(f/C)llQQd=inf{L>o" fyQ[WT(f/C)leQdu< l _<1.

Hence

a[w T(f/C)]dv < Q p-1 P[u f]dtx

which implies (2.1) after replacing f/C by f.
Conversely, if (2.1) is satisfied, fix f and let ot Ilu flleu), then the

homogeneity of the norms shows that

l llu f/llP(epdlz) inf {) > O" fxP [U-]epdlz < l }
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and therefore,

Now (2.1) and the linearity of T imply

=8QQ () 1.

Hence

< otC CllufllP(eedx)

and the result follows.
The (weighted) duality principle in Orlicz spaces may be written in the

following form:

o<_f IlfllP(o) v

where v is a weight function and/5 is the complementary function of the
N-function P.
We also require the following known duality principle for monotone

functions:

TIEOREM 2.1 ([7, Theorems 2.2, 2.3]) Suppose P and [’ are N-functions
satisfying the A2 condition.

(i) If (Ig)(x) f)x g, g > O; (Iv)(x) = f v, with (Iv)(oo) ; then

(2.4)
o_<f, llfllpo) :()
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(ii) If (I*g)(x) fx g, g > O; (I*v)(x) fx v, with (I*v)(O)
then

fx f(x)g(x) dx
sup

Here the symbol is defined to mean that the quotient of the left and right
side of (2.4) and (2.5) is bounded above and below by positive constants.

Remark 2.1 It follows from (2.3) and (2.4) that if T is a linear operator
defined on decreasing functions on IR+ then the inequality IITfll a(w) <_
c f P (v) (0 <_ f,) is equivalent to

w O(w)
g > 0

where T* is the adjoint of T. Similarly, the above norm inequality for
increasing functions is by (2.3) and (2.5) equivalent to

I*(T*g)
I*u w (2(w)’

g >- O.
f’(v)

Our main result is now the following:

THEOREM 2.2 Suppose P, P A2 are N-functions, and T is a positive
linear operator.

(i) IfO < f$ and (Iv)(o) cx then the modular inequalities

Q-1 Q[wl (x)(Tf)(x)lwo(x)dx < p-1 P[C f(x)lv(x)dx

(2.6)

and

IfoQ-1 Q[Wl (x)T(I*h)(x)lwo(x)dx

{fo [ C(Iv)(x)h(x) ] }< p-1 p v(x)dx
v(x)

(2.7)

h > O, are equivalent.
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(ii) If 0 < f’ and (l’v)(0) cx, then (2.6) and

{foQ-1 Q[Wl (x)T(Ih)(x)]wo(x)dx

{fo [C(I*v)(x)h(x) ]< p-1 p
v(x)

v(x)dx (2.8)

h > O, are equivalent.

Proof (i) By Proposition 2.1 with wo(x)dx dr(x), v(x)dx dl(X),
(2.6) is equivalent to IIw Tflla(eQwo) < CIIfllP) where e > 0. Writing

T1 f W Tf, this estimate has the form

0 < f, (2.9)

But then by (2.3) and (2.4) (cf. Remark 2.1, with w EQtoO, V ,pV SO

(Iv)(x) becomes et,(Iv)(x)) (2.9) is equivalent to

<C
EQ toO

where T* is the adjoint of T1. Now, for any linear operator T2 and weight
functions or,/3, to and v

IlaZ2gllp(0) Cll/3gll0(o == - Q
<C

Otto P(w)

where T2* is the adjoint of T2.
Define T2 by T2g I Tg, then T2* TII* and hence by (2.11) with

ot 1/(spIv), w sev, 1/(eawo) and v =sawo, (2.10) is equivalent
to

(Iv)h

P(eev)

But by Proposition (2.1) this is equivalent to (2.7) since Th TI (l’h)
wiT(I’h).

(ii) The proof for 0 < f’ is quite similar. Again we obtain (2.9) from (2.6)
for 0 < f’. But then by (2.3) and (2.5) this is equivalent to
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l*(Tg)
ep(Iv)

< C
eQWO

g >_ O. (2.12)

Now, applying (2.11) with T2g I*T{g, 1/(ep(I*v)), w epv,

1/(eQWO) and v eQWO, (2.12) is equivalent to

IIZhllaowo) C

By Proposition 2.1 this is equivalent to (2.8) since Th 11)1 T(Ih).

Remark 2.2 As noted earlier, there are no order relations assumed on the
N-functions P and Q in Theorem 2.2 and if for example Q -< P, then in
general weight characterizations for which the modular inequality (2.7) and
(2.8) hold seem not to be known. However, if P(x) xP/p, Q(x) xq/q,
1 < p, q < x then Theorem 2.2 shows that IITfllq,w < CIIfllp,v holds for

h(Iv)0 _< f$ ifand only if IIT(i*h)llq,w < CII--;- IIp,o holds for0 _< h. But this
I (T...*..g) < C IIq’, where p’ and q’norm inequality is equivalent to

are the conjugate indices of p and q. However, this is exactly the formulation
obtained by E. Sawyer 15]. In the case 0 < f’, one obtained in a similar
way, using now Theorem 2.2(ii), the corresponding result of V.D. Stepanov
[81.

If P -< Q, then for suitable operators TI* and TI weight characterizations
for which (2.7) and (2.8) holds are known. We begin with our applications
of Theorem 2.2 when T is the identity operator.

COROLLARY 2.1 Suppose P and Q are N-functions, such that P -< Q. Let
p,/5 E A2 and (Iv)(x) o. If 0 <_ f, then thefollowing are equivalent:

Q-1 Q[wl (x)f (x)]wo(x)dx < p-1 P[Cf(x)]v(x)dx

(2.13)
There exists B > O, such thatfor all r > O, e > 0

Q-1 {for Q [ Wl(X)g X(r,oo)(ii)) ] ()
holds.

(2.14)
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There exists a B > O, such that, for all r > 0, e > 0,

Ifo
r

Q-1 Q[ewl (x)]wo(x)dx < P-l[p(Be)(Iv)(r)] (2.15)

holds.

Proof Let T be the identity operator, then T(I*h)(x) (I*h)(x) fxc h.
Hence by Theorem 2.2(i), (2.13) is equivalent to

Q-l { foC Q [wl (X) fx h] wo(x)dx }
<p-a { fo p [ C(Iv)(x)h(x) ] v(x)dx }

But by [5, Corollary 2.2] or [15, Proposition 3] this modular inequality is

equivalent to (2.14).
That (2.13) and (2.15) are equivalent follows from a result of J.Q. Sun

([20, Theorem 3.4]).

If 0 < f" a result similar to Corollary 2.1 holds. In fact if P and Q are
as in Corollary 2.1 and (I’v)(0) x then (2.13) with 0 < f’ is equivalent
to:
There is a B > 0, such that for all r > 0, e > 0,

Q-1 Q Wl (X)
B ’(ev)] w(x)dx} <P-l(1/e)

and there exists a B > 0, such that for all r > 0, e > 0

(2.16)

{fr }Q-1 Q[ewl(x)lwo(x)dx < P-l{p(Be)(I*v)Ir)}. (2.17)

The proofofthis follows (again) fromTheorem 2.2(ii) and [5, Theorem 2.1
or [20, Theorem 3.4].

If P(x) xP/p, Q(x) xq/q, 1 < p _< q < cxz, l/)l(X) 1,
Corollary 2.1 reduces to a result of E. Sawyer 15], while the case for 0 < f’
may be found in [6].
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Our next application considers the Hardy operator defined on decreasing
functions.

COROLLARY 2.2 Suppose P and Q are N-functions, P, P A2 and P -< Q.
If (Iv (cx o and 0 <_ f$ then

(2.18)

is satisfied, if and only if there are constants Bo, B1 > O, such thatfor all
r>O,e>O

and

[Q-1 Q Wl (x)

B0
X (0, r) io
e(Iv)

wo(x) dx < P
B1 el(v)

(Recall that io (x) x.)

Proof If Tf(x) f f, then T(I*h)(x) f h(t)dt + x fxo h(t)dr.
Hence by Theorem 2.2(i), (2.18) is equivalent to

Q-1 Q Wl (x) h(t) dt + x h(t) dt wo(x) dx

< p-1 [fo P [C(Iv)(x)h(X)]v(x)dx}
But since P A2, the convexity of Q and P show that this is equivalent to

Q-1 Q Wl (X) h(t) dt wo(x) dx

{ foC [ Cl (Iv)(x)h(x) ] }< p-1 p v(x) dx
v(x)
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and
Q-l {fo Q [.Wl (X)X fx h(t) dt] wo(x) dx }

{ fo [C2(Iv)(x)h(X)] v(x)dx}< p-1 p
v(x) (2.19)

where C1, C2 > 0 and h > O. Since P -< Q the weight characterizations for
which (2.19) hold are shown in [5] or [19] to be equivalent to the conditions
of the corollary.

Note that the proof of Corollary 2.1 shows that the second modular of
(2.19) is also equivalent to

{fo }Q-1 Q[exwl (x)]wo(x)dx < p-l {p(Be)(iv)(r)}

r >O,e>O.

Remark 2.3 (i) The equivalence of (2.18) and (2.19) does not require
the order condition P -< Q. Hence if P (x) xP/p, Q(x) xq/q,

weight characterizations are1 < p,q < xin(2.19) withwl(x)= -known (cf. [12]) and one obtained the result of E. Sawyer [15] and for p q
that of M. Arifio and B. Muckenhoupt [2].

(ii) Corollary 2.2 was proved by J.Q. Sun 19] by different methods.
(iii) For 0 < f ’, a result corresponding to Corollary 2.2 may also be

given. Only now one applies Theorem 2.2(ii) and uses the modular estimates
for

r(Ih)(x) (x s)h(s) ds

given in [2, 13, 16, 17]. The reduction to the weighted Lebesgue case yield
the results of 1, 6, 11].

Our final example involves the Riemann-Liouville fractional integral
operator of order or, 0 < c < c defined by

(Iaf)(X)
l foXr(ot)

(x t)a-1 f(t) dt

and the Weyl fractional integral

(I*af)(x)
1

(t X)a-1 f(t) dt.
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For the case ot > 1 weight characterizations for weighted modular inequalities
or for weighted LP-norm inequalities are known. For the case 0 < ct < 1 a

weighted LP-norm characterization was given recently in [4] while weighted
modular inequalities seemnot to be available in the literature. It may therefore
be surprising that in the monotone case more can be said.

PROPOSITION 2.2 (i) Suppose P, Q are N-functions, P, P A2 and
P < Q. If(Iv)(o) o and 0 <_ f, thenforO < ot < cx

}Q-1 Q[wl (x)(I f)(x)]wo(x) dx < P-

ifand only iffor all e > O, r > O,

{fo }P[C f(x)lv(x)dx

(2.20)

and

(r_x)a]wo(x)dx} < p-1 ()
are satisfied.

(ii) If (I’v)(0) o and 0 < f, thenfor 0 < ot < cx

Q-1 Q[wl (x)(Ia f)(x)lwo(x) dx < p-1 P[C f(x)lv(x) dx

(2.21)

holds, ifand only if, for all r > O, e > O,

Q-1 Q Wl.(X)
c

(r ")X(O,r)
e(l*v)

and

X(O,r)
e(I*v) (x_r)a]wo(x)dx} <p-l()
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Proof (i) By Theorem 2.2(i), (2.20) is equivalent to

If0Q-1 Q[wl (x)i.a (i.h)(x)]wo(x) dx

< p-1 P
C(Iv)(x)h(x)

v(x)dx
v(x)

h > 0. But I(I*h)(x) *(Ia+ h) (x) and since ct + 1 > 1, Theorem 2.2 of
[20] (see also [3, 13]) shows that this is equivalent to the conditions of the
proposition.

(ii) By Theorem 2.2(ii), (2.21) is equivalent to

Q-1 Q[Wl (x)la(Ih)(x)lwo(x) dx

<p-l_ {L P [ C(’*v)(x)h(x) ] v(x) dx

where h > 0. But Ialh Ia+lh, and since a -4- 1 > 1 the result follows
from [19, Theorem 2.1]. (See also [3, 13]).

For a > 1 this result was also proved by J.Q. Sun [201.
Note that if P(x) xP/p, Q(x) xq/q, 1 < p < q < x, wi(x) 1,

then Proposition 2.2(i) shows that for 0 < a <

wo(x) dx)
1/q

(fo< C f(x)Pv(x) dx

holds for all 0 < f$, if and only if, for every r > 0

lip

tLrll)o(x)dx)liq(ir ex

13

-p’

(x--r)aP’(Lx ) t(x) dx)
1/p’

<C

and

(Lr(r x)aq too(x) dx)
l/q

(Lr v(x) dx)
-1/p

A similar remark holds for the Riemann-Liouville operator defined on
increasing functions.
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