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ABSTRACT

The theory of differential inequalities is extended to functional-differential
equations with hysteresis nonlinearities. A key feature is the existence of a semi-
order of the state space of nonlinearity and a special monotonicity of the right-
hand side of differential inequality.
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1. Introduction

In this paper, functional-differential inequalities of the kind

x’(t) < f(t, x(t), (t)),
are considered, where (t) stands for the output of a hysteresis transducer (or in other words, that
of a hysteresis nonlinearity) corresponding to the input x(t). The transducer is regarded as a

dynamical system which may have different states and whose evolution in time is determined by
input-state and state-output operators.

The study of differential inequalities dates back to Tchaplygin. Over the years an abundance
of work was contributed to this topic. Among most notable are fundamental monographs by
Szarski [7] and Lakshmikantham and Leela [5]. The latter monograph is particularly concerned
with functional-differential inequalities.

In the present paper, a new type of inequalities is studied. This is characterized by the depen-
dence of the right-hand side upon the output of the hysteresis nonlinearity. The results obtained
are applied to specified classes of nonlinearities.

1.1 Hysteresis transducers

In what follows, will be a deterministic transducer (or, in other words, a dynamical sys-

1The work was reported on Dobrushin’s Laboratory Seminar at IITP of RAS.
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tem) having continuous input x(t) and output (t). We will assume that the state space (54r) of
the transducer 5r consists of pairs w- (x,q) whose first components are scalar-valued and the
second ones belong to a set Q which may depend on x. The property of the transducer to be
deterministic means that for any instant of time to, any initial state wo -(xo, qo E fl(4r), and
any admissible input x(t), there exists the evolution law

q(t)- (t >_ to) (1)
of the second component of the state w(t)- (x(t), q(t)) for the transducer 5r. The admissibility of
the input x(t) means that the function x(t) is continuous for t _> to and obeys the condition

As usual, in systems theory [2, 8], the family of the operators Z[t0, w0] describing the input-
output mapping for the transducer 5r should satisfy the semigroup identity. Specifically, if an in-
put x(t) is admissible, i.e., function (1) is well-defined, then the operator Z[tl, wl] is also well-de-
fined for the input with tI >_ to, W1 {x(tl),q(t) } and

Z[tl,Wl]X(t Z[to, Wo]x(t for t >_ t1. (2)
The operator Z is also called the transition operator.

The value of the output signal at any instant is completely determined by the state of the
transducer at the same instant, i.e.,

Fib(t), Z[t0, (3)
Instead of the latter equality, we will also write

(t) W[to, Wo]x(t ). (4)
The image of the set () with respect to the mapping F will be denoted by (F).

We assume that the operators W[to, Wo] of the input-output correspondence defined and
continuous on the spaces C(to, tl) of continuous functions on a segment [to, t] where to and tI are
arbitrary numbers such that to < t. For the sake of brevity, these spaces will be denoted by C.

1.2 Examples

1. Generalized play and hysteron. Let two curves be given which are the graphs of monotoni-
cally nondecreasing functions q Fl(x and q-- Fr(X such that Fr(x _< Fl(x). The state space of
the generalized play 2. is the strip

() {(x, q) F(x) < q <

First define operator (1) for monotone continuous inputs x(t) as follows:

max{qo, F(z(t))}, for x(. )not decreasing;
(5)Z[to, Wo]x(t

rain{qo, Fl(X(t))}, for x(. not increasing.

For piecewise monotone inputs x(t), define the operator of the generalized play by sequential app-
lication of equation (5) and using semigroup identity (2). The set of piecewise monotone
functions is dense everywhere in the space C. It turns out (see [4]) that the operator Z can be ex-
tended by continuity in C onto the set of all continuous inputs. As it was shown in [4], the
operators Z[to, w0] for the generalized play are well-defined and continuous on the space C.

The output of the generalized play coincides with the second component of the state, i.e.,
operators (1) and (4) coincide.

To define a hysteron, introduce along with the functions Fr and Ft a continuous function
c(x,z) which is continuous in its variables and strictly monotone in z for any fixed x. The state
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space of the hysteron r is the set

f(W) {(x,q) q E

(here, [fll,fl2] denotes either the closed segment [fl,2] of the real axis if 1 -- 2 or segment
[2’1] if 1 > 2)" Put

alto, w 0’

where W is the input-output operator of the generalized play. Therefore, the functions
and c completely determine some hysteron.

The generalized play is a special case of the hysteron. If Fr(X x h, Fl(x x + h, where
h is a positive constant, and a(x,z)= z, then the hysteron is called the ordinary play (with the
gap 2h). If a(x,z)= x- z then such a hysteron is called the stop (with the threshold values 4- h)
and is used as a model for the ideal elasto-plastic fibre. (It is nothing but the Prandtl model.)

The input-output operators of the hysteron are continuous on the space C.
general assumptions ([4], p. 40), these operators satisfy the Lipschitz condition.

Under quite

2. Ishlinskii model. The model is used in elasto-plasticity theory. Let a bounded-variation
function #(. be given on the segment II [0, H]. The state space of the Ishlinskii transducer is
the set

Ft {(x, q(. )) function q(. is p-measurable and Vh EII q(h) <_ h}.
Let w0 (x0, q0(" )) G f" The transition operator Z of the Ishlinskii transducer assigns a function
q(-)(t) to a pair (w0, x(t)) in such a way that for any h G II,

z [t0,
where Zh is the input-output operator of the stop with the threshold values 4-h. Therefore, the
state of the Ishlinskii transducer is a one-parametric family of states of stops with different
threshold values.

The output of the Ishlinskii transducer is defined as a Lebesgue-Stieltjes integral of the states
of the stops

r[x(t), q( )(t)] / q(h)(t)d#(h).
H

3. Relay and Preisach model. Let c and be real numbers such that a </. The state
space of the nonideal relay %a,b is given by the set

< >

Denote by T.(tl) the set of instants t[to, tl] such that x(t)-7 and x(s) (a,/3) for any
s E [t, tl]. The transition operator Z(a,g) is given by

q0, if T.r(t for all (c,/3);

Z(a,)[to, Wo]x(t 1, if x(t) >_ or Tz(t) O; (6)

0, if x(t) <_ a or Ta(t) O.

One can also say that the second component of the state of the nonideal relay corresponding to
the input x(t) is a piecewise constant function q(t) taking on either 0 or 1 and having the
minimal variation among all the functions satisfying the condition

w(t)- (x(t),q(t)) G (%a,) for all t [t0, tl].
The zero and unit values of the state can be interpreted as "switched-off" and "switched-on" posi-
tions of the relay.
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Now, let us turn to the Preisach model which is often used in magnetics theory [6]. Let a
measure # be given on the half-plane II {(c,/) c < fl} with a continuous density. The state
space of the Preisach transducer z) is the set

Q(zp)_{(x,q(.,.))lV(c,)Eii (x,q(a,))EQ(z)o,/3)}
where q(.,.) is a #-measurable function. The transition operator Z of the Preisach transducer
maps a pair (Wo, X(t)) to the function q(.,. )(t) such that for any (c,/) II,

where Z is given by equation (6). Therefore, the Preisach transducer can be regarded as a(,.).
wo-parametrlc family of nonideal relays. Similarly to what was done when describing the Ishlin-
skii model, the output of the Preisach transducer is defined as the integral of the states of non
ideal relays with respect to the measure #

Fix(t), q(.,. )(t)] / q(c,/)(t)d#(c,/).
l-I

Note that for all c,/, the function q(c, 3)(t), which is the output of the corresponding relay, is, in
general, discontinuous in t. Nevertheless (see [4]), the output of the Preisach transducer is a con-
tinuous function and moreover the corresponding hysteresis operator is well-defined on space C.

2. Initial Value Problem

In what follows, we will consider the functional-differential equation

x’(t) f(t, x(t), (t)) (7)

(t)- W[to, Wo]xl(t), (8)
where x(t) n, the function f: n(F)n is continuous in its variables, (t) is the out-
put of the hysteresis nonlinearity W corresponding to the input Xl(t which is the first component
xl(t of the function x(t).

To specify individual solutions of equation (7) we give the initial values

(t0)  (t0) (0)
with w0 (x1 (to, q(to) ).

A continuous differentiable function x(t) satisfying relations (7)-(9) is called the solution of
the initial value problem for the differential equation with hysteresis nonlinearity.

With the aid of standard tools (for example, by using the Schauder principle for contraction
mappings), one can easily prove the validity of the following statements:

The initial value problem (7)-(9) has at least one solution defined on a segment [to, to + ].
If operator (4) satisfies on C(to, tl) the local Lipschitz condition (as in the case of wide
classes of hysterons, Ishlinskii and Preisach transducers, etc.) and the function f(t,x,)
obeys the local Lipschitz condition in its variables x and , then initial value problem (7)-
(9) has the unique solution.

More general results on solvability and uniqueness of solution of initial value problems are
given in [1].
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3. Directed Nonlinearities and Special Monotonicity

3.1 Directed nonlinearities

The state space () of a transducer 4r will be endowed with semiorder denoted by the
symbol -.

Definition 1" A transducer r is called directed if for any admissible inputs u(t) and v(t) and
for any initial states w1 -(u(to) ql) and w2 (u(to) q2) E (qr), the relations

< v(t) (t [to, tl])
imply the validity of the relations

(u(t),Z[to, wl]u(t))- (v(t),Z[to, w]v(t))
for all t E [to, tl].

The latter means that wl(t - w(t) remains valid for all t under consideration.

Examples: To make sure that a hysteresis transducer possesses directness one should first
introduce an appropriate semiorder on the state space of the transducer.

1. If is the generalized play then the following semiorder on the set f() can be employed"

wo -(xo, qo) - W1 --(Xl,ql), (10)
if q0 < ql"

2. The state space Ft() of the hysteron, described by the functions Fr(x), F/(x), and a(x,z),
can be endowed with the following semiorder: relation (10) holds if z0 < z1 where o(xo, zi)- qi
(i 0, 1). The correctness of the definition follows from the strict monotonicity of a in its second
variable.

Thus, for example, for an arbitrary stop, relation (10) is equivalent to the inequality

x0- q0 < x ql"

3. Let the function # in the definition of the Ishlinskii transducer be nondecreasing, i.e., it
induces a nonnegative Lebesgue-Stieltjes measure. Then, for the two states w -(xi, qi(.))
(i 0, 1) of the Ishlinskii transducer, relation (10) is equivalent to the inequality

xO-qO(h) <_x1-ql(h) ’hII. (11)
4. For the two states wi, qi(. )) (i- 0,1) of the Preisach transducer, relation (10) is equiva-

lent to the inequality
q0(c,/3) < ql(a, ?) V(a, ) II.

All the transducers mentioned are directed with respect to corresponding semiorders. For hys-
terons and Preisachs transducers (in the case of a positive measure #), the fact was pointed out in
[4]. As to the Ishlinskii transducer, its directedness immediately follows from that of the stop.

3.2 Special monotonicity

Given x,y ,n, write x < y (or x < y) if the inequality x < Yi (or x < Yi) holds for any
J

index (i- 1,...,n) enumerating the coordinates of the vectors x,y. The notation x < y is used
for x<yand xj-yj.

Definition 2: The right-hand side f(t,x,) of equation (7) is called S .-monotone, if for any
positive integer j < n and for all [to, tl] the relations

J
<
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imply the inequality
fj(t, x, F[w1 ]) <_ fj(t, y, F[w2]),

where fj stands for the jth coordinate of the vector f and F is functional (3).
As it can be seen from the definition, the S .-monotonicity is specified both by the properties

of f and functional (3). Despite the cumbersomeness of the definition, it is not difficult to verify
the S.-monotonicity in many situations. Moreover, there are nonlinearities whose S.-
monotonicity can be characterized as a property of the function f(t,x, ) only.

Examples: 1. Let x E and be the hysteron described by the functions Ft(x), Fr(X), and
c(x,z). Then f(t,x,) possesses the property of S.-monotonicity if f(t,x,) does not decrease
in its third variable for all x such that c(x, Ft(x)) _> c(X, Fr(X)) and does not increase in the same
variable for all x such that c(X, Fr(X))>_ a(x, Ft(x)).

If is a play (ordinary or generalized) or the Preisach transducer then f(t,x, ) possesses the
S .-monotonicity whenever f is nondecreasing in .

If is a stop or an Ishlinskii transducer then f(t,x, ) possesses the S .-monotonicity when-
ever f is nonincreasing in .

2. Let x be a vector in n and
f(t, x, ) A(t)x + b(t),

where A(t) [aij(t)] is an n n-matrix, b(t) (bl(t),.. bn(t)) is a vector, and (t) is the value of
the output of the Ishlinskii transducer corresponding to the input xl(t). Verify that the S.-
monotonicity of f follows from the following inequalities (t E It0, tl]):

aj(t) >_ 0 for j 1, j i;

for all i; (13)
for -7/: 1

where

_< 0

ail(t)+Ebi(t)>_O
H

E- / d#(h).
0

Indeed, for any i, the following inequality is valid:

Afi: fi(t, x, F[w1]) fi(t, y, F[w2]

where

H

E aj(t)(xi- Yi) + bi(t) [ql(h) q2(h)]d#(h),
j=l 0

Wl (Xl’ql("))’W2 (Yl’q2(")) ( ()"
Hence,

n

Af E aij(t)(t)(xi- Yi) + Jail(t) + Ebi(t)](Xl

H

+ bi(t) : [ql(h) x1 q2(h) + Yl]d#(h)
0

and the inequality Afi <_ 0 follows from (11)-(13).
Analogously, if is the output of the stop with the threshold values + h, then inequalities

(13), where E 1, imply the S .-monotonicity of the function A(t)x + b(t).



Differential Inequalities for Hysteresis Systems 465

If f(t,x,r) does not depend on the third variable then its S .-monotonicity is equivalent to
the off-diagonal monotonicity of the function f(t,x) (see [3]). In the monograph [7], the term
"condition W +" is used.

4. Differential Inequalities

4.1 Basic statements

In what follows, we will assume that the solutions of problem (7)-(9) are defined on a seg-
ment I It0, t1].

Theorem 1: (On differential inequalities) Let x(t) be a solution of problem (7)-(9) and
y(t) E Cl(I---n). If a transducer is directed and the right-hand side of equation (7) is S .-
monotone then the relations

Y(to)-- Y0 < X0’ Wl W0’ (14)
y’(t) f(t,y(t),W[to, wl]Y(t)) (to <_ tl) (15)

imply the validity of the inequality y(t) < x(t) for all t I.

Proof: Assume y(t) < x(t) doesn’ hold true on I. Then there exists t* G (t0, tl) and at least
one index n such that

y(t) < x(t) t [t0, t*] (16)

From the last two inequalities, it follows that

y(t*) >_ x(t*). (18)
On the other hand, from (14) and (16), by the directedness of , the relation

holds true, where

qy(t)- Z[to, wl]Yl(t and qx(t)- Z[to, Wo]xl(t
(here Xl, Yl stands for first coordinate of vectors x and y respectively). Hence, by virtue of (17)
and taking into account the S -monotonicity of f one can obtain that

f(t*, y(t*), r[%(t*)]) _< f(t*, x(t*), r[x(t*)]
(fi means ith coordinate of vector function f). Further, combining this inequality with (7) and
(15), we obtain the inequality y(t*)< x’(t*) which contradicts (18). This contradiction proves
the Theorem.

It can analogously be proved that, under the assumptions of Theorem 1, the relations

y(to) Yo > xo, Wo - wl,

y’(t) > f(t,y(t),W[to, wl]Y(t)) (to < t <_ tl)
imply the validity of the inequality y(t) > x(t) for all t I.

Definition 3: A solution x + (t) of problem (7)-(9) is called maximal if for any solution x(t) of
the problem, the inequality x(t) <_ x + (t) holds for all t I.

A minimal solution x- (t) is defined in the same way as the maximal one.

Theorem 2: If a transducer W is directed and the right-hand side of equation (7) is S.<-
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monotone then initial value problem (7)-(9) has both maximal and minimal solutions.

Proof: Let x(t) be a solution of problem (7)-(9) and functions yk(t)
solutions of the initial value problems

yC(t) f(t, yC(t), k(t)) + e,
k(t) W[to, wo]Ykl(t); Yk(to) Xo,

(k 1,2,...) be

(19)

where vector e E Nn has all entries equal to 1. Since the right derivative of the function x(t)-
yk(t) at the point to is strictly negative we obtain that there exists an sk (to, tl] such that

(t) < (to < t _< (20)
and hence xl(t < ykl(t ). That is why from the directedness of W we get the estimate

(xl(t),Z[to, Wo]xl(t)) (ykl(t),Z[to, Wo[Ykl(t)) (t G [to, Ski ). (21)
Since the function f possesses the S .<-monotonicity the same property holds for the right-hand
side of (19). Therefore, from relations (20) and (21) and by virtue of Theorem 1 it follows that

x(t) < yk(t) t G Isk, tl].
Furthermore, by virtue of (20) we get

x(t) < yk(t) t G I k--1,2, (22)
Since the integral operator

Jx(t)- xo + / f(s,x(s),W[to, Wo]Xi(s))ds
o

corresponding to problem (7)-(9) is completely continuous on the space C, we conclude that the
sequence of solutions t- tov(t) Jv(t)+ .,, (2)

of problem (19) may be regarded as uniformly convergent on the segment I to a continuous
function y*(t). Passing to the limit in (22) and (23) (for koc), we obtain the estimate

x(t) <_ y*(t) Jy*(t), t e I.

Since x(t) was an arbitrary solution of problem (7)-(9) it follows that y*(t) x + (t) is a maximal
solution. Existence of a minimal solution can be established in the same way. El

The following theorem is proved similarly to Theorem 2.

Theorem 3: Let the assumptions of Theorem 1 hold. Then the relations

y(to) Yo < Xo, Wl "
y’(t) <_ f(t,y(t),W[to, wl]Y(t)) (t0 < < 11) (24)

imply the validity of the inequality y(t) <_ x + (t) for all G I.

4.2 An example

As was indicated above, if x is a scalar and 2. is a play, then the S .-monotonicity of the
function f(t,x,) is equivalent to that the function is nondecreasing in its third variable in the
region (x, ) C (.L). A violation of the S .-monotonicity may lead to the absence of maximal or
minimal solutions among solutions of the initial value problem.

Consider the following example. Let .L be the play described by the functions Fr(x --x and
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P/(x) x + 2. Take a bounded continuous function f(x, ) such that

f(x,x) v/max{O, 1- Ix-l I); f(x,x + 2) -V;
f(x,z) V/12- x l; f(x,O) x/v/-.

Therefore, the initial value problem

x’(t) f(x(t), W[O, Wo]x(t)); w0 (0, 0), x(0) 0 (25)
has solutions, and they are well-defined for all t >_ 0. The set of the solutions is described as
follows: there is the identically zero solution, and other ones are given by

x(t;a,b)

0

(t-a)2/4
2-(t-a-4)2/4

2

2-(t-a-b-4)2/4
V/-(t a b 4 2V/

for0<t<a

for a<t <a+2

for a+2 < t <a+4

for a+4 <t < a+b+4
for a+b+4 < t < a+b+4+2V/

for t > a + b +4 + 2r,

where a,b are arbitrary nonnegative numbers (b may take an cx3-value).
solutions of problem (25). Obviously,

There are no other

x (t) minx(t; a, b)
a,b

0 for 0 _< t < 4 + 2X/
V/(t- 4- 2X/-) for t >_ 4 + 2V/,

and the function x- (t)is not a solution of problem (25).

4.3 Possible extensions

The assumption on smoothness of the function y(t) used in the previous theorems is not essen-

tial. One may instead assume the continuity of y(t). In this case, one should only substitute any
left-hand Dini’s derivative (see [7]) of y(t) for the derivative of the function in inequality (15); the
derivative in inequality (24) may be replaced with an arbitrary chosen Dini’s derivatives.
Besides, the functions x(t) and y(t) participating in Theorems 1-3 may be taken absolutely contin-
uous and equation (7) along with inequalities (15) and (24) may be assumed to hold true almost
everywhere on the segment I.

4.4 On delayed systems

The scheme proposed above is applicable to other classes of functional differential equations.
Particularly, it can be applied to equations with finite delay:

x’(t) f(t, x(t), x(t v)). (26)

Theorem 4: Let r > O, function x(t) satisfy equation (26) and function y(t) obey the inequali
ty y’(t) < f(t,y(t),y(t- r)) for all t G [to + r, tl]. In addition, suppose that the relation

y(t) < x(t) (27)
holds true for any tG [to, to + r]. If f(t,x,)’3-, does not decrease with respect to then in-

equality (27) is also valid on [t0, tl].
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Proof: Consider a "delayed" dynamical system Dr with the state space

a(Dr) {(x, q(. ))I q(" e C[O, r], q(v) x}.
The transition operator Zr of transducer Dr assigns the pair {Wo, x(t)} (of course, x(to) Xo) to
the function q(. )(t)given by

q(l)(t) Z [to, (Xo, qo(rl))]x(t)
qo( + t to) for

r

[ x(r/-t- t r) for

The output of Dr is defined as

F[w(t)] F[x, q(. )] q(0).

With these definitions in mind, initial value problem (7)-(9)is equivalent to (26) combined with
initial value

(t0 + e [0,
Introduce semiorder in Ft(Dr) as

090(Xo, qo(" )) - Wl(Xl, ql(" )),
whenever qo(r/) <_ ql(r]) for all r/e [0, r].

After that it is not difficult to verify the validity of all assumptions of Theorem 1; Theorem 4
becomes the direct consequence.
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