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ABSTRACT

We study two-parameter coordinate-wise C0-semigroups and their generators,
as well as two-parameter evolutions and differential equations up to the second
order for them. These results are applied to obtain the Hi]le-Yosida theorem for
homogeneous Markov fields of the Feller type and to establish forward, back-
ward, and mixed Ko]mogorov equations for nonhomogeneous diffusion fields on
the plane.
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1. Introduction

Let Ttl,t2 be a two-parameter coordinate-wise C0-semigroup. The paper is organized as

follows. In Section 2, we prove that Ttl’t2- Tl’12t -Ttlt2,1 and establish that its generator

coincides with the generator of the one-parameter semigroup T1, t. We also derive differential
equations up to the second order to Ttl,t2 and its resolvent and establish Hille-Yosida theorem

for Ttl,t2 (Remark 2). In the third section we consider two-parameter evolution operators,

Tss,,tt, up to the second order. In the fourth section we study .-Markov fields on the plane with
transition functions and present the Hille-Yosida theorem for .-Markov fields of the Feller type.
In the fifth section the class of diffusion fields is introduced. The form of generators and relations
between them are established. Forward, backward, and mixed Kolmogorov equations of the
second order for the densities of diffusion fields are presented. A partial case of backward Kolmo-
gorov equations was considered in [3, 4].

2. Two-Parazneter Semigroups, Their Generators, and Resolvents

Let X be a complex Banach space, (X) be a space of linear continuous operators from X to
X, I be the identity operator on X, and D(A) be the domain of operator A.
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Denote [2 [0 +cxz)2 with partial ordering <(< ) if - (81 82) - (t1 t2) and
< < )t, i- 1,2.

Definition 1: The family {Ttl, t2, (tl, t2) G 2+ } C (X) is called a coordinate-wise two-para-

meter semigroup if it satisfies the following two conditions.
(A) a) To, t2 Ttl,O- I.

b) For anyt O, s O, l,2,

Tsl t2Ttl s2TTsl + tl t2 t2 and Tsl s2 + t2 Ts1 Sl, 2

Furthermore, we simply refer to the coordinate-wise two-parameter semigroup as semigroup.

Ttl is called a Co-semigroup if for any x E X, E N2Definition 2: A semigroup ,t2 +,

_im II T T II 0.
t

Lemma 1: The following conditions are equivalent.
(B1) For any x G X, t1 >0, t2>0,

(B2) For any x G X,

lim T lim T ,t2x- x.
t2--*0 1 t2X tl--+0 1

lim Ttl t2x x.
I v t2--,0

The proof of Lemma 1 is similar to that of the classical theorem about continuity of separate-
ly continuous bilinear forms [8] when we replace functionals by operators, so it is omitted.

Lemrna 2: The semigroup Ttl,t2 is a Co-semigroup if and only if it satisfies one of the condi-
lions (B1) or (B2).

Proof: The necessity is obvious. Let us prove sufficiency. Suppose, for example (B1) is
satisfied. Then the one-parameter semigroups, Ttl., and T ,t2

are continuous for any fixed t1
and t2. From known properties of one-parameter semigroups, for any t > 0, 1,2, there exist
constants C Ci(ti) > 0 and a ai(ti) G gt such that I[ Ttl,u 11 <- C1ealu and II Tu, 2

11 <-
a2u

2e for any u > 0. Now let be fixed with t > . Then, from Lemma 1, we find that

< lira II T- [I II TSl -s2TtI s1 s2Tt1 s 1 2
X-- IIt-- 2 -s2

< lim [[ T- [[([[ Tsl t2_ s2rtl_ Sl s2 [[ [[ T Sl t2_ s2X- x [[
t-- 1

-s s+ II Tsl,t2 211 II Tt1 Sl, 2

(t -Sl)ea2(t2-s2)II) < lim 1 T II (C1C2eal 1+ IIT, 2-
II + c2%<t2- s2> II TtI Sl’ 2 s2Xs x 11 + IlTsl,t2

--xl[)--0x II TtI 1’ t z
Other version of the arrangement of the point with respect to are considered similarly.

Thus, Definition 2 can be weakened to condition (B1).
Lemma3- Left7 be a Co-semigroup. Then, for any (t1 t2)N2

T- Tl,tlt2 Ttlt2,1. (1)
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Proof: Note that for any Y E N2+ and n E N,

Ttl,nt2 (T- )n Tntl,t2.
Furthermore, for any t1 >_ 0, there exists a sequence [un, n >_ 1} C Q + such that un (pn/qn)--,tl
as n--c. Then for any x X,

T7 x =lLrnT. lirn T x.,t:z .- (./.), (t:q./%)

(t2/qn))Pnqnx- -lim T x T x.
n--,c 1,t2(Pn/qn) 1,tlt2

Ttl rHence, we also have t2 lt2,1"
Remark 1" Let , N2+. Then,

tlt2T1T7 T- rl, Sl s2 Zl, tl t2 + Sl s2 rl, Sl s2T1, tl t2 T T7

Definition 3: 1. The generator A of Co-semigroup T is defined by

whenever the limit exists.

Az. tl-im-o t1@2(T7 z- z),

2. The i-generators (i 1,2) of C0-semigroup T are defined by

A2tlX: t2t21imI__(T7 x x) and Alt2X" tl__0tllim2(T=t X X)

whenever the limits exist.

Theorem 1" Let TT be a Co-semigroup. Then the following hold"

1) A AI A and AtJ tiA t > O, i- 1,2, j 1, 2, i j.

2) For any x G D(A),
T7 Az AT( x.

3) For any-[ (tl,t2) e N2+ and x G D(A),

TZOtltj
For any x G D(A2),

02T7 AT-i x + tlt2A2T7 .OtlOt2
x

and

Proof." 1. Let x D(A). It follows from Lemma 3 that
T t2 I T1, tlt2lim 1, x lim

T --,o tit2 7 --,o tit2

--I

Ttl’ t2- I T, tlt2lim x- t2 lim
tl-*O t tl--O tlt2

-I

(2)
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exist or do not exist simultaneously. Therefore, according to Definition 3, D(A)- D(At2,),
D(A21) C D(A) and At2 x flAX. From the same arguments applied to x e D(A) and x e D(A),
we have D(A11) C D(A) C D(A) D(A), and, consequently, D(A)= D(A21) D(A). There-
fore, the equalities (2) hold

2. Operators A and Ttl commute on D(A) (this follows from the corresponding properties
of one-parameter semigroupsl; therefore, A A and Ty Ttlt2,1 commute on D(A)= D(A).

3. This statement can be obtained by direct calculations. Vl

Suppose the semigroup T is not continuous on the whole space X. In this case, let us con-
sider the linear manifold,

X0 { Ix G X Ilim T. x limT/ vx x for tl, t2 > 0}.
u--*0 ’t2 v---0 1’

Lemma 4: 1) Xo is a subspace in X.

2) Operators Ty act from X0 to XO.

The proof follows from equality (1) and similar results for one-parameter semigroups. V1

Theorem 2: The linear operator A is a generator of a coordinate-wise Co-semigroup if and
only if it is a generator of a one-parameter Co-semigroup.

Proof: Let A be a generator of the coordinate-wise C0-semigroup Ty. Then from Lemma 3
and Theorem 1, A is a generator of the one-parameter C0-semigroup U(t)- T1, t. Conversely,
assume that A generates a one-parameter semigroup U(t). Set T-(- U(tlt2). Then Ty is
coordinate-wise C0-semigroup, the limits

T x U(tlt2)x_ x
lim

1,t2x-
and lim

Y 0 tlt2 tlt2--0 tlt2
exist or do not exist simultaneously, and for x E D(A)

x
Ax lim

U(tlt2)x- x
lira Ttl’t2x-

1, t20 tlt2 )- --,0 tlt2
Therefore, A is a generator of coordinate-wise semigroup. V1

lemark 2: It follows from Theorem 2 that the conditions of the well-known Hille-Yosida
theorem are necessary and sufficient for the closed operator A with D(A) X to generate coordin-
ate-wise semigroup.

Remark 3: The statement similar to Theorem 2 for an n-parameter coordinate-wise
semigroup is true and would have the same proof.

It is well known that in the one-parameter case, the Laplace transform of semigroup is a
resolvent of its generator, defined in the appropriate half-plane of C. Analogously, in the case of
the multiplicative semigroup Ttl,t2, given by equations,

Ttl,t2
Tl(tl)72(t2) and Tl(tl)T2(t2)- T2(t2)Tl(tl)

where Ti(ti) for i- 1,2 is a one-parameter semigroup, the two-dimensional Laplace transform of
T(tl, t2) is decomposed into a product of one-dimensional transforms and is the product of resol-
vents of semigroup generators. There are no such simple relations for coordinate-wise semigroups.
In this vein, we can obtain only the following result.

Theorem 3: Let {T, @ N2+} be a contractive coordinate-wise semigroup (this assumption
is made for the sake of simplicity), and let Lz, w- Lz, w(f) and Lz Lz(g be two- and one-dimen-
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sional Laplace transform of functions f and g, respectively. Then, the following hold.

1) For any z, w > O,
Lz, w(Ttl,t2)- Ll,zw- Ll(R(zw)/t2)

where R is a resolvent of the generator of the semigroup T1, t.

2) For any x E D(A2),
A202Lz, w

OzOw + AL, zwL, ,

3)

where Lz, wx Lz, w(Ttl,t2x).
For any x D(A2),

A2(L’(u)u)’x + AL(u)x uL(u)x- x,

where L(u)x- Ll’uX- Ll,u(ttl’t2x)"
Proof: 1) From equality (1) for z, w > 0 and x X,

j -zt2-wtI ] -z(t’2/z)- wzt’ xl_2dt,2zdt,1Lz, wX e Tl,t2tlXdt2dtl e Tl,(t2/z)zt1
R2 R2
+ +

where

1e Tl,t2tlXdt2dtl
R2
+

-1 .t2L1, zwX e e

o 0

2) Let xD(A2). Then for any u,v>0,

] _ztl_wt2Ttl,v-I Tu, t2
v

R2
+ wt2Ttl ITu, v- I f zt1

v
x Ttl ,t2xdt2dt2 v

J
e v Tt

R2
+

R2
+

zwtlTl,tlt2Xdtl )dt2 Ll(Rzw/t2x ).

1,t2Xdtldt2

ztI wt2Ttl v I
v Ttl,t2dtldt2,

Au, vX (ezu- 1)(ewv- 1)nz, wx-eZU(em’- 1)
0 0

-I

zt1 wt2Te tl,t2Xdtldt2

CK) V U V

/ J -zt -wt2Ttl, / / --ztl-wt2T 2Xdtldt21.ewv(ezu 1) e 1 t2Xdtldt2 + ezu + wv e tl,t
0 0 0 0

Obviously,

AuvZ--zwLz, wx- w e dz z e + z zw, w .
o o
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Note that

Ttl,v -I Tu, t2 x ll I[; J" T1, 1 Tl,pAxdp dz ]l
0 0

tlv t2u
,] lJ / Tl,zTl,p

o o

A2xdpdz [I < tlt2 II A2x II

in view of the contractive property of semigroups.
that

Existence of the integrated majorant implies

zt1 wt2Ttl v I Tu, t2 I
Tu, v e v u Ttl,t2Xdtldt2

R2
+

/ zt1 wt2--,tit2 e Ttl,t2A2xdtldt2, u, v---O

+
Again, from the existence of the integrated majorant, the last integral equals

ztI wt2tlt2 e
u vlimv--,o (rl ,u I)l(Tv,1- I)rtlt2Xdtldt2

R2

T+ I Tv I
]
f wt2t1lim 1, u ,1 zt

u V v-0 u v e 1 t2T

+Furthermore,

1,t2Xdtldt2- A202Lz, wxOzOw

Tu, v I f zt Tu,
2

I
lim [I v

j
e 1 wt2t2 t2uu v v--.O Ttlt2Xdtldt2 II

R2
+

Tu, t2 I Tu, I
lim Ilu e- ztl wt2t2 T " xdtidt2 II 0

u v v--,o t2u tlt2 vu

R2
+

Analogously,

Tu I J[ zt1 wt2tlTtl,V- I

Ttl II 0
u v v--.O tlv t2xdtadt2

+
Equation from the statement 2) follows from (3) through (7).

3) Finally, from the equality L(u) L1, u with u- zw, we obtain that

02Lz w z) +

(4)

Equation from the statement 3) follows.

(6)

(7)

3. Two-Parameter Evolution Operators and Their Generators

Let us consider the family of operators,
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t’{Tss,,tt,O_s_s’,O_t_t’}C(X s’, EU+,

satisfying the following conditions.
(C) a) Forany0_s_s’_s"and0_t_t’,

T T -T
ssI, tt ss, t ss, tt.

b) For any0<s<s’and0<t<t’<t"

Tss ttTss, tt Tss, t. Tss, tt

c) For any0<s<s’and0<t<t’

T -T -I.
ss, tt ss’, tt

We call any operator, Tss,,tt, in this family a two-parameter evolution operator (or simply an

evolution).
Definition 4: The family of evolutions is said to be continuous if, for any 0

_
s < s’ and

0<t<t’

lim T ,, lim T lim T lim T T t’h--O s T hs tt h-O ss + h, tt h--O ss,t T ht h--O ss, tt + h ss,t
in the sense of strong convergence in X.

Further, we consider only continuous families of evolutions. Let us denote

(u,a) + (u, u + a), (u, a) (u a, u), a>O;

+ -T -I AIT + -T -I;[-1Ts, ,k (s,h) + (t,k) +/- h,s,t,t’ (s,h) ,tt’

A2T+/- -T -I;k,s,s’,t ss’,(t,k) -t- (s(Ot

Definition 5: 1) The elements of the family of operators {Ast + }, defined as

A + +/- lim ,l_---r[:lTt,kx,s, x"
h, k-On

considered on the sets where corresponding limits exist, are called generators of evolutions.

2) The elements of the family of operators {A1’ A2, +/-
ss’t } defined as

stt

Al-t-ts,t, x" lim A1T + A’ +
h, , t, ’ and x: lim AT +/-

ss k, s, , x
considered on the sets where corresponding limits exist, are called i-generators (i 1,2) of
evolutions. If Ai’ + =Ai’- or A + + =A +- =A- + =A--, then we denote the common
value as A or A respectively.

Definition 6: Right and left derivatives of evolutions are defined as

O+T
ss tt’ lim(Tss, + h, tt’ Tss’ tt’) and ss’, tt’ lim(TOS’ OS s hs’, tt Tss’, tt’)

respectively.

In similar ways, one can define right and left derivatives of other families of operators,
depending on s, s’, t and t’.

Lemma5: 1) If T s’ ’x D(AI’ 7 )’ then
s ,t stt

O-T t’ss t
Os x Alst7 Tss, tt,x.

+As]tt, ), then
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0 + Tss,
Os

3) If Tss,,tt,x e D(A’s,- ), then

A1, +2 T X.
ss ttstt

O-T

Ot x A ,-[ ,tt’x"
4) If x6 D(A2’+) thensstt

O+T tt’
xss, A2, +

Ot’ T x
ss tt sst

Proof." Let us prove 1).
then

O-T t’
Os x lim T

s- hs’,tt Tss’,tt)x

(The other equalities are proved similarly) If Tss, tt,x 6 D(A1’ -F ),stt

lim-(Ts hs’, tt’ I)Tss’tt’x At’t-fst Tss,tt’x"

Lemma 6: ,tl, 4- [t- 5, t] for e 5 > O. Let also1) Let ze D(A )fflD(svt, and v6_ som

h- .A1T +lim [:lTt(-h, k h, s, t, ’x O. (s)

Then 0- A1’ ,4-
stt

Ot x A -x.

2) Let x e D(A, + )CID(Als;v4-) and v e [t’,t’ + 5] for some S > O. Then

O+At,+stt 4- + XOt’ .x Ast,
) t e D(, D(,;, an e [ , ] o om > O. ao

limh- []T + 4- A2T 4-
s, t, h, k k, s, s’ x O.

A2, 4-Then 0 ss’t
Os x A,4- x.

4) , e D(A, +/- D(,J e [’, ’ + ] Io om > o. Thn

0+A2, 4-
"-ss
Os’ ..x- A 4- x.

Proof: Let us prove the 1). (The other equalities are proved similarly.)
holds then there exists double limit:

lim (s,h) 4- ,t let’ (s,h) 4- ,t

h h
x

-limk(T I)(T I)x -limh-(T(s(s,h) 4-,(t,k)- (s,h) 4-,tt’ h) 4- (t,k)

Moreover, there exist inner limits

T -I
lim (s,h) 4- ,t kt’ (s,h) 4- ,tt’

(9)

If condition (8)

T
x- Al’t4-s, -k,t’x and lira

hh

-I
AI,.x

stt
x

for 0 < k < 5. So, the repeated limit exists and equals the double limit:

1 1,4- -Al’4-,)x- -A-x.lim (As, k, t’ s, t,
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Remark 4: The following conditions are sufficient for (8).

(n) a) The function Tus,,tt,x is continuously differentiable in u E [s-5, s + 5] for some

>0, and
A1
u t+ Alu,t

b) For any uE[s-5, s+5],

A t,T x D(A -)ut us,tt
c) There exists c > 0 such that

1 l-lTt tt
,x II < c 0 < h < 5, 0 < k < 5.h II kAlutt’rus’,

Indeed, if (D) a) holds, then
8

(T(s,h)-,tt’- I)x / Alutt,Tus,,tt,xdu.
Therefore, by (D) b) and (D) c) in view of the existence of the integrated majorant and the equa-
lity,

limk(T(,,h -,(t,k)- I)A1 ’T tt,x A Alutt,Tut us, us, ttx
We hV

lim(T(s h)-, (t, k)- I)(T I)x(s,h),tt,
8

lim f 5(T(s,h)- ,(t,k)- ’)Alutt’Tus’,tt’xdu
s-h

8

lim / 1{5 h u s}(T(s,h -,(t,k)- I)Alutt’Tus’,tt’xdu O.

Sufficient conditions for (9) can be formulated in a similar way.

mark 5: Let A’ + Ai’ -, 1,2 and let families 1of operators {Astt, (s, t, t’) e N } and

{As,t(s s’, t) e N } be continuously differentiable in (t, t’) and (s, s’) respectively on the set

s, s t, t,
Then one can write equalities 1) through 4) of Lemma 6 in the form:

s

s

Theorem 4: 1) Let the following conditions hold.

(E) a) T,,., e D(A1,;: a D(A; D(,) fo a e [ e, ] ane om > O.

c) There exists the limit, limA;,; (51T,t,t’)T’, tt,z.
d) lim[(- A2’

-h’, + ;’7 )(lT.,.,’)r’.’] O.
Then

(92, -T
ss tt’

OtOs
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2) Let the following conditions hold.

(E2) a) Tsv tt,x E D(A’s,-[ fl D(Als’v;7 gl D(A for any v It 5, t] and some 5 > O.

b) The operator Al’tTst is closed.

c) There exists the limit, lim-}Alst7 (A2T,s,s,,t)Tss,,tt,x.
d) lin-[( AI’

s,t- k,t’ + Atr )(A2T,s,s’ T s’ x)] 0
s tt

02, -T
ss tt

OsOt .x A Tss, tt
,x -- Ass, Als’ttT Tss, tt,x.

Remark 6: The following conditions are sufficient for (El) d).

(E3) a) The function A2’, is continuous differentiable in u e Is- 5, s] for some 5 > 0.
b) There exists c > 0 such that, for all u G Is- 5, s],

Indeed, in that case,

-[ 1AIT- ) tt
,x II < cII At \- h,s,t,t’ Tss’,

lim II [(- A2s’-hs’t + A’s’- )(AIT[s, tt’Tss’,tt’x)] II
8

s-h

The conditions sufficient for (E2) can be formulated similarly.

l{emark 7: Let us assume that there exists the derivative
02,--T

ss tt

OtOs x,

and that conditions (El) a), (El) b)and (El) d) hold. Then, obviously, condition (El) c) holds
and statement 1) of Theorem 4 is true.

Remark 8: Let B(t,s)" R2+---X be a twice continuously differentiable function on some D C

N2+. Then in the usual way, using corresponding results for the functions from N2+ to C and the
Hahn-Banach theorem, we obtain for any x D that (02B/OsOt)x (02B/OtOs)x. A similar
result is true for one-sided derivatives. Thus, if operators A- Tss,,tt, A,s,- Astt,1, Tss, tt’ and

Alst-2 A’s’-[ Ts’, tt’ are continuous as functions of (s, s’, t, t’) 4+ on the 4+, then

02, T 02, Tx x
and OsOt OtOs

A"-[ Al’t T’,tt’x At-? A’,-[ T,, tt,x.

Proofi We prove only the statement 1) of Theorem 4.
Then from Lemma 5,

Let condition (El) a) be satisfied.

ss tt s hs, tt ss tt

OsOt x lim
0t 0t x
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lim[-(- A2
s’-hs’t + A2s’s’-[ )(AlTh, s,t,t’- I)Tss’,tt’x +(- A2, --h + 2,-

s- ,s’t Ass’t )Tss’,tt’x

1hA’s,-[ (AIT,s,t,t,Tss,,tt,x)] lim(Slhx + sh2 x + sh3)x.

(El) a)implies that lim S2hx- A -Tss,,tt,x and

lim(/klT,s,t,t,)Tss,,tt,x- A1,
stt Tss, ttx"

(El) b) and (El) c)imply that sh3x AfftAlst7 Tss,,tt,x. Condition (El) d)ensures the equality
lim Sx O. Hence, the proof follows.

The following statements are proved analogously to the proof of Theorem 4.

Theorem 5: 1) Let the following conditions hold.

(E4) a) Tsu, tt,x e D(A2vtt, D(At for u, v e [s,s + 5] for some > O; x e D(Alst ).

c) h,s,t,tx"

2 ’,d) lim( A2’ + Ass, ,,tt,AIT ,x O.
s, s + h, ss s t,

Then

2 +- Tss,,tt,

2) Let the following conditions hold.

(E5) a)Condition 1) of Lemma 6 holds.
--1, + X e D(A’s,[ ).b) Tsst tttAstt

c) There exists C > O such that ]l Tss’,vt, II - C while v E [t-5, t] for some 5 > 0.
Then

02, A- Tss, tt’ A2’,[ Ts,OtOs’ x---Tss x-
ss ,tt’Alsltt+ x"

Then

3) Let the following conditions hold.

(E6) a) Tss, tu G n(Als’s,- Q n(Afft, + with u, v G It’, t’ + 5] for some 5 > O; x G n(A’s, ).

b) The operator Als’s,- is closed.

c) There exists the limit, limA1’- tt,A2 +
stt Tss Tk, s, s, x"

t’+T , t,--O.d) lim(Als’t,t’ Altr )Ts’,t ,s,

02, + -T ,,ss tt’
x A, + ss,t,z.Tss, tt’x Als,tt7 Tss, tt

,A2, +

4) Let the following conditions hold.

(ET) a) Condition 3) of Lemma 6 hold.
b) A2, + D(Ts,,tt,.as, x A[t7 ).
c) There exists C > O such that [I Tus,tt l] < C while u G [s-5, s] for some S > O.

Then
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c92’ + T ,,ss tt A2’ +x.X Tss, tt,Afft, + x Als’tt-;- Tss, tt’ ss’t’

5) Let the following conditions hold.

(E8) a) Condition 2) of Lemma 6 holds.
b) A1]t x D(A’s, ).
c) There exists C > O such that ]IT ]] < C while v [t’ t’ + f] for some

88 try
Then

O ++ Tss.tt A2’ +Alt x.
Or’08’

x Tss,,tt,A2t,+ x + Tss,,tt, ss’t’ s tt

6) Let the following conditions hold.

(E9) a) Condition 4) of nemma 6 holds.
b) A’s, x D(A1s’ +)tt
c) T ut C > 0 uc tat I] T ,, II < C Is’, ’ + ] foo > O.

Then

ss tt

4. Markov Fields and Semigroups

Let (f,F,P) be a complete probability space; let (E,g) be a measurable space; let X-
{X)-, e N2} be a stochastic field with the values in E that is constant on the set (N2\R2+) U
{[0, c)x{0}}U{{0}x[0,c)}. Put F7 =(r{x,g <}VN, F V F-r and F =FIVF2

t.>0 t2where N is the class of P-zero sets of F. -Definition 7: The field X is called an ,-Markov field if for any g _< t and B E g

P{X e B/F) P{X e B/Xs, Xslt2, Xtls2} [5, 11].

Definition 8: The function P{-d , ,x, y,z,B}, with e n2+ ,- e 2+, x, y,z e E and B e is
called transition function on (E,g) if

1) it is a probability measure on (E, ) when x, y,z E are fixed;
2) it is an $3-measurable function when B g is fixed;
3) for any x,y,z, E, B , and <

and
p{-g,(ul,t2),x,y,z,B} / P{-d’-’x’(’z’d]}P{(tl’s2)’(ul’t2)’’ri’z’B}

P{-g ,(tl,u2),x,y,z,B} / P{-d , ,x,,z,d}P{(Sl,t2),(tl,u2),,y,],B} [5, 11].

Definition 9: X is called an ,-Markov field with transition function P, if for any m >_ 1 and
1, with Bij e for i- 1, m and for j 1, n, with (si, tj) G N2+, we have

Pin":N " (x -j fI Ie B)} ..()
i--1 j=l 3

X P{(s 1,tj_ 1)’ (si’ tj)’xi- lj- 1,xi- lj, Xij 1,dxij}"
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It follows from [11] that any ,-Markov field with transition function is a Markov field.

Now we define the families of functions {plt{s,y, Sl,B}, 0 <_ s < Sl,B E ,t

_
0, s1 > 0} and

{P2S{t,y, tl,B},O <_ t < tl,B g,s >_ 0, t1 > 0} of the following kind:
Pl{s,y, Sl,B} P2{,Y, tl, B} IB(Y), (10)

plt{s,y, sl,B}- P{(s,O),(sl,t),x,y,x,B}, (11)

and P2S{t,y, tl, B}- P{(O,t),(s, tl),X,x,y,B (12)

(under the assumption that the right-hand sides do not depend on x). In this case, the collection
(p10, p20, pit, p2s) is called an ,-transition function on (E, g).

The following equalities are true for any ,-Markov field with a transition function"

P{Xs + u,t e B/Fls} plt{s, Xs, t,s + u,B} a.s.

and P{Xs, +, B/F2s} P2S{t, Xs, t,t + v,B) a.s.,

for any s, t, u, v >_ 0 and B . Let f: E---,R be a bounded measurable function. Set

S, Sl,tf(x f(y)plt{s,x, Sl, dY}

and T2
t, tl, sf(x) f(y)p2s{t, x, tl dy}.

Then it follows from (10) through (12) that, for 0 _< s < sI < s2 and 0 <_ t < tI < t2,

T1 1 tT1Sl s2 tf(x) Tssl, Sl s2 tf(x),

T2 8f(x) T2 T2
t, t2, t, tl,s tl, t2, 8f(x).

Now, consider the case of the homogeneous ,-Markov field x, for which

P{-g ,-{ x, x, x, B} P{0, (t sl,t2 s2), x, x, x, B} -’F (tI sl, t2 s2, x,B
while

plt{s,y, Sl,B} (Sl-s,t,x,B and P2S{t,y, tl,B} (s, tl-t,x,B).
Then, T1 1 T2 2 "1 2 tf(xs, Sl, tf(x) s1 s, tf(x) and s, tl, tf(x) s, 1

tf(x), where Ts, tf(x) s,

We denote their common value as Ts, tf(x).__ Then Ts, tf(x)__ is a coordinate-wise contractive semi-
group on the space B(E) of bounded measurable functions f’E--,R. Further, we consider only
homogeneous fields.

Definition 10: Transition function P(s,t;x,B) is said to be continuous in probability (P-
continuous), if for any > 0 vlimt0P (s, t,x, U(x)) 1, where U(x) is any C-neighborhood of

x. ,-Markov field with a P-continuous transition function will be called a P-continuous field.
The index- will be omitted.

Let us denote CB(E C B(E) as the space of continuous bounded functions on E.

Lemma 7: The following conditions are equivalent.

(F1) The field X is P-continuous.

(F2) u01imP(u, Vo, x, Ue(x)) lvimoP(uo, v, x, Ue(x)) 1, for any no, Vo, e > 0 and x e E.

(F3) lim Tu vf(x) f(x) for any f G CB(E and x G E.
u V v--O
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(F4) u01imT.., vof(X) volimT’’o, vf(X) f(x) for any f E CB(E and x E.

Proof: Let us show (F1)implies (F3). If lim P(u v,x U(x))- 1 then
u V v--*0

lim Zu.f(x)-/x)l lim / (f(y)- f(x))P(u v, x, dy)
u V v--O u V v---*O

E

< lim II f II P(u,v,x,E\Ue(x))-4- sup f(z)-f(x)l sup f(z)-f(x)l.. v --,o e U(x) z e v()
Since e > 0 was arbitrary, we obtain (F3). The implication, (F3)=(F4) follows from Lemma 1.
Let us show that (F4) implies (F2). Consider the function f CB(E such that f(y) > c > 0
for y E\U(x) and fe(x) 0. Then from (F4) we have

P(u x E\U(x)) < c llim / f(y)P(u Vo, x dy)uolim ’v’ uo
E\U()

< c llim Tuv fe(x) c l/e(x 0,
u-0 0

i.e., (F2) holds.

The implication, (F2)=(F4) has a proof similar to the proof that (F1)=V(F3). The implica-
tion (F4)=V(F3) follows from Lemma 1. The implication, (F3)=V(F1) has a proof similar to the
proof that (F4)=(F2).

Definition 11: Transition function P(s t,x,B) is said to be Feller, if for any N2

T7 (CB) C CB. The corresponding ,-Markov ned win be called a Feller field. (Note that if E is
a compact set, then CB(E C(E), where C(E)is the space of continuous functions.)

Theorem 6: 1) Let X be a P-continuous field. Then T-i Tl,tlt2 Ttlt2,1 on CB(E).

2) Let E be a compact set and X be a P-continuous Feller field. Then T-i is a Co-semi-
group on C(E).

Proof: 1) According to Lemma 7, for any x E and f CB(E), with u0, v0 > 0,

limTu vof(X -limTu f(x) f(x).
uO uO 0’v

Therefore from the boundedness of f and Lebesgue convergence theorem,

tl].sllim T 1, s2Z(x) limTui0 Tu,s2
I(x) T I(x),

lim r
sl I(x) limTx TSl vZ(x) r-# I(x).

t2s2 2 v]O

Pn PnNow, let un ---0- Q +, -O--nSl as nec. Then for any x E and f C(E),

T f(x) =,olim T..n, s2f(x) =nlimTl’ UnS2f(x) Tl’SlS2f(x)"
Therefore, Tx --Tl,sl,s2

on CB(E). Similarly, T-i --Tsls2,1 on CB(E).

2) Taking into account statement 1), we obtain that Xt" -X, is a homogeneous Markov
P-continuous, Feller process. According to famous results for Feller processes, the semigroup
Tt: T,t, > O, is continuous on C(E). Therefore,

lim l] Tt 2 Tsl s2 II lim 11 T1 1t2f T1 s1 2f 11 0 for f C(E),-__ -[._. s

i.e., Ttl, t2 is a C0-semigroup. V1

The Hille-Yosida theorem for Feller fields on compact sets is similar to the one-parameter
case.
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Theorem 7: An operator A with domain D(A) that is dense in C(E) generates a P-contin-
uous Feller field on the compact set E if and only if the following conditions are satisfied.

(G) a) There exists . > 0 such that (hi- A)(D(A)) C(E).
b) If f E D(A) and f(xo) >_ f(x), then Af(x)

_
O.

Proof: If A generates a P-continuous Feller field, then from Theorem 1, A is a generator of a
Feller one-parameter semigroup, T Tl,t, and necsity follows. If assum..ption (G) is satisfied,
then from Theorem 1, there exists a semigroup Tt, tO, such that Tt(C(E))C C(E) and
Ttf---,f as t--0 for any f C(E) [2, p. 167]. Let Ts, Tst. Then Ts, t(C(E)) C C(E). Since
Ts, tf(x), for any s,t and x fixed, is a linear functional on C(E), then there exists a measure

P(s, t, x, B) on such that Ts, tf(x) f f(y)P(s, t, x, B). Moreover, P(s, t, x, E) 1 and P is a
transition function by the semigroup property of Ts, t. Now, as with the proof of Lemma 7,
choose f(y) c > 0 with y E\U(x), f(x) 0 and f C(E). Then

P(s,t,x, Ue(x)) <_ ct-lTs, tf(x) c-lTl,stf(x)--c-lf(x) 0 as s V t0,

i.e., the transition function is P-continuous. The construction of an .-Markov field with transi-
tion function P, under the assumptions of its Feller property and P-continuity, is realized in [6].

5. Diffusion Fields and Evolutions

Let (E, ) (Rn, %(Rn)), B Rn\B, As s2 -81, and At t2 -t1.

Definition 12: An ,-Markov field with transition function,

t’, B}P(s, t s’, t’, x, B): P{(s, t) (s’, x, x, x,

with (s, t), (s’, t’) e 2+, (s, t)

_
(s’, t’), x e n, and B e %(n),

is called a diffusion field, if the following conditions are true for any > 0 uniformly in x K
where K is any compact set, K C n.

(H) a) P(Sl, tl, s2, t2, x, U(x)) o(AsAt),

P(Sl, t, s2, t’, x, U(x)) o(As)

and

b)

P(s, tl, s’, t2, x, U(x)) o(At).

tl, s2, t2, x, dy) tl,x)P(Sl, bio( sl + o(As/t)
u()

and

(yi_xi)p(sl,t, s2, t,,x, dy)_b(Sl, t,t,,x)As_t_o(As),

u()

+(yi-xi)p(tl,s, t2, ,x, dy) s’, t, tl,x)At
U()

c)
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and

(yi xi)(yj xj)p(sl, t, s2, t’, x, dy) aJ(Sl, t, t’, x)As + o(As),

s, t2, x, dy) tl, x)At A- o(At),( xi)(yj xJ)P(t1, ai2J 8 8

U(x)

as As--*0 and At-0.

Here,

{bio, aioj, i, j 1, n} C C(2+ x Rn) and {b, aj, i, j 1, n] C C(3+ x Rn) for k 1, 2.

Remark 9: Different classes of diffusion fields on the plane were considered in [1, 3, 4, 7],
similar class of diffusion processes were considered in [9, 10].

Let us introduce the notations,
n Of and (a V, V f)-(b, V f) E hi-fii= 1 i, j 1 oxioxJ"

Consider the families of differential operators

and

.L0(s t, x)f 1/2(ao V, V f) + (b0, V f),

.1(8, t, t’, x)f 1/2(a V, V f)+ (bl, V f)

2(s, s’, t, x)f 1/2(a2 V, V f)+ (b2, V f), where f e C2(n).

Note that the following family of evolutions, Tss,tt, is connected in a natural way with the
diffusion field

Tss,tt,f(x) / f(y)P(s, t, s’, t’, x, dy),

where f is a bounded measurable function.

Denote Cin Ci,(R’) C C2(Rn) as the space of functions with compact support.

Theorem 8: Let the diffusion field X satisfy the condition

(I) for any compact set K C Nn there exists a compact set K’D K such that

P(Sl, tl, s2, t2, x, K) o(AsAt), P(Sl, t, s2, t’, x, K) o(As),

and P(s, tl, s’, t2, x, K) o(At) as As---+0 and At---,0

uniformly in x E Nn\K’. Then Cin C D(A 4- f? D(Alst N D(A’s, for any (s, s’, t, t’) C
4 and the following equalities hold on Cin’A 4- -.o(s,t) A1’ -l(s t,t’) and A2’,

stt ss
S, S’, t).
Proof: Consider one of the generators, As+t +, for example. Let f Cin, f 0 if x K. It

follows from (I) that
sup (T(x- tc’ ,h) + (t,) + I(x)- I())- (s’t’x)f
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sup (hk)- 1

x - K f(y)P(s, t, s + h, t + k, x, dy)
K

_< Ilfllsup (hk)-lp(s,t,s+h,t-k-k,x,K)-+O, as hVk+O. (13)
x - K’

Of 021Furthermore, the functions f’-x and oXioj are bounded and uniformly continuous on the

set K6 U6(x). For anye>OthevMue6>Ocanbechoseninsuchawaythat
x6K

02f 02f < e if x, y

_
KS,

Now choose , > 0 in such a way that all o( in (H) be less then eAsAt for As V At < , and
for any x E K’. Put the Taylor expansion,

f(y) f(x) + (f’,y- x)+1/2(y- x)Tf"(y-- x) + c Y-- x21,
1 2where c I(x,y)[ <_ n e for Y- x < 6, into the following estimations

sup I(hk)- I(T f(x) f(x)) o(S, t x)f
e ’ (,h) + (t,) +

where

o(s,t,x)f

f
-{- sup (hlc) 1 I If(Y) f(x)IP(s, t, s + h, t + k, x, dy)

J
U(x)

sup (hie) 1 / c(x, y) Y x 2P(s, t, s + h, t + k, x, dy) +
xK J

U(x)
n

< .suv a’(,t,) +C
--2 xGK i=1

Of n2 02fC 2 11 f I] + nmx [[ --/I] + -n}x ]1 oxio’x I]. (14)

The proof follows from (13)and (14).
C.o.olly 1: rt t function a,U a, b contin,,o,,,h, Uiff,,tia6 i, t anU t’ anU tt

and a’2a be continuous differentiable in s and s’. Then from Remark 5, we obtain that, on the
space C}in,

s

.1(8, t, t’, x)S / .0(8, v, x)Sdv1 and .2(8, 8’, t, x)S / o(t, t, x)Sdu.
s

Furthermore, we consider the condition

(J) the transition function P has a density

P(s, t, s’, t’, x, B) / p(s, t, s’, t’, x, y)dy, for B E %(n).
B
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Suppose that the conditions (I) and (J) are satisfied. Consider each operator . that is form-
ally adjoint of k:

where
1/2 V V (akf)- V (bkf), for k-0,1,2

n 02V V (af) E IOYiOYJ
(af)

i,j--

n

and V (bS) E O--.(biS)"
i=1

Let C>O, >0, C-C(s,t,s’,t’,y) eC(N4+ xNn) and -(x)0 while xl. We say
that the function g satisfies the (C,p) condition, if ]g[ C. We say that the set E of
functions satisfies (C, p)-condition if every element of it satisfies this condition. Let also,

T {f e C2(N)’max( / , , OxiOx
(x)}.

Op Op 02p } Op , Op ,Wheorem 9: 1) Let {p, Os’ ot’ oy Q C(N x N2n). Then l(y)P and 2(y)P,
where index y means that the operator is applied to p as a function of y under fixed x.

2) Let Ai’ i, i- 1,2 on the set T; let

P’ Os Ot OxiOi
op P tisfy the n Then Op

1 d Opand let p, and
ozioj

sa (C,)-conditio 0- ()p an 0- -2(x)P"
Prf: The scheme of the proof is the same in both cases, so we prove only 2). Let f e C)],

with

Ts,,tt,f(x p(s,t,s’, x y)f(y)dy. (15)
Rn

The (C, )-condition permits us to differentiate (15) under the integral sign:

OT ./ Opfo- (v)dv OT 02T
Oxi- /-Pxf(y)dy, / 02p

fOxiOxj-- OxiOxj (y)dy.
Rn Rn

The (C, p)-condition also ensures that T&._. ,f E T, whence

Alst,Tss,tt,f(x ]’";(s, ’, ", x)p(s, ’, ’3’, ", x, y)f(y)dy.
tztn

Since f C}in is arbitrary, we obtain that OP_o__7 -(s,t,t’,x)p. (The second equality in 2) is
proved the same way.)

Denote Dkg as the family of partial derivatives of g in x of order k.

Theorem 10: 1) Suppose the following conditions are satisfied.

(I1) a) {alJ p} Q C(4)(N4+ x [n),

ij C(2) (1)({ao,b}} C (4+ x n) and b0 e C 4+ x n) for 1,2 and i, j 1, n.

b) The set
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and satisfies (C, )-condition.
Then (2p * ’, * * t’

O,Ot, 0()( t’)p + ,()(s’ t, t’)()(, ’, )p. (6)

2) Suppose the following conditions are satisfied.

(K) a) - o t Io i= O, 1,.
b) z Oz o.o. .,_j } )t,,,Os,, z- a]J, bl,-2 ,2 c C(N x

Op Op 02p 02p C4 N2n) and satisfies (C,p)-condition.c) The set P’’ ot’osot’J + x

d) The set Dp, k :} C C(N x N2n) and satisfies (C, )-condition.
e) The set

02P ,Dkx bioPxi Dxiao ),Dx(bo) k-0,1,2 C C([4+ xN2n)Dkx a3 0xiOxj

and satisfies (C, )-condition.
Then nc2P 0 (s p (x)(S, (x t)pOsOt (x) t) + "1 t, t’).2 )(s,s’

o(x)(s, t)p -t- 2(x)(s, s’, t)1(x)(s, t, t’)p. (17)

3) Suppose the following conditions are satisfied.

(K3) a) Ai- i on the set T for i= O, 1.

{ o o o o} c(4+b) The set p,-s’ at" at-7-s --’ C x and satisfies (C, )-condition.

DzDu (b2P) O, 2 2, mVV(a;’;), - - 1,

Dx(a0 ),Dx(b} C x

and satisfies (C, 99)-condition.
Then (2p t’

Ot’O 0()(s’)p 1()( t, t’)()( ’, (18)

If, in addition, (K2)b), d) and e) hold, then

02p
at’as "o(x)(s’ t’)p .[,l(x)(S’, t, t’).(y)(s, s’, t’)p. (18’)

4) Under conditions (K3) where we change i-0,1 to i-0,2 in (K3) a), if we change -s on

O__as, and o on t in (K3) b) and if we change aj and bi2 to aj and b, then we have that

P * t) ( t) (, t, t’
OtOs’ o(u)(s’ p- () ,s’, (u) )P" (19)

If, in addition, (K2)b), d) and e) hold, then

OtO’
;

Zo()(’, t); ()(, ’, t)Z(V)(, t, t’);. (19’)
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Proof: We prove only 1) and 2) (the other parts are proved in the same way).

1) Let f e C2]i,. Then assumption (K1) b)implies that

O2T / Op,f
Os’Ot’ Os Ot (y)dy.

Rn
Assumption (I) ensures that

As,t,f(x o(S’, t’, x)f (ao V, V f)+ (bo, V f),

Al’tt’f(x)-’l(S’ t,t’,x)f-(aiv Vf) 4.(bl, V f)
8

and the last expression belongs to Cin. Therefore,

2 1Ass,t,As,tt,f (x) ,L2(s, s’, t’, x)1(s’, t, t’, x)f

(a2 V, V "lf)4-(b2, V "lf)"

Fulfillment of the conditions (E8) and (Eg)is obvious. Furthermore, from statements 5) and 6)
of Theorem 5 and from the assumptions (Ka) a),

v(s t ’ t’,,v) t’ + o(’,,Y)OYiOY

02[.11(s’, t, t’, y)f(y)]
4- p(s, t, s’, t’, x, y)[ E a*23(s’ s’, t’, y).

OyiOyj
Rn *, 3

+ Ebi2(s,s t’ y)O[1(s"t’t"Y)f(Y)]]dy
Oy

02 t’ 0[.. OVOv(a’o(’, V)V) . -V(o(’, ’, V)v)]f(v)dv
i:tn

+ [..0, ....(a s, 1 t, t’ y)f
Rn

E O-(bits s’ t’ y)p);Ll(S’ t’ y)f]dy
OYi 2,

/[.f.,;(y)(8’, t’)p]f(y)dy 4- /[(y)(8,8’, t’)p].l(8’ t, ,’, y)fdy.
Rn Rn

(20)

The second integral in (20) can also be transformed by integration by parts, and we obtain that

Os,Otf(y)dy [o(u(s’, t’)p]f(y)dy 4- [.l(y)(S’, t, t’)(u)(S’ S’, t’)]f(y)dy.
Rn Rn Rn

By virtue of an arbitrary choice of f E Cin and by (K1) b) and Remark 8, we obtain (16).

2) Note that conditions (K2) a) and b), Remark 5 and Corollary 1 imply that 1(s,t,t’)-
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t’ so(s, v)dv and 2(s,s’, t) f s o(u, t)du on T. Condition (K2) 3) implies that

0T
OsOt / 02p

f(OsOt y)dy
Rn

for any C}in. Also from (K2)c), Tss,,tt,f e T. Condition (K2) d) gives us that

AstTss,tt,f(x o(S, t, x)Tss, tt,f / [o(S, t, x)p]f(y)dy;
Rn

and also,

AiTf(x) 2,iTf ./[iP]f(y)dy
f [f ’0(u, t)pdu]f(y)dy, 2,

t’0(s,v)pdv]f(y)dy, 1.
Rn

Under conditions (K2) d)and e), AiTf E T; therefore,

Alstt,As,tTss,,tt,f(x) /[1(s’t’t’)2(s’s"t)P]f(y)dy"
We must verify conditions (El) and (E2) (El) a) and b) are evident Since the derivatives 02T

OsOt

and 2T exist, it follows from Remark 7 that we must verify only (El) d). From Remark 6, it is
sufficient to verify (Ea). (Ea) a) follows from (K) b). To show (Ea) b), let g()- T,,tt,I(),
gl(x)- T,,tt,Z(x ). Then from (K) d)and e) and Lemma 5, part 1), we get that

h hs, tt’g) ll IIAut Alvtt,Tus, tt,gdv
s-h

_< sup
ve[s-h,s]

From (K2) a), b) and e), Remarks 5 and Corollary 1,

AutAlvtt,g1 / AutAvv’gldV’
t,

--./ (E aiOj(u’t’x) 02 i(uOxiOj + bo
3

Since f e C}in and because condition (K2) d)is satisfied, each derivative Dkgl(x) for k- 1,4 is
bounded in the following sense:

Dgl(x) Dkpf(y)dy
K

I, tl<_ (x) C(u t s t’,y)f(y)dy <_ Cl(t,s’
K

(22)
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whereuG[s-6, s], s>0andKDsuppf.

Any term in (21) has the form,

cioJ(u, t, x)DPdkol(V, v’, x)Dr
gl (X),

where p=1,2, r=1,4, and Co, d0=a0 or b0.
formly bounded in x. Hence (E3) b) follows.
Theorem 4, our proof follows.

Remark 10: As in the one-parameter case [10], under the assumption that
and

a*k3(x)-,O b’k(x)-O as Ix cx, for k 0, 1, 2,

Of 021it follows that Ak- "k for such f that each of the functions f, Ox’ oioxjfor sufficiently large x.

Then from (K2) e) and (22), each of them is uni-
Condition (E2) is verified in the same way. From

k on Cin

is majorized by C(x)

Remark 11: A particular case of equation (16) was considered in [3, 4].
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