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ABSTRACT

In this paper we study a class of evolution integrodifferential equations. We
first prove the existence and uniqueness of solutions and then establish the
convergence of Galerkin approximations to the solution.
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1. Introduction

Let H be a separable real Hilbert space. We consider the following integrodifferential equa-
tion in H:

du(t)dt Au(t) + M(u(t)) + / g(t- s)k(u(s))ds, t > 0, (1)
0

(o)-,

where A is a closed, positive definite, selfadjoint linear operator with dense domain D(A) in H.
We assume that A has a pure point spectrum 0 < 0 - )1 --’’" and a corresponding complete or-
thonormal system {ui} so that An -iui and (ui, uj)- 5ij (.,.) is the inner product in H and

5ij is the Kronecker delta function. These assumptions on A guarantee that -A generates an
analytic semigroup e-tA. The nonlinear operators M and k are defined on D(A) for some c,
0 < c < 1 and is in D(A). The map g is a real-valued continuous function defined on R+.

The existence and uniqueness of solutions to (1) is closely associated with the existence and
uniqueness of solutions to the integrodifferential equation

e -tAd) + / e -(t- s)A[M(u(s)) + K(u)(s)]ds, (2)
0
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where the nonlinear Volterra operator K(u)(t)- f g(t- s)k(u(s))ds.
0

The present work is closely related to the paper of Miletta [5] in which he has investigated the
abstract evolution equation

du(t)
dt Au(t)+ M(u(t)), (3)

and the related integral equation

u(t) e -tA + / e- (t- S)AM(u(s))ds. (4)
0

For initial studies related to (3, 4) we refer to Segal [9] and Murakami [6]. For a Lipschitz contin-
uous M and in D(A) (4) has a strong solution on some maximal interval of existence, and if
the interval of existence is bounded, then there are some blow-up results associated with the solu-
tion. We also refer to the papers of Bazley [1, 2].

We first establish the existence and uniqueness results for the integral equation (2). The
method used is similar to the one used by Miletta [5]. The solution to (2) is obtained as the limit
of the solutions to the integral equations satisfied by the Galerkin approximations. As remarked
by Miletta [5], the assumptions on the nonlinear maps are not general as far as the existence re-

sults are concerned, but these assumptions give uniform convergence of the approximations.

We assume the following condition on the nonlinear maps M and k:

(L) The nonlinear maps M and k, defined on D(Aa) into It for some a, 0 < a < 1, are

continuous and for each r > 0 there exist positive constants CM(r and Ca(r such that
(a) II M(u) II M <_ CM(r and II k(u) II <_ Ca(r) for u e D(Aa) with II Aau I] <- r,
(b) II M(Ul)- M(u2)II

_
CM(r)II AC*(Ul u2)II

and

II/(Ul) ](u2)II

_
Ck(r)II AC(Ul u2)II

for u e D(Aa) with IIAauill <- r fr l,2"

For existence, uniqueness and regularity results we may consider more general nonautono-
mous nonlinearities M(t,u) and k(t,u)in (1) which satisfy the following conditions (el. Bahuguna

]l M(tl, Ul) M(t2, u2)II CM(r)[[tl t2]g + II AC(Ul u2)Ill

Illc(tl,Ul)-]c(t2,u2) II -<Ck(r)[Itl-t2l"-- [[AC(Ul-U2)II]

for uiED(Ac*)with Iluill -<r,i-l,2, andfrsme,#with0</, #<1.

2. Existence and Uniqueness

This section is devoted to establishing the existence and uniqueness of the solutions to the
integral equation (2) on [0, T] for some 0 < T < oc. Under the assumptions mentioned in 1, we
prove the following existence and uniqueness result.
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Theorem 2.1: Suppose the assumption (L) holds and E D(A). Then there exist a T,
0 < T < oc and a unique in C([0, T],D(Aa)) satisfying (2) on [0, T].

We shall prove Theorem 2.1 with the help of several lemmas to be proved in this section. Let
To, 0 < To < oo be fixed, but arbitrary.

Let

T-min To, (1-c)F-1C(R)- 1 (1-) (5)

where F is such that II A%- II _< -, f II II + 1 and

C(r) CM(r - TogoCk(r

for r > 0 and

I(t) l. ()1TIaXgO
O<_t <_To

We shall denote by Xa the Banach space C([0, T],D(Aa)) endowed with the norm

II u [[ sup [I Aau(t) II. (7)
O<t<T

Let [In denote the subspace of It generated by {u0, Ul,..., Un} and Pn:tt--]]
n the associated pro-

jections. For each n, we define

Mn(u)-M(Pnu) (8)

kn(u k(pnu),

’,()(t) f (t- ),(())d.
0

For n 1,2,... we define a map Sn on BR(X) {u e Xa II u II a <- R} as

SnU e tA + / e- (t s)A[Mn(u(s) + Kn(u)(s)]ds.
0

Lemma 2.1" The map

(9)

Sn:BR(X)BR(X)

is a contraction.

Proof: We note that for u @ BR(X),

[[ Snu II <- sup IIe- tAAa II q-sup J II Aae (t s)A [I [[ Mn(u(s)) + Kn(u)(s) [1 ds
O<t<T O<t<T

FC(R)T1- < R.<_ F II II + 1 -c

Thus Sn: BR(XU)--BR(Xa). Now, for zt1 and u2 in BR(Xa), we have

(10)
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[I Mn(Ul(S))- Mn(u2(s))II CM(I )II Ul u2 II a,

0

goToCk(l )II ?/1- t2 II
Hence for u1 and u2 in BR(X), we have

II Sn(Ul)- Sn(u2) II < sup ]" II Aae- (t- )A I1111 Mn(Ul(S))- Mn(u2(s)) IIa6-<t<T
0

(11)

+ [1 Kn(Ul)(S)- Kn(u2)(s)II ]ds

FC(R)T1

-< 1-a 111-211

1/2 II ltl it2 [[ c. (12)

Thus, Sn is a contraction on BR(X) and therefore there exists a unique un in BR(Xa) such that

un(t e -tA + / e -(t- s)A[M,(u(s)) + Kn(u)(s)]ds.
0

We shall assume throughout that is in D(A) unless otherwise stated.

Lemma 2.2: We have

(13)

u:[O,T]D(A)

for all O <_ t [O,T] and O <_13 < l.

Corollary 2.1" There exists a constant Uo independent of n such that

I] Au(t) II <- U0
for all t [0,7"] and 0 <_/3 < 1.

For proofs of Lemma 2.2 and Corollary 2.1, we refer to the proofs of Lemma 1 and Corollar-
ies 1 and 2 in [5].

Lemma 2.3:
sup

{n >_ m,O <_ <_ T}

Proof: For n >_ m, we have

II Mn(u(s))- Mm(um(S)) II - II Mn(un(S))- Mn(um(S)) II + II Mn(um(S)) + Mm(um(S)) II

(14)
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Similarly,

c()II .(n())- .(m())II --< C()II Aa[u.(s) urn(s)] II +
_

II Aurn(s) II.
From (14) and Corollary 2.1, for n > rn, we have

8

II K.(.)()- K.(.)()II _< o / II K.(.())- K(.())II dr

0

< TogoCk(R)Uo

Also, from (14) we have

+ TogoCk(R sup
0<r<s

II Aa[un(r) urn(v)]

CM(I)U0II Mn(u(s)) Mrn(Um(S)) II _< - a
-]- CM(R)

O < r <_
[I Aa[un(r) urn(r)]

Using the estimates of (16) and (17) in the integral equation (13) we obtain that

(J5)

(16)

(17)

I[ Aa[un(t) urn(t)] I{ <- f [[ Aae- (t- s)A ]1[11Mn(un(Un(S))- Mm(um(S)) II
0

+ II K,(n)(S)- Km(m)(S)II ]ds

C(R)FUoT1 - f’-< m-a(X-c) +C(R)F (t-s)- sup
0<r<s

0

II A[Un(7) Um(7)] IIds.

The above inequality implies that

sup II A[Un("r)- Um(r)] II
0<r<t

C(I)FUoT1 it-< Am- (1 c)
+ C(R)F (t s) -O<r<sUsup II Aa[un(r) Um(r)] II d,. (18)

0

Applying the Gronwall’s inequality in (18) we get

C(R)FUoT1 C(R)FT1 o C(R)FT1 (

sup [[ Aa[un(r)- ltrn(T)] ]l < ,- a(1 -a)
[1 + e 1 -a ]. (19)

OSr_<T 1-c

Taking the limit as rn-+oo on both the sides, we get the required result.

Proof of Theorem 2.1: From Lemma 2.3, it follows that there exists a unique u BR(X)
such that

sup II Aa[un(r) -u(r)] [[-+0 as n-+oo.
0<r<T

The continuity of M and k imply that

II Mn(un(t))- M(u(t))II + II n(n)(t) a:(,)(t)II 0 s n.

We may take the limit as noe in (13) to assert that u satisfies the integral equation

u(t) e- tA + / e -(t- s)A[M(u(s)) + K(u)(s)]ds.
0

(20)
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Now we prove the uniqueness. Suppose that u E Xc, i- 1,2; are two solutions to (20) on
some interval [0, T]. Then for R > 0 large enough, we have

sup II AC[Ul(r) u2(r)] II _< C(R)F J (t- s)- Csup II AC[Ul(7) u2(r)] II ds. (21)
0<r<t 0<<s

The uniqueness follows from the application of Gronwall’s inequality in (21) and the fact that for
any u @ Xc,

3. Faedo-Galerldn Approximations

The solution u X of the integral equation (20) and un X satisfying the approximate
integral equation (13) have the representations

n

un(t cr(t)u, c(t) (un(t),ui) i-- O, 1,
i=0

Projecting the integral (20) on [In, we get the Faedo-Galerkin approximation

(23)

8

pnv(t) e tApn + e -s)Apn[M(pnv(s)) + g(s r)k(pnv(r))dr]ds.
0 0

Setting
n

v v(t) }2,7(t),
-’-0

we obtain a system of first order integrodifferential equations

(24)

where

dt + ,iar(t) M(a(t),..., a(t)) + / g(t s)kr(a(s),..., a(s))ds,
o

n

M(a’d(t),. c(t)) (M(E a’(t)ui)’ ui)’
i-O

(25)

n

7((t),...,-,(t)) (( ,7(t)), ).
i--0

We observe that vn(t pnun(t ). We have the following convergence theorem.

Theorem 3.1"

n 2lira sup (E 1a[ai(t)- ai (t)]) 0.
n---oo O<_t<_T i=0
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Proof:

Thus
n

II
--0

The required result follows from Lemma

(26)

4. Applications

We consider the following integrodifferential equation

u Au fl(u, V u) + / g(t- s)f2(u(s), V u(s))ds, x eft, t > 0, (27)
o

where f C_ It3 is a bounded domain with sufficiently smooth boundary 0f, A is the 3-dimensional
Laplacian, g" P + tt is a continuous function and Ii(u, p), (u, p) E R. x tt3, 1, 2, are locally
Lipschitz continuous functions of all its arguments and there is a continuous function p: 1+
and a real constant 7, 1 _< 7 < 3 such that for i- 1,2, we have

f(u, P) <_ ,(lu I)(1 -+- p I’),

[fi(u,p)-fi(u,q)l <p(lu[)(l+ Ip["/-l-I

fi(u,p)-fi(v,p) <p(I ul + vl)(l+ Ipl’r) lu-vl.

We refer to Pazy [7] for the case f2-0 in (27). See also Fujita and Kato [4] and Ponce [8]
for related problems. For more general problems, we refer to Simon [10] and references therein.

We reformulate (27) as an abstract integrodifferential equation (1) in the real Hilbert space
It- L2(a) where A- -A + cI, for some c > 0 with D(A)- ]t2(a)C’l lt(f), lt2(a)and [[(a)
are Sobolev spaces (of. 7.1 in Pazy [7]), I is the identity operator and

M(u) fl(u, V u) + cu,

k(u) f(u, V u),

We observe that for c, max{, 5"-}4- < c < 1, all the assumptions of Theorem 2.1 are satisfied

(cf. Corollary 2.3.7 on page 51 and the estimate (4.20) on page 245 in Pazy [7]). Thus, we may
obtain the corresponding existence, uniqueness and convergence results for (27).
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