TWO-PARAMETER SEMIGROUPS, EVOLUTIONS AND THEIR APPLICATIONS TO MARKOV AND DIFFUSION FIELDS ON THE PLANE

YU. MISHURA and YU. TOMILOV
Kiev University
Department of Mathematics
Kiev, Ukraine 252601

(Received February, 1995; Revised December, 1995)

Abstract

We study two-parameter coordinate-wise C_{0}-semigroups and their generators, as well as two-parameter evolutions and differential equations up to the second order for them. These results are applied to obtain the Hille-Yosida theorem for homogeneous Markov fields of the Feller type and to establish forward, backward, and mixed Kolmogorov equations for nonhomogeneous diffusion fields on the plane.

Key words: Two-Parameter Semigroup, Two-Parameter Evolution Operator, Markov Field, Diffusion Field.

AMS (MOS) subject classifications: 60G60, 60J25, 60J35, 60J60, 47D06, 47D07.

1. Introduction

Let $T_{t_{1}, t_{2}}$ be a two-parameter coordinate-wise C_{0}-semigroup. The paper is organized as follows. In Section 2, we prove that $T_{t_{1}, t_{2}}=T_{1, t_{1} t_{2}}=T_{t_{1} t_{2}, 1}$ and establish that its generator coincides with the generator of the one-parameter semigroup $T_{1, t}$. We also derive differential equations up to the second order to $T_{t_{1}, t_{2}}$ and its resolvent and establish Hille-Yosida theorem for $T_{t_{1}, t_{2}}$ (Remark 2). In the third section we consider two-parameter evolution operators, $T_{s s^{\prime}, t t^{\prime}}$ up to the second order. In the fourth section we study $*$-Markov fields on the plane with transition functions and present the Hille-Yosida theorem for $*$-Markov fields of the Feller type. In the fifth section the class of diffusion fields is introduced. The form of generators and relations between them are established. Forward, backward, and mixed Kolmogorov equations of the second order for the densities of diffusion fields are presented. A partial case of backward Kolmogorov equations was considered in [3, 4].

2. Two-Parameter Semigroups, Their Generators, and Resolvents

Let X be a complex Banach space, $\mathcal{L}(X)$ be a space of linear continuous operators from X to X, I be the identity operator on X, and $D(A)$ be the domain of operator A.

Denote $\mathbb{R}_{+}^{2}=[0,+\infty)^{2}$ with partial ordering $\bar{s}<(\leq) \bar{t}$, if $\bar{s}=\left(s_{1}, s_{2}\right), \bar{t}=\left(t_{1}, t_{2}\right)$ and $s_{i}<(\leq) t_{i}, i=1,2$.

Definition 1: The family $\left\{T_{t_{1}, t_{2}},\left(t_{1}, t_{2}\right) \in \mathbb{R}_{+}^{2}\right\} \subset \mathcal{L}(X)$ is called a coordinate-wise two-parameter semigroup if it satisfies the following two conditions.
(A)
a) $T_{0, t_{2}}=T_{t_{1}, 0}=I$.
b) For any $t_{i} \geq 0, s_{i} \geq 0, i=1,2$,

$$
T_{s_{1}+t_{1}, t_{2}}=T_{s_{1}, t_{2}} T_{t_{1}, t_{2}} \text { and } T_{s_{1}, s_{2}+t_{2}}=T_{s_{1}, s_{2}} T_{s_{1}, t_{2}} .
$$

Furthermore, we simply refer to the coordinate-wise two-parameter semigroup as semigroup.
Definition 2: A semigroup $T_{t_{1}, t_{2}}$ is called a C_{0}-semigroup if for any $x \in X, \bar{s} \in \mathbb{R}_{+}^{2}$,

$$
\lim _{\bar{t} \rightarrow \bar{s}}\left\|T_{\bar{s}} x-T_{\bar{t}} x\right\|=0
$$

Lemma 1: The following conditions are equivalent.
$\left(B_{1}\right)$ For any $x \in X, t_{1}>0, t_{2}>0$,
$\left(B_{2}\right) \quad$ For any $x \in X$,

$$
\lim _{t_{2} \rightarrow 0} T_{t_{1}, t_{2}} x=\lim _{t_{1} \rightarrow 0} T_{t_{1}, t_{2}} x=x
$$

$$
\lim _{t_{1} \vee t_{2} \rightarrow 0} T_{t_{1}, t_{2}} x=x
$$

The proof of Lemma 1 is similar to that of the classical theorem about continuity of separately continuous bilinear forms [8] when we replace functionals by operators, so it is omitted.

Lemma 2: The semigroup $T_{t_{1}, t_{2}}$ is a C_{0}-semigroup if and only if it satisfies one of the conditions $\left(B_{1}\right)$ or $\left(B_{2}\right)$.

Proof: The necessity is obvious. Let us prove sufficiency. Suppose, for example $\left(B_{1}\right)$ is satisfied. Then the one-parameter semigroups, $T_{t_{1}}$, and $T_{., t_{2}}$ are continuous for any fixed t_{1} and t_{2}. From known properties of one-parameter semigroups, for any $t_{i} \geq 0, i=1,2$, there exist constants $C_{i}=C_{i}\left(t_{i}\right)>0$ and $a_{i}=a_{i}\left(t_{i}\right) \in \mathbb{R}$ such that $\left\|T_{t_{1}, u}\right\| \leq C_{1} e^{a_{1}{ }^{u}}$ and $\left\|T_{u, t_{2}}\right\| \leq$ $C_{2} e^{a_{2} u}$ for any $u \geq 0$. Now let \bar{s} be fixed with $\bar{t}>\bar{s}$. Then, from Lemma 1 , we find that

$$
\begin{gathered}
\lim _{\bar{t} \rightarrow \bar{s}}\left\|T_{\bar{t}} x-T_{\bar{s}} x\right\|=\lim _{t \rightarrow s}\left\|T_{\bar{s}} T_{s_{1}, t_{2}-s_{2}} T_{t_{1}-s_{1}, s_{2}} T_{t_{1}-s_{1}, t_{2}-s_{2}} x-T_{\bar{s}} x\right\| \\
\leq \lim _{\bar{t} \rightarrow \bar{s}}\left\|T_{\bar{s}}\right\|\left\|T_{s_{1}, t_{2}-s_{2}} T_{t_{1}-s_{1}, s_{2}} T_{t_{1}-s_{1}, t_{2}-s_{2}} x-x\right\| \\
\leq \lim _{\bar{t} \rightarrow \bar{s}}\left\|T_{\bar{s}}\right\|\left(\left\|T_{s_{1}, t_{2}-s_{2}} T_{t_{1}-s_{1}, s_{2}}\right\|\left\|T_{t_{1}-s_{1}, t_{2}-s_{2}} x-x\right\|\right. \\
+\left\|T_{s_{1}, t_{2}-s_{2}}\right\|\left\|T_{t_{1}-s_{1}, s_{2}} x-x\right\| \\
\left.+\left\|T_{s_{1}, t_{2}-s_{2}} x-x\right\|\right) \leq \lim _{\bar{t} \rightarrow \bar{s}}\left\|T_{\bar{s}}\right\|\left(C_{1} C_{2} e^{a_{1}\left(t_{1}-s_{1}\right)} e^{a_{2}\left(t_{2}-s_{2}\right)}\right. \\
\left.\times\left\|T_{t_{1}-s_{1}, t_{2}-s_{2}} x-x\right\|+C_{2} e^{a_{2}\left(t_{2}-s_{2}\right)}\left\|T_{t_{1}-s_{1}, s_{2}} x-x\right\|+\left\|T_{s_{1}, t_{2}-s_{2}} x-x\right\|\right)=0 .
\end{gathered}
$$

Other version of the arrangement of the point \bar{t} with respect to \bar{s} are considered similarly.
Thus, Definition 2 can be weakened to condition $\left(B_{1}\right)$.
Lemma 3: Let $T_{\bar{t}}$ be a C_{0}-semigroup. Then, for any $\bar{t}=\left(t_{1}, t_{2}\right) \in \mathbb{R}_{+}^{2}$,

$$
\begin{equation*}
T_{\bar{t}}=T_{1, t_{1} t_{2}}=T_{t_{1} t_{2}, 1} \tag{1}
\end{equation*}
$$

Proof: Note that for any $\bar{t} \in \mathbb{R}_{+}^{2}$ and $n \in \mathbb{N}$,

$$
T_{t_{1}, n t_{2}}=\left(T_{\bar{t}}\right)^{n}=T_{n t_{1}, t_{2}} .
$$

Furthermore, for any $t_{1} \geq 0$, there exists a sequence $\left[u_{n}, n \geq 1\right\} \subset Q^{+}$such that $u_{n}=\left(p_{n} / q_{n}\right) \rightarrow t_{1}$ as $n \rightarrow \infty$. Then for any $x \in X$,

$$
\begin{gathered}
T_{\bar{t}} x=\lim _{n \rightarrow \infty} T_{u_{n}, t_{2}} x=\lim _{n \rightarrow \infty} T_{\left(p_{n} / q_{n}\right),\left(t_{2} q_{n} / q_{n}\right)^{x}} \\
=\lim _{n \rightarrow \infty}\left(T_{\left(1 / q_{n}\right),\left(t_{2} / q_{n}\right)}\right)^{p_{n} q_{n}} x=\lim _{n \rightarrow \infty} T_{1, t_{2}\left(p_{n} / q_{n}\right)^{x}}=T_{1, t_{1} t_{2}} x .
\end{gathered}
$$

Hence, we also have $T_{t_{1}, t_{2}}=T_{t_{1} t_{2}, 1}$.
Remark 1: Let $\bar{t}, \bar{s} \in \mathbb{R}_{+}^{2}$. Then,

$$
T_{\bar{t}} T_{\bar{s}}=T_{1, t_{1} t_{2}} T_{1, s_{1} s_{2}}=T_{1, t_{1} t_{2}+s_{1} s_{2}}=T_{1, s_{1} s_{2}} T_{1, t_{1} t_{2}}=T_{\bar{s}} T_{\bar{t}}
$$

Definition 3: 1. The generator A of C_{0}-semigroup T_{t} is defined by

$$
A x:=\lim _{t \rightarrow 0} \frac{1}{t_{1} t_{2}}\left(T_{\bar{t}} x-x\right)
$$

whenever the limit exists.
2. The i-generators ($i=1,2$) of C_{0}-semigroup $T_{\bar{t}}$ are defined by

$$
A_{t_{1}}^{2} x:=\lim _{t_{2} \rightarrow 0} \frac{1}{t_{2}}\left(T_{\bar{t}} x-x\right) \text { and } A_{t_{2}}^{1} x:=\lim _{t_{1} \rightarrow 0} \frac{1}{t_{1}}\left(T_{\bar{t}} x-x\right),
$$

whenever the limits exist.
Theorem 1: Let $T_{\bar{t}}$ be a C_{0}-semigroup. Then the following hold:
1)

$$
\begin{equation*}
A=A_{1}^{1}=A_{1}^{2} \text { and } A_{t_{i}}^{j}=t_{i} A, \quad t_{i}>0, i=1,2, j=1,2, i \neq j . \tag{2}
\end{equation*}
$$

2) For any $x \in D(A)$,

$$
T_{\bar{t}} A x=A T_{\bar{t}} x
$$

3) For any $\bar{t}=\left(t_{1}, t_{2}\right) \in \mathbb{R}_{+}^{2}$ and $x \in D(A)$,

$$
\frac{\partial T_{\bar{t}}}{\partial t_{1} t_{j}}=t_{i} T_{\bar{t}} A x=T_{\bar{t}} A_{t_{i}}^{j} x .
$$

For any $x \in D\left(A^{2}\right)$,

$$
\frac{\partial^{2} T_{\bar{t}}}{\partial t_{1} \partial t_{2}} x=A T_{\bar{t}} x+t_{1} t_{2} A^{2} T_{\bar{t}} x
$$

Proof: 1. Let $x \in D\left(A_{1}^{2}\right)$. It follows from Lemma 3 that

$$
\lim _{t \rightarrow 0} \frac{T_{t_{1}, t_{2}}-I}{t_{1} t_{2}} x=\lim _{t \rightarrow 0} \frac{T_{1, t_{1} t_{2}}-I}{t_{1} t_{2}} x
$$

and

$$
\lim _{t_{1} \rightarrow 0} \frac{T_{t_{1}, t_{2}}-I}{t_{1}} x=t_{2} \lim _{t_{1} \rightarrow 0} \frac{T_{1, t_{1} t_{2}}-I}{t_{1} t_{2}} x
$$

exist or do not exist simultaneously. Therefore, according to Definition 3, $D\left(A_{1}^{2}\right)=D\left(A_{t_{1}}^{2}\right)$, $D\left(A_{1}^{2}\right) \subset D(A)$ and $A_{t}^{2} x=t_{1} A x$. From the same arguments applied to $x \in D\left(A_{1}^{2}\right)$ and $x \in D(A)$, we have $D\left(A_{1}^{1}\right) \subset D(A) \subset D\left(A_{1}^{1}\right)=D\left(A_{1}^{2}\right)$, and, consequently, $D\left(A_{1}^{1}\right)=D\left(A_{1}^{2}\right)=D(A)$. Therefore, the equalities (2) hold.
2. Operators A_{1}^{1} and $T_{t, 1}$ commute on $D\left(A_{2}^{1}\right)$ (this follows from the corresponding properties of one-parameter semigroups); therefore, $A=A_{1}^{1}$ and $T_{\bar{t}}=T_{t_{1} t_{2}, 1}$ commute on $D(A)=D\left(A_{1}^{1}\right)$.
3. This statement can be obtained by direct calculations.

Suppose the semigroup $T_{\bar{t}}$ is not continuous on the whole space X. In this case, let us consider the linear manifold,

$$
X_{0}=\left\{|x \in X| \lim _{u \rightarrow 0} T_{u, t_{2}} x=\lim _{v \rightarrow 0} T_{t_{1}, v} x=x \text { for } t_{1}, t_{2} \geq 0\right\}
$$

Lemma 4: 1) X_{0} is a subspace in X.
2) Operators $T_{\bar{t}}$ act from X_{0} to X_{0}.

The proof follows from equality (1) and similar results for one-parameter semigroups.
Theorem 2: The linear operator A is a generator of a coordinate-wise C_{0}-semigroup if and only if it is a generator of a one-parameter C_{0}-semigroup.

Proof: Let A be a generator of the coordinate-wise C_{0}-semigroup $T_{\bar{t}}$. Then from Lemma 3 and Theorem 1, A is a generator of the one-parameter C_{0}-semigroup $U(t)=T_{1, t}$. Conversely, assume that A generates a one-parameter semigroup $U(t)$. Set $T_{\bar{t}}=U\left(t_{1} t_{2}\right)$. Then $T_{\bar{t}}$ is coordinate-wise C_{0}-semigroup, the limits

$$
\lim _{t \rightarrow 0} \frac{T_{t_{1}, t_{2}} x-x}{t_{1} t_{2}} \underset{t_{1} t_{2} \rightarrow 0}{\operatorname{and} \lim _{\rightarrow}} \frac{U\left(t_{1} t_{2}\right) x-x}{t_{1} t_{2}}
$$

exist or do not exist simultaneously, and for $x \in D(A)$

$$
A x=\lim _{t_{1}, t_{2} \rightarrow 0} \frac{U\left(t_{1} t_{2}\right) x-x}{t_{1} t_{2}}=\lim _{t \rightarrow 0} \frac{T_{t_{1}, t_{2}} x-x}{t_{1} t_{2}} .
$$

Therefore, A is a generator of coordinate-wise semigroup.
Remark 2: It follows from Theorem 2 that the conditions of the well-known Hille-Yosida theorem are necessary and sufficient for the closed operator A with $\overline{D(A)}=X$ to generate coordin-ate-wise semigroup.

Remark 3: The statement similar to Theorem 2 for an n-parameter coordinate-wise semigroup is true and would have the same proof.

It is well known that in the one-parameter case, the Laplace transform of semigroup is a resolvent of its generator, defined in the appropriate half-plane of \mathbb{C}. Analogously, in the case of the multiplicative semigroup $\widehat{T}_{t_{1}, t_{2}}$, given by equations,

$$
\widehat{T}_{t_{1}, t_{2}}=T_{1}\left(t_{1}\right) T_{2}\left(t_{2}\right) \text { and } T_{1}\left(t_{1}\right) T_{2}\left(t_{2}\right)=T_{2}\left(t_{2}\right) T_{1}\left(t_{1}\right)
$$

where $T_{i}\left(t_{i}\right)$ for $i=1,2$ is a one-parameter semigroup, the two-dimensional Laplace transform of $\widehat{T}\left(t_{1}, t_{2}\right)$ is decomposed into a product of one-dimensional transforms and is the product of resolvents of semigroup generators. There are no such simple relations for coordinate-wise semigroups. In this vein, we can obtain only the following result.

Theorem 3: Let $\left\{T_{\bar{t}}, \bar{t} \in \mathbb{R}_{+}^{2}\right\}$ be a contractive coordinate-wise semigroup (this assumption is made for the sake of simplicity), and let $L_{z, w}=L_{z, w}(f)$ and $L_{z}=L_{z}(g)$ be two- and one-dimen-
sional Laplace transform of functions f and g, respectively. Then, the following hold.

1) For any $z, w>0$,

$$
L_{z, w}\left(T_{t_{1}, t_{2}}\right)=L_{1, z w}=L_{1}\left(R_{(z w) / t_{2}}\right)
$$

where R is a resolvent of the generator of the semigroup $T_{1, t}$.
2) For any $x \in D\left(A^{2}\right)$,

$$
A^{2} \frac{\partial^{2} L_{z, w}}{\partial z \partial w} x+A L_{z, w} x=z w L_{z, w} x-x
$$

where $L_{z, w} x=L_{z, w}\left(T_{t_{1}, t_{2}} x\right)$.
3) For any $x \in D\left(A^{2}\right)$,

$$
A^{2}\left(L^{\prime}(u) u\right)^{\prime} x+A L(u) x=u L(u) x-x,
$$

where $L(u) x=L_{1, u} x=L_{1, u}\left(t_{t_{1}, t_{2}} x\right)$.
Proof: 1) From equality (1) for $z, w>0$ and $x \in X$,

$$
\begin{aligned}
L_{z, w} x & =\int_{R_{+}^{2}} e^{-z t_{2}-w t_{1}} T_{1, t_{2} t_{1}} x d t_{2} d t_{1}=\int_{R_{+}^{2}} e^{-z\left(t_{2}^{\prime} / z\right)-w z t_{1}^{\prime}} T_{1,\left(t_{2}^{\prime} / z\right) z t_{1}^{\prime}} x \frac{1}{z} d t_{2}^{\prime} z d t_{1}^{\prime} \\
& =\int_{R_{+}^{2}} e^{-z\left(t_{2}^{\prime} / z\right)-w z t_{1}^{\prime}} T_{1, t_{2} t_{1}} x d t_{2} d t_{1} \\
& =L_{1, z w} x=\int_{0}^{\infty} e^{-1 \cdot t_{2}}\left(\int_{0}^{\infty} e^{-z w t_{1}} T_{1, t_{1} t_{2}} x d t_{1}\right) d t_{2}=L_{1}\left(R_{z w / t_{2}} x\right) .
\end{aligned}
$$

2) Let $x \in D\left(A^{2}\right)$. Then for any $u, v>0$,
where

$$
\begin{gather*}
\frac{1}{u v}\left(T_{u, v}-I\right) L_{z, w} x=\widehat{A}_{u, v} x-T_{u, v} \int_{R_{+}^{2}} e^{-z t_{1}-w t_{2}} \frac{T_{t_{1}, v}-I}{v} \frac{T_{u, t_{2}}-I}{u} \\
\times T_{t_{1}, t_{2}} x d t_{2} d t_{2}-\frac{T_{u, v}-I}{v} \int_{R_{+}^{2}} e^{-z t_{1}-w t_{2}} \frac{T_{t_{1}, v}-I}{v} T_{t_{1}, t_{2}} x d t_{1} d t_{2} \\
-\frac{T_{u, v}-I}{u} \int_{R_{+}^{2}} e^{-z t_{1}-w t_{2}} \frac{T_{t_{1}, v}-I}{v} T_{t_{1}, t_{2}} d t_{1} d t_{2}, \tag{3}
\end{gather*}
$$

$$
\begin{gathered}
\widehat{A}_{u, v} x=\frac{1}{u v}\left(\left(e^{z u}-1\right)\left(e^{w v}-1\right) L_{z, w} x-e^{z u}\left(e^{w v}-1\right) \int_{0}^{u} \int_{0}^{\infty} e^{-z t_{1}-w t_{2}} T_{t_{1}, t_{2}} x d t_{1} d t_{2}\right. \\
\left.-e^{w v}\left(e^{z u}-1\right) \int_{0}^{\infty} \int_{0}^{v} e^{-z t_{1}-w t_{2}} T_{t_{1}, t_{2}} x d t_{1} d t_{2}+e^{z u+w v} \int_{0}^{u} \int_{0}^{v} e^{-z t_{1}-w t_{2}} T_{t_{1}, t_{2}} x d t_{1} d t_{2}\right) .
\end{gathered}
$$

Obviously,

$$
\widehat{A}_{u v} x \rightarrow z w L_{z, w^{x}}-\left(w \int_{0}^{\infty} e^{-w t_{2}} d t_{2} x\right)-\left(z \int_{0}^{\infty} e^{-z t_{1}} d t_{1} x\right)+x=z w L_{z, w} x-x
$$

Note that

$$
\begin{aligned}
& \left\|\frac{T_{t_{1}, v}-I}{v} \frac{T_{u, t_{2}}-I}{u} x\right\|=\left\|\frac{1}{v} \int_{0}^{s v} T_{1,2}\left(\frac{1}{u} \int_{0}^{u t} T_{1, p} A x d p\right) d z\right\| \\
& \quad=\left\|\frac{1}{v} \frac{1}{u} \int_{0}^{t_{1} v} \int_{0}^{t_{2} u} T_{1, z} T_{1, p} A^{2} x d p d z\right\| \leq t_{1} t_{2}\left\|A^{2} x\right\|
\end{aligned}
$$

in view of the contractive property of semigroups. Existence of the integrated majorant implies that

$$
\begin{gather*}
T_{u, v} \int_{R_{+}^{2}} e^{-z t_{1}-w t_{2}} \frac{T_{t_{1}, v}-I}{v} \frac{T_{u, t_{2}}-I}{u} T_{t_{1}, t_{2} x d t_{1} d t_{2}} \\
\quad \rightarrow t_{1} t_{2} \int_{R_{+}^{2}} e^{-z t_{1}-w t_{2}} T_{t_{1}, t_{2}} A^{2} x d t_{1} d t_{2}, \quad u, v \rightarrow 0 \tag{4}
\end{gather*}
$$

Again, from the existence of the integrated majorant, the last integral equals

Furthermore,

$$
\begin{align*}
& t_{1} t_{2} \int_{u} e^{-z t_{1}-w t_{2}} \lim _{u \vee v \rightarrow 0} \frac{1}{u}\left(T_{1, u}-I\right) \frac{1}{v}\left(T_{v, 1}-I\right) T_{t_{1} t_{2}} x d t_{1} d t_{2} \\
= & \lim _{u \vee v \rightarrow 0} \frac{T_{1, u}^{+}-I}{u} \frac{T_{v, 1}-I}{v} \int_{R_{+}^{2}} e^{-z t_{1}-w t_{2}} t_{1} t_{2} T_{t_{1}, t_{2}} x d t_{1} d t_{2}=A^{2} \frac{\partial^{2} L_{z, w}}{\partial z \partial w} x . \tag{5}
\end{align*}
$$

$$
\begin{align*}
& \lim _{u \vee v \rightarrow 0}\left\|\frac{T_{u, v}-I}{v} \int_{R_{+}^{2}} e^{-z t_{1}-w t_{2}} t_{2} \frac{T_{u, t_{2}}-I}{t_{2} u} T_{t_{1} t_{2}} x d t_{1} d t_{2}\right\| \\
= & \lim _{u \vee v \rightarrow 0}\left\|u \int_{R_{+}^{2}} e^{-z t_{1}-w t_{2}} t_{2} \frac{T_{u, t_{2}}-I}{t_{2} u} T_{t_{1} t_{2}} \frac{T_{u, v}-I}{v u} x d t_{1} d t_{2}\right\|=0 \tag{6}
\end{align*}
$$

Analogously,

$$
\begin{equation*}
\lim _{u \vee v \rightarrow 0}\left\|\frac{T_{u, v}-I}{u} \int_{R_{+}^{2}} e^{-z t_{1}-w t_{2}} t_{1} \frac{T_{t_{1}, v}-I}{t_{1} v} T_{t_{1}, t_{2}} x d t_{1} d t_{2}\right\|=0 \tag{7}
\end{equation*}
$$

Equation from the statement 2) follows from (3) through (7).
3) Finally, from the equality $L(u)=L_{1, u}$ with $u=z w$, we obtain that

$$
\frac{\partial^{2} L_{z, w}}{\partial z \partial w}=\frac{\partial}{\partial z}\left(L^{\prime}(u) \cdot z\right)=L^{\prime \prime}(u) \cdot u+L^{\prime}(u)
$$

Equation from the statement 3) follows.

3. Two-Parameter Evolution Operators and Their Generators

Let us consider the family of operators,

$$
\left\{T_{s s^{\prime}, t t^{\prime}} 0 \leq s \leq s^{\prime}, 0 \leq t \leq t^{\prime}\right\} \subset \mathcal{L}(X), \quad s^{\prime}, t^{\prime} \in \mathbb{R}_{+}
$$

satisfying the following conditions.
(C) a) For any $0 \leq s \leq s^{\prime} \leq s^{\prime \prime}$ and $0 \leq t \leq t^{\prime}$,

$$
T_{s s^{\prime}, t t^{\prime}} T_{s s^{\prime}, t^{\prime} t^{\prime \prime}}=T_{s s^{\prime}, t t^{\prime \prime}}
$$

b) For any $0 \leq s \leq s^{\prime}$ and $0 \leq t \leq t^{\prime} \leq t^{\prime \prime}$,

$$
T_{s s^{\prime}, t t^{\prime}} T_{s s^{\prime}, t t^{\prime}}=T_{s s^{\prime}, t^{\prime \prime}}=T_{s s^{\prime}, t t^{\prime \prime}}
$$

c) For any $0 \leq s \leq s^{\prime}$ and $0 \leq t \leq t^{\prime}$,

$$
T_{s s, t t^{\prime}}=T_{s s^{\prime}, t t}=I
$$

We call any operator, $T_{s s^{\prime}, t t^{\prime}}$, in this family a two-parameter evolution operator (or simply an evolution).

Definition 4: The family of evolutions is said to be continuous if, for any $0 \leq s<s^{\prime}$ and $0 \leq t<t^{\prime}$,

$$
\lim _{h \rightarrow 0} T_{s+h s^{\prime}, t t^{\prime}}=\lim _{h \rightarrow 0} T_{s s^{\prime}+h, t t^{\prime}}=\lim _{h \rightarrow 0} T_{s s^{\prime}, t+h t^{\prime}}=\lim _{h \rightarrow 0} T_{s s^{\prime}, t t^{\prime}+h}=T_{s s^{\prime}, t t^{\prime}}
$$

in the sense of strong convergence in X.
Further, we consider only continuous families of evolutions. Let us denote

$$
\begin{gathered}
(u, a)^{+}=(u, u+a),(u, a)^{-}=(u-a, u), \quad a>0 ; \\
\square T_{s, t, h, k}^{ \pm \pm}=T_{(s, h)^{ \pm}(t, k)^{ \pm}-I ; \quad \Delta^{1} T_{h, s, t, t^{\prime}}^{ \pm}=T_{(s, h)^{ \pm}, t t^{\prime}}-I ;}^{\Delta^{2} T_{k, s, s^{\prime}, t}^{ \pm}=T_{s s^{\prime},(t, k)^{ \pm}}-I ; \quad \frac{\partial^{2}}{\partial s \partial t}=\frac{\partial}{\partial s}\left(\frac{\partial}{\partial t}\right) .} .
\end{gathered}
$$

Definition 5: 1) The elements of the family of operators $\left\{A_{s, t}^{ \pm} \pm\right.$, defined as

$$
A_{s, t}^{ \pm \pm} x:=\lim _{h, k \rightarrow 0} \frac{1}{h k} \square T_{s, t, h, k}^{ \pm} x
$$

considered on the sets where corresponding limits exist, are called generators of evolutions.
2) The elements of the family of operators $\left\{A_{s t t^{\prime}}^{1, \pm}, A_{s s^{\prime} t}^{2,}\right\}$, defined as

$$
A_{s, t, t^{\prime}}^{1 \pm} x:=\lim \frac{1}{h} \Delta^{1} T_{h, s, t, t^{\prime}}^{ \pm} x \text { and } A_{s s^{\prime} t}^{2,} x:=\lim \frac{1}{k} \Delta^{2} T_{k, s, s^{\prime}, t}^{ \pm} x,
$$

considered on the sets where corresponding limits exist, are called i-generators ($i=1,2$) of evolutions. If $A^{i,+}=A^{i,-}$ or $A^{++}=A^{+-}=A^{-+}=A^{--}$, then we denote the common value as A^{i} or A respectively.

Definition 6: Right and left derivatives of evolutions are defined as

$$
\frac{\partial^{+} T_{s s^{\prime}, t t^{\prime}}}{\partial s^{\prime}}=\lim \frac{1}{h}\left(T_{s s^{\prime}+h, t t^{\prime}}-T_{s s^{\prime}, t t^{\prime}}\right) \text { and } \frac{\partial^{-} T_{s s^{\prime}, t t^{\prime}}}{\partial s}=-\lim \frac{1}{h}\left(T_{s-h s^{\prime}, t t^{\prime}}-T_{s s^{\prime}, t t^{\prime}}\right)
$$

respectively.
In similar ways, one can define right and left derivatives of other families of operators, depending on s, s^{\prime}, t and t^{\prime}.

Lemma 5: 1) If $T_{s s^{\prime}, t t^{\prime}} x \in D\left(A_{s t t^{\prime}}^{1,-}\right)$, then

$$
\frac{\partial^{-} T_{s s^{\prime}, t t^{\prime}}}{\partial s} x=-A_{s t t^{\prime}}^{1,-T_{s s^{\prime}, t t^{\prime}}}
$$

2) If $x \in D\left(A_{s^{\prime} t t^{\prime}}^{1}+\right.$, then

$$
\frac{\partial^{+} T_{s s^{\prime}, t t^{\prime}}}{\partial s^{\prime}} x=T_{s s^{\prime}, t t^{\prime}} A_{s^{\prime} t t^{\prime}}^{1} x
$$

3) If $T_{s s^{\prime}, t t^{\prime}} x \in D\left(A_{s s^{\prime} t}^{2,-}\right)$, then

$$
\frac{\partial^{-} T_{s s^{\prime}, t t^{\prime}}}{\partial t} x=-A_{s s^{\prime} t}^{2,-} T_{s s^{\prime}, t t^{\prime}} x .
$$

4) If $x \in D\left(A_{s s^{\prime} t^{\prime}}^{2,+}\right)$, then

$$
\frac{\partial^{+} T_{s s^{\prime}, t t^{\prime}}}{\partial t^{\prime}} x=T_{s s^{\prime}, t t^{\prime}} A_{s s^{\prime} t^{\prime}}^{2,+} x .
$$

Proof: Let us prove 1). (The other equalities are proved similarly). If $T_{s s^{\prime}, t t^{\prime}} x \in D\left(A_{s t t^{\prime}}^{1,}\right)$, then

$$
\begin{gathered}
\frac{\partial^{-} T_{s s^{\prime}, t t^{\prime}}}{\partial s} x=-\lim \frac{1}{h}\left(T_{s-h s^{\prime}, t t^{\prime}}-T_{s s^{\prime}, t t^{\prime}}\right) x \\
=-\lim \frac{1}{h}\left(T_{s-h s^{\prime}, t t^{\prime}}-I\right) T_{s s^{\prime} t t^{\prime}} x=-A_{s t t^{\prime}}^{1,-} T_{s s^{\prime} t t^{\prime}} x .
\end{gathered}
$$

Lemma 6: 1) Let $x \in D\left(A_{s t}^{ \pm-}\right) \cap D\left(A_{\text {sut }}^{1,}\right)$ and $v \in[t-\delta, t]$ for some $\delta>0$. Let also

$$
\begin{equation*}
\lim \frac{1}{h k} \square T_{s, t, \overline{h, k}}^{ \pm} \cdot \Delta^{1} T_{h, s, t, t^{\prime}}^{ \pm} x=0 \tag{8}
\end{equation*}
$$

Then

$$
\frac{\partial^{-} A_{s t t^{\prime}}^{1, \pm}}{\partial t} x=-A_{s t}^{ \pm-} x
$$

2) Let $x \in D\left(A_{s t^{\prime}}^{ \pm}\right) \cap D\left(A_{s t v}^{1, \pm}\right)$ and $v \in\left[t^{\prime}, t^{\prime}+\delta\right]$ for some $\delta>0$. Then

$$
\frac{\partial^{+} A_{s t t^{\prime}}^{1, \pm}}{\partial t^{\prime}} x=-A_{s t^{\prime}}^{ \pm}+x
$$

3) Let $x \in D\left(\underset{A_{s t^{\prime}}}{- \pm}\right) \cap D\left(A_{u^{\prime} t}^{2, \pm}\right)$ and $u \in[s-\delta, s]$ for some $\delta>0$. Let also

$$
\begin{equation*}
\lim \frac{1}{h k} \square T_{s, t, h, k}^{+} \cdot \Delta^{2} T_{k, s, s^{\prime} t}^{ \pm} x=0 \tag{9}
\end{equation*}
$$

Then

$$
\frac{\partial^{-} A_{s s^{\prime} t}^{2, \pm}}{\partial s} x=-A_{s t^{\prime}}^{- \pm} x
$$

4) Let $x \in D\left(A_{s^{\prime} t}^{+}\right) \cap D\left(A_{s u t}^{2, \pm}\right)$ and $u \in\left[s^{\prime}, s^{\prime}+\delta\right]$ for some $\delta>0$. Then

$$
\frac{\partial^{+} A_{s s^{\prime} t}^{2,} \pm}{\partial s^{\prime}} x=A_{s^{\prime} t}^{+}{ }^{ \pm} x
$$

Proof: Let us prove the 1). (The other equalities are proved similarly.) If condition (8) holds then there exists double limit:

$$
\begin{gathered}
\lim -\frac{1}{k}\left(\frac{T_{(s, h)^{ \pm}, t-k t^{\prime}}-I}{h}-\frac{T_{(s, h)^{ \pm}, t t^{\prime}}-I}{h}\right) x \\
=-\lim \frac{1}{h k}\left(T_{\left.(s, h)^{ \pm}{ }_{,(t, k)^{-}}-I\right)\left(T_{(s, h)^{ \pm}, t t^{\prime}}-I\right) x-\lim \frac{1}{h k}\left(T_{(s, h)^{ \pm}},(t, k)^{-}\right.}-I\right) x=A_{s t}^{ \pm} x .
\end{gathered}
$$

Moreover, there exist inner limits

$$
\lim \frac{T{ }_{(s, h)^{ \pm}, t-k t^{\prime}}-I}{h} x=A_{s, t-k, t^{\prime}}^{1, \pm} x \text { and } \lim \frac{T}{(s, h)^{ \pm}, t t^{\prime}}-I A_{s t t^{\prime}}^{1, \pm} x
$$

for $0<k<\delta$. So, the repeated limit exists and equals the double limit:

$$
\lim -\frac{1}{k}\left(A_{s, t-k, t^{\prime}}^{1, \pm}-A_{s, t, t^{\prime}}^{1, \pm}\right) x=-A_{s t}^{ \pm}-x .
$$

Remark 4: The following conditions are sufficient for (8).
(D) a) The function $T_{u s^{\prime}, t t^{\prime}} x$ is continuously differentiable in $u \in[s-\delta, s+\delta]$ for some $\delta>0$, and

$$
A_{u t t^{\prime}}^{1,+}=A_{u t t^{\prime}}^{1,-}
$$

b) For any $u \in[s-\delta, s+\delta]$,

$$
A_{u t t^{\prime}}^{1} T_{u s^{\prime}, t t^{\prime}} x \in D\left(A_{s t}^{ \pm-}\right)
$$

c) There exists $c>0$ such that

$$
\frac{1}{h k}\left\|\square T_{s, t, h, k}^{ \pm} A_{u t t^{\prime}}^{1} T_{u s^{\prime}, t t^{\prime}} x\right\| \leq c, \quad 0<h<\delta, \quad 0<k<\delta
$$

Indeed, if $(D) a$ holds, then

$$
\left(T_{(s, h)^{-}, t t^{\prime}}-I\right) x=\int_{\underline{s-h}}^{s} A_{u t t^{\prime}}^{1} T_{u s^{\prime}, t t^{\prime}} x d u
$$

Therefore, by $(D) b$ and $(D) c)$ in view of the existence of the integrated majorant and the equality,
we have

$$
\begin{gathered}
\lim \frac{1}{h k}\left(T_{\left.(s, h)^{-},(t, k)^{-}-I\right) A_{u t t^{\prime}}^{1} T_{u s^{\prime}, t t^{\prime}} x=A_{s t}^{-}-A_{u t t^{\prime}}^{1} T_{u s^{\prime}, t t^{\prime}} x,}\right. \\
\lim \frac{1}{h k}\left(T_{\left.(s, h)^{-},(t, k)^{-}-I\right)\left(T_{(s, h)^{ \pm}, t t^{\prime}}-I\right) x}^{s}=\right. \\
=\lim \int_{s-h}^{s} \frac{1}{h k}\left(T_{\left.(s, h)^{-},(t, k)^{-}-I\right) A_{u t t^{\prime}}^{1} T_{u s^{\prime}, t t^{\prime}} x d u}\right. \\
=\lim \int_{s-\delta}^{s} 1\{\delta-h \leq u \leq s\} \frac{1}{h k}\left(T_{(s, h)^{-},(t, k)-}-I\right) A_{u t t^{\prime}}^{1} T_{u s^{\prime}, t t^{\prime}} x d u=0 .
\end{gathered}
$$

Sufficient conditions for (9) can be formulated in a similar way.
Remark 5: Let $A^{i,+}=A^{i,-}, i=1,2$ and let families of operators $\left\{A_{s t t^{\prime}}^{1},\left(s, t, t^{\prime}\right) \in \mathbb{R}_{+}^{3}\right\}$ and $\left\{A_{s s^{\prime} t}^{2}\left(s, s^{\prime}, t\right) \in \mathbb{R}_{+}^{3}\right\}$ be continuously differentiable in $\left(t, t^{\prime}\right)$ and $\left(s, s^{\prime}\right)$ respectively on the set

$$
X^{*}=\bigcap_{s, s^{\prime}, t, t^{\prime}}\left[D\left(A_{s t t^{\prime}}^{1}\right) \cap D\left(A_{s s^{\prime} t}^{2}\right) \cap D\left(A_{s t}\right)\right] .
$$

Then one can write equalities 1) through 4) of Lemma 6 in the form:

$$
A_{s t t^{\prime}}^{1}=\int_{t}^{t^{\prime}} A_{s v} d v, \quad A_{s s^{\prime} t}^{2}=\int_{s}^{s^{\prime}} A_{u t} d u
$$

Theorem 4: 1) Let the following conditions hold.
$\left(E_{1}\right)$ a) $T_{u s^{\prime}, t t^{\prime}} x \in D\left(A_{s t t^{\prime}}^{1,}\right) \cap D\left(A_{u s^{\prime} t}^{2,-}\right) \cap D\left(A_{s t}\right)$ for any $u \in[s-\delta, s]$ and some $\delta>0$.
b) The operator $A_{s s^{\prime} t}^{2,-}$ is closed.
c) There exists the limit, $\lim \frac{1}{h} A_{s s^{\prime} t}^{2,-}\left(\Delta^{1} T_{\left.h, s, t, t^{\prime}\right)}^{-} T_{s s^{\prime}, t t^{\prime}} x\right.$.
d) $\lim \frac{1}{h}\left[\left(-A_{s-h s^{\prime} t}^{2,-}+A_{s s^{\prime} t}^{2,-}\right)\left(\Delta^{1} T_{h, s, t, t^{\prime}}^{-}\right) T_{s s^{\prime}, t t^{\prime}} x\right]=0$.

Then

$$
\frac{\partial^{2,--} T_{s s^{\prime}, t t^{\prime}}}{\partial t \partial s} x=A_{s t}^{-}-T_{s s^{\prime}, t t^{\prime}} x+A_{s t t^{\prime}}^{1,-} A_{s s^{\prime} t}^{2,-} T_{s s^{\prime}, t t^{\prime}} x
$$

2) Let the following conditions hold.
$\left(E_{2}\right)$ a) $T_{s v, t t^{\prime}} \in D\left(A_{s s^{\prime} t}^{2,-}\right) \cap D\left(A_{s v t^{\prime}}^{1,-}\right) \cap D\left(A_{s t}^{-}\right)$for any $v \in[t-\delta, t]$ and some $\delta>0$.
b) The operator $A_{s t t^{\prime}}^{1,-}$ is closed.
c) There exists the limit, $\lim \frac{1}{h} A_{s t t^{\prime}}^{1,-}\left(\Delta^{2} T_{k, s, s^{\prime}, t}^{-}\right) T_{s s^{\prime}, t t^{\prime}} x$.
d) $\lim \frac{1}{h}\left[\left(-A_{s, t-k, t^{\prime}}^{1,-}+A_{s t t^{\prime}}^{1,-}\right)\left(\Delta^{2} T_{k, s, s^{\prime}, t^{-}}^{T} s_{s s^{\prime}, t t^{\prime}} x\right)\right]=0$.

Then

$$
\frac{\partial^{2,--} T_{s s^{\prime}, t t^{\prime}}}{\partial s \partial t} x=A_{s t}^{-}-T_{s s^{\prime}, t t^{\prime}} x+A_{s s^{\prime} t}^{2,-} A_{s t t^{\prime}}^{1,-} T_{s s^{\prime}, t t^{\prime}} x
$$

Remark 6: The following conditions are sufficient for $\left(E_{1}\right) d$).
$\left(E_{3}\right)$ a) The function $A_{u s^{\prime} t}^{2,-}$ is continuous differentiable in $u \in[s-\delta, s]$ for some $\delta>0$.
b) There exists $c>0$ such that, for all $u \in[s-\delta, s]$,

Indeed, in that case,

$$
\left\|A_{u t}^{-}-\left(\frac{1}{h} \Delta^{1} T_{h, s, t, t^{\prime}}^{-}\right) T_{s s^{\prime}, t t^{\prime}} x\right\| \leq c
$$

$$
\begin{aligned}
& \lim \left\|\frac{1}{h}\left[\left(-A_{s-h s^{\prime} t}^{2,-}+A_{s s^{\prime} t}^{2,-}\right)\left(\Delta^{1} T_{h s, t t^{\prime}}^{-} T_{s s^{\prime}, t t^{\prime}} x\right)\right]\right\| \\
& \leq \lim \int_{s-h}^{s}\left\|A_{u t}^{-}-\left(\frac{1}{h} \Delta^{1} T_{h s, t t^{\prime}}^{-}\right) T_{s s^{\prime}, t t^{\prime}} x\right\| d u=0
\end{aligned}
$$

The conditions sufficient for $\left(E_{2}\right)$ can be formulated similarly.
Remark 7: Let us assume that there exists the derivative

$$
\frac{\partial^{2,-}-T_{s s^{\prime}, t t^{\prime}}}{\partial t \partial s} x
$$

and that conditions $\left.\left(E_{1}\right) a\right),\left(E_{1}\right) b$) and $\left(E_{1}\right) d$) hold. Then, obviously, condition $\left(E_{1}\right) c$) holds and statement 1) of Theorem 4 is true.

Remark 8: Let $B(t, s): R_{+}^{2} \rightarrow X$ be a twice continuously differentiable function on some $D \subset$ \mathbb{R}_{+}^{2}. Then in the usual way, using corresponding results for the functions from \mathbb{R}_{+}^{2} to \mathbb{C} and the Hahn-Banach theorem, we obtain for any $x \in D$ that $\left(\partial^{2} B / \partial s \partial t\right) x=\left(\partial^{2} B / \partial t \partial s\right) x$. A similar result is true for one-sided derivatives. Thus, if operators $A_{s t}^{-} T_{s s^{\prime}, t t^{\prime}}, A_{s s^{\prime} t}^{2,-} A_{s t t^{\prime}}^{1,-} T_{s s^{\prime}, t t^{\prime}}$ and $A_{s t t^{\prime}}^{1,-} A_{s s^{\prime} t}^{2,-} T_{s s^{\prime}, t t^{\prime}}$ are continuous as functions of $\left(s, s^{\prime}, t, t^{\prime}\right) \in \mathbb{R}_{+}^{4}$ on the \mathbb{R}_{+}^{4}, then
and

$$
\frac{\partial^{2,-}-T}{\partial s \partial t} x=\frac{\partial^{2,--T}}{\partial t \partial s} x
$$

$$
A_{s s^{\prime} t}^{2,-} A_{s t t^{\prime}}^{1,-} T_{s s^{\prime}, t t^{\prime}} x=A_{s t t^{\prime}}^{1,-} A_{s s^{\prime} t}^{2,-} T_{s s^{\prime}, t t^{\prime}} x
$$

Proof: We prove only the statement 1) of Theorem 4. Let condition $\left(E_{1}\right)$ a) be satisfied. Then from Lemma 5,

$$
\begin{gathered}
\frac{\partial^{2,--} T_{s s^{\prime}, t t^{\prime}}}{\partial s \partial t} x=\lim \frac{1}{h}\left(\frac{\partial^{-} T_{s-h s, t t^{\prime}}}{\partial t}-\frac{\partial^{-} T_{s s^{\prime}, t t^{\prime}}}{\partial t}\right) x \\
=\lim \frac{1}{h}\left[-A_{s-h s^{\prime} t} T_{s-h s^{\prime}, t t^{\prime}} x+A_{s s^{\prime} t}^{2,} T_{s s^{\prime}, t t^{\prime}} x\right]
\end{gathered}
$$

$$
\begin{gathered}
=\lim \left[\frac{1}{h}\left(-A_{s-h s^{\prime} t}^{2,-}+A_{s s^{\prime} t}^{2,-}\right)\left(\Delta^{1} T_{h, s, t, t^{\prime}}^{-}-I\right) T_{s s^{\prime}, t t^{\prime}} x+\frac{1}{h}\left(-A_{s-h, s^{\prime} t}^{2,-}+A_{s s^{\prime} t}^{2,-}\right) T_{s s^{\prime}, t t^{\prime}} x\right. \\
\left.-\frac{1}{h} A_{s s^{\prime} t}^{2,-}\left(\Delta^{1} T_{h, s, t, t^{\prime}}^{-} T_{s s^{\prime}, t t^{\prime}} x\right)\right]=\lim \left(S_{1}^{h} x+S_{2}^{h} x+S_{3}^{h}\right) x
\end{gathered}
$$

$\left(E_{1}\right) a$) implies that $\lim S_{2}^{h} x=A_{s t}^{-} T_{s s^{\prime}, t t^{\prime}} x$, and

$$
\lim \frac{1}{h}\left(\Delta^{1} T_{h, s, t, t^{\prime}}^{-}\right) T_{s s^{\prime}, t t^{\prime}} x=A_{s t t^{\prime}}^{1,-} T_{s s^{\prime}, t t^{\prime}} x
$$

$\left(E_{1}\right) b$) and $\left(E_{1}\right) c$) imply that $S_{3}^{h} x=A_{s s^{\prime} t}^{2} A_{s t t^{\prime}}^{1,-} T_{s s^{\prime}, t t^{\prime}} x$. Condition $\left.\left(E_{1}\right) d\right)$ ensures the equality $\lim S_{1}^{h} x=0$. Hence, the proof follows.

The following statements are proved analogously to the proof of Theorem 4.
Theorem 5: 1) Let the following conditions hold.
$\left(E_{4}\right)$ a) $T_{s u, t t^{\prime}} x \in D\left(A_{v t t^{\prime}}^{2}\right) \cap D\left(A_{s^{\prime} t}^{+-}\right)$for $u, v \in[s, s+\delta]$ for some $\delta>0 ; x \in D\left(A_{s^{\prime} t t^{\prime}}^{1}\right)$.
b) The operator $A_{s s^{\prime} t}^{2,-}$ is closed.
c) There exists the limit, $\lim \frac{1}{h} A_{s s^{\prime} t}^{2,-} T_{s s^{\prime}, t t^{\prime}} \Delta^{1} T_{h, s^{\prime}, t, t^{\prime}}^{+} x$.
d) $\lim \frac{1}{h}\left(-A_{s, s^{\prime}+h, t}^{2,-}+A_{s s, t}^{2,-}\right) T_{s s^{\prime}, t t^{\prime}} \Delta^{1} T_{h, s^{\prime}, t, t^{\prime}}^{+x}=0$.

Then

$$
\frac{\partial^{2,+-} T_{s s^{\prime}, t t^{\prime}}}{\partial s^{\prime} \partial t} x=A_{s^{\prime} t}^{+-} T_{s s^{\prime} t t^{\prime}} x-A_{s s^{\prime} t}^{2,-} T_{s s^{\prime}, t t^{\prime}} A_{s^{\prime} t t^{\prime}}^{1,} x .
$$

2) Let the following conditions hold.
$\left(E_{5}\right)$ a) Condition 1) of Lemma 6 holds.
b) $T_{s s^{\prime}, t t^{\prime}} A_{s t t^{\prime}}^{1,+} x \in D\left(A_{s s^{\prime} t}^{2,-}\right)$.
c) There exists $C>0$ such that $\left\|T_{s s^{\prime}, v t^{\prime}}\right\| \leq C$ while $v \in[t-\delta, t]$ for some $\delta>0$.

Then

$$
\frac{\partial^{2,-}+T_{s s^{\prime}, t t^{\prime}}}{\partial t \partial s^{\prime}} x=-T_{s s^{\prime}, t t^{\prime}} A_{s^{\prime} t}^{+-} x-A_{s s^{\prime} t}^{2,-} T_{s s^{\prime}, t t^{\prime}} A_{s^{\prime} t t^{\prime}}^{1,} x
$$

3) Let the following conditions hold.
$\left(E_{6}\right)$ a) $T_{s s^{\prime}, t u} \in D\left(A_{s s^{\prime} v}^{1,-}\right) \cap D\left(A_{s t^{\prime}}^{-^{+}}\right)$with $u, v \in\left[t^{\prime}, t^{\prime}+\delta\right]$ for some $\delta>0 ; x \in D\left(A_{s s^{\prime} t^{\prime}}^{2,+}\right)$.
b) The operator $A_{s s^{\prime} t^{\prime}}^{1,}$ is closed.
c) There exists the limit, $\lim \frac{1}{k} A_{s t t^{\prime}}^{1,-} T_{s s^{\prime}, t t^{\prime}} \Delta^{2,+} T_{k, s, s^{\prime}, t^{\prime}}$.
d) $\lim \frac{1}{k}\left(A_{s, t, t^{\prime}+k}^{1,-}-A_{s t t^{\prime}}^{1,-}\right) T_{s s^{\prime}, t t^{\prime}} \Delta^{2,+} T_{k, s, s^{\prime}, t^{\prime}} x=0$.

Then

$$
\frac{\partial^{2,+-} T_{s s^{\prime}, t t^{\prime}}}{\partial t^{\prime} \partial s} x=-A_{s t^{\prime}}^{-}+T_{s s^{\prime}, t t^{\prime}} x-A_{s t t^{\prime}}^{1,-} T_{s s^{\prime}, t t^{\prime}} A_{s s^{\prime} t^{\prime}}^{2,+} x
$$

4) Let the following conditions hold.
$\left(E_{7}\right)$ a) Condition 3) of Lemma 6 hold.
b) $T_{s s^{\prime}, t t^{\prime}} A_{s s^{\prime} t}^{2,+} x \in D\left(A_{s t t^{\prime}}^{1,-}\right)$.
c) There exists $C>0$ such that $\left\|T_{u s^{\prime} t t}\right\| \leq C$ while $u \in[s-\delta, s]$ for some $\delta>0$.

Then

$$
\frac{\partial^{2,-+} T_{s s^{\prime}, t t^{\prime}}}{\partial s \partial t^{\prime}} x=-T_{s s^{\prime}, t t^{\prime}} A_{s t^{\prime}}^{-+} x-A_{s t t^{\prime}}^{1,-} T_{s s^{\prime}, t t^{\prime}} A_{s s^{\prime} t^{\prime}}^{2,+} x
$$

5) Let the following conditions hold.
$\left(E_{8}\right)$ a) Condition 2) of Lemma 6 holds.
b) $A_{s^{\prime} t t^{\prime}}^{+} x \in D\left(A_{s s^{\prime} t^{\prime}}^{2,+}\right)$.
c) There exists $C>0$ such that $\left\|T_{s s,{ }^{\prime} t v}\right\| \leq C$ while $v \in\left[t^{\prime}, t^{\prime}+\delta\right]$ for some $\delta>0$.

Then

$$
\frac{\partial^{2,++} T_{s s^{\prime}, t t^{\prime}}}{\partial t^{\prime} \partial s^{\prime}} x=T_{s s^{\prime}, t t^{\prime}} A_{s^{\prime} t^{\prime}}^{+}{ }_{x} x+T_{s s^{\prime}, t t^{\prime}} A_{s s^{\prime} t^{\prime}}^{2,} A_{s^{\prime} t t^{\prime}}^{1+} x
$$

6) Let the following conditions hold.
(E_{9}) a) Condition 4) of Lemma 6 holds.
b) $A_{s s^{\prime} t^{\prime}}^{2,+} x \in D\left(A_{s t t^{\prime}}^{1,+}\right)$.
c) There exists $C>0$ such that $\left\|T_{\text {su, }{ }^{\prime} t t^{\prime}}\right\| \leq C$ while $u \in\left[s^{\prime}, s^{\prime}+\delta\right]$ for some $\delta>0$.

Then

$$
\frac{\partial^{2,++} T_{s s^{\prime}, t t^{\prime}}}{\partial s^{\prime} \partial t^{\prime}} x=T_{s s^{\prime}, t t^{\prime}} A_{s^{\prime} t^{\prime}}^{+} x+T_{s s^{\prime}, t t^{\prime}} A_{s^{\prime} t t^{\prime}}^{1}+A_{s s^{\prime} t^{\prime}}^{2,+} x
$$

4. Markov Fields and Semigroups

Let (Ω, F, P) be a complete probability space; let $(E, 8)$ be a measurable space; let $X=$ $\left\{X_{\bar{t}}, \bar{t} \in \mathbb{R}^{2}\right\}$ be a stochastic field with the values in E that is constant on the set $\left(\mathbb{R}^{2} \backslash R_{+}^{2}\right) \cup$ $\{[0, \infty) \times\{0\}\} \cup\{\{0\} \times[0, \infty)\}$. Put $F_{\bar{t}}=\sigma\left\{x_{\bar{s}}, \bar{s} \leq \bar{t}\right\} \vee N, F_{t_{i}}^{i}={ }_{t_{j} \geq 0}^{\vee} F_{\bar{t}}$ and $F_{\bar{t}}^{*}=F_{t_{1}}^{1} \vee F_{t_{2}}^{2}$
where N is the class of P-zero sets of F.

Definition 7: The field X is called an $*$-Markov field if for any $\bar{s} \leq \bar{t}$ and $B \in \mathbb{E}$

$$
P\left\{X_{\bar{t}} \in B / F_{s}^{*}\right\}=P\left\{X_{\bar{t}} \in B / X_{s}, X_{s_{1} t_{2}}, X_{t_{1} s_{2}}\right\}
$$

Definition 8: The function $P\{\bar{s}, \bar{t}, x, y, z, B\}$, with $\bar{s} \in R_{+}^{2}, \bar{t} \in \mathbb{R}_{+}^{2}, x, y, z \in E$ and $B \in \mathcal{E}$ is called transition function on $\left(E, \mathscr{E}^{8}\right)$ if

1) it is a probability measure on $(E, 8)$ when $x, y, z \in E$ are fixed;
2) it is an 8^{3}-measurable function when $B \in \mathcal{8}$ is fixed;
3) for any $x, y, z, \xi \in E, B \in \mathcal{\&}$, and $\bar{t}<\bar{u}$
and

$$
P\left\{\bar{s},\left(u_{1}, t_{2}\right), x, y, z, B\right\}=\int P\{\bar{s}, \bar{t}, x, \xi, z, d \eta\} P\left\{\left(t_{1}, s_{2}\right),\left(u_{1}, t_{2}\right), \xi, \eta, z, B\right\}
$$

$$
P\left\{\bar{s},\left(t_{1}, u_{2}\right), x, y, z, B\right\}=\int P\{\bar{s}, \bar{t}, x, \xi, z, d \eta\} P\left\{\left(s_{1}, t_{2}\right),\left(t_{1}, u_{2}\right), \xi, y, \eta, B\right\} \quad[5,11] .
$$

Definition 9: X is called an $*$-Markov field with transition function P, if for any $m \geq 1$ and $n \geq 1$, with $B_{i j} \in \mathbb{8}$ for $i=\overline{1, m}$ and for $j=\overline{1, n}$, with $\left(s_{i}, t_{j}\right) \in \mathbb{R}_{+}^{2}$, we have

$$
\begin{aligned}
& P\left\{\bigcap_{i=1}^{m} \bigcap_{j=1}^{n}\left(X_{s_{i} t_{j}} \in B_{i j}\right)\right\}=\int \ldots \int \prod_{i=1}^{m} \prod_{j=1}^{n} I_{B_{i j}}\left(x_{i j}\right) \\
& \quad \times P\left\{\left(s_{i-1}, t_{j-1}\right),\left(s_{i}, t_{j}\right), x_{i-1 j-1}, x_{i-1 j}, x_{i j-1}, d x_{i j}\right\} .
\end{aligned}
$$

It follows from [11] that any $*$-Markov field with transition function is a Markov field.
Now we define the families of functions $\left\{P^{1 t}\left\{s, y, s_{1}, B\right\}, 0 \leq s<s_{1}, B \in \mathcal{E}, t \geq 0, s_{1}>0\right\}$ and $\left\{P^{2 s}\left\{t, y, t_{1}, B\right\}, 0 \leq t<t_{1}, B \in \mathbb{E}, s \geq 0, t_{1}>0\right\}$ of the following kind:

$$
\begin{align*}
P^{10}\left\{s, y, s_{1}, B\right\} & =P^{20}\left\{t, y, t_{1}, B\right\}=I_{B}(y), \tag{10}\\
P^{1 t}\left\{s, y, s_{1}, B\right\} & =P\left\{(s, 0),\left(s_{1}, t\right), x, y, x, B\right\}, \tag{11}\\
P^{2 s}\left\{t, y, t_{1}, B\right\} & =P\left\{(0, t),\left(s, t_{1}\right), x, x, y, B\right] \tag{12}
\end{align*}
$$

(under the assumption that the right-hand sides do not depend on x). In this case, the collection ($P^{10}, P^{20}, P^{1 t}, P^{2 s}$) is called an $*$-transition function on ($E, 8$).

The following equalities are true for any $*$-Markov field with a transition function:

$$
\begin{aligned}
& P\left\{X_{s+u, t} \in B / F_{s}^{1}\right\}=P^{1 t}\left\{s, X_{s, t}, s+u, B\right\} \text { a.s. } \\
& P\left\{X_{s, t+v} \in B / F_{s}^{2}\right\}=P^{2 s}\left\{t, X_{s, t}, t+v, B\right\} \text { a.s. }
\end{aligned}
$$

and
for any $s, t, u, v \geq 0$ and $B \in \mathcal{E}$. Let $f: E \rightarrow R$ be a bounded measurable function. Set
and

$$
\begin{aligned}
T_{s, s_{1}, t}^{1} f(x) & =\int f(y) P^{1 t}\left\{s, x, s_{1}, d y\right\} \\
T_{t, t_{1}, s}^{2} f(x) & =\int f(y) P^{2 s}\left\{t, x, t_{1}, d y\right\}
\end{aligned}
$$

Then it follows from (10) through (12) that, for $0 \leq s<s_{1}<s_{2}$ and $0 \leq t<t_{1}<t_{2}$,

$$
\begin{aligned}
& T_{s_{1}, s_{2}, t}^{1} f(x)=T_{s s_{1}, t}^{1} T_{s_{1}, s_{2}, t}^{1} f(x), \\
& T_{t, t_{2}, s}^{2} f(x)=T_{t, t_{1}, s}^{2} T_{t_{1}, t_{2}, s}^{2} f(x) .
\end{aligned}
$$

Now, consider the case of the homogeneous $*$-Markov field x, for which

$$
P\{\bar{s}, \bar{t}, x, x, x, B\}=P\left\{0,\left(t_{1}-s_{1}, t_{2}-s_{2}\right), x, x, x, B\right\}=: \widetilde{P}\left(t_{1}-s_{1}, t_{2}-s_{2}, x, B\right)
$$

while

$$
P^{1 t}\left\{s, y, s_{1}, B\right\}=\widetilde{P}\left(s_{1}-s, t, x, B\right) \text { and } P^{2 s}\left\{t, y, t_{1}, B\right\}=\widetilde{P}\left(s, t_{1}-t, x, B\right) .
$$

Then, $T_{s, s_{1}, t}^{1} f(x)=\widetilde{T}_{s_{1}-s, t}^{1} f(x)$ and $T_{s, t_{1}, t}^{2} f(x)=\widetilde{T}_{s, t_{1}-t}^{2} f(x)$, where $\widetilde{T}_{s, t}^{1} f(x)=\widetilde{T}_{s, t}^{2} f(x)$. We denote their common value as $T_{s, t} f(x)$. Then $T_{s, t} f(x)$ is a coordinate-wise contractive semigroup on the space $B(E)$ of bounded measurable functions $f: E \rightarrow R$. Further, we consider only homogeneous fields.

Definition 10: Transition function $\widetilde{\sim}(s, t ; x, B)$ is said to be continuous in probability (P continuous), if for any $\epsilon>0, \lim _{\forall} \mathrm{t}_{t \rightarrow 0} \widetilde{P}\left(s, t, x, U_{\epsilon}(x)\right)=1$, where $U_{\epsilon}(x) \in \mathcal{8}$ is any ϵ-neighborhood of x. *-Markov field with a P-continuous transition function will be called a P-continuous field. The index ~ will be omitted.

Let us denote $C_{B}(E) \subset B(E)$ as the space of continuous bounded functions on E.
Lemma 7: The following conditions are equivalent.
(F_{1}) The field X is P-continuous.
$\left(F_{2}\right) \quad \lim _{u \rightarrow 0} P\left(u, v_{0}, x, U_{\epsilon}(x)\right)=\lim _{v \rightarrow 0} P\left(u_{0}, v, x, U_{\epsilon}(x)\right)=1$, for any $u_{0}, v_{0}, \epsilon>0$ and $x \in E$.
$\left(F_{3}\right) \quad \lim _{u \vee v \rightarrow 0} T_{u, v} f(x)=f(x)$ for any $f \in C_{B}(E)$ and $x \in E$.
(F_{4}) $\quad \lim _{u \rightarrow 0} T_{u, v_{0}} f(x)=\lim _{v \rightarrow 0} T_{u_{0}, v} f(x)=f(x)$ for any $f \in C_{B}(E)$ and $x \in E$.
Proof: Let us show $\left(F_{1}\right)$ implies $\left(F_{3}\right) . \operatorname{If~}_{u \vee v \rightarrow 0} P\left(u, v, x, U_{\epsilon}(x)\right)=1$, then

$$
\begin{array}{r}
\left.\lim _{u \vee v \rightarrow 0} \mid T_{u v} f(x)-f x\right)\left|=\lim _{u \vee v \rightarrow 0}\right| \int_{E}(f(y)-f(x)) P(u, v, x, d y) \mid \\
\leq \lim _{u \vee v \rightarrow 0}\|f\| P\left(u, v, x, E \backslash U_{\epsilon}(x)\right)+\sup _{z \in U_{\epsilon}(x)}|f(z)-f(x)|=\sup _{z \in U_{\epsilon}(x)}|f(z)-f(x)| .
\end{array}
$$

Since $\epsilon>0$ was arbitrary, we obtain $\left(F_{3}\right)$. The implication, $\left(F_{3}\right) \Rightarrow\left(F_{4}\right)$ follows from Lemma 1 . Let us show that $\left(F_{4}\right)$ implies $\left(F_{2}\right)$. Consider the function $f_{\epsilon} \in C_{B}(E)$ such that $f_{\epsilon}(y) \geq \alpha>0$ for $y \in E \backslash U_{\epsilon}(x)$ and $f_{\epsilon}(x)=0$. Then from $\left(F_{4}\right)$, we have
i.e., $\left(F_{2}\right)$ holds.

$$
\begin{gathered}
\lim _{u \rightarrow 0} P\left(u, v_{0}, x, E \backslash U_{\epsilon}(x)\right) \leq \alpha^{-1} \lim _{u \rightarrow 0} \int_{E \backslash U_{\epsilon}(x)} f_{\epsilon}(y) P\left(u, v_{0}, x, d y\right) \\
\leq \alpha^{-1} \lim _{u \rightarrow 0} T_{u v_{0}} f_{\epsilon}(x)=\alpha^{-1} f_{\epsilon}(x)=0,
\end{gathered}
$$

The implication, $\left(F_{2}\right) \Rightarrow\left(F_{4}\right)$, has a proof similar to the proof that $\left(F_{1}\right) \Rightarrow\left(F_{3}\right)$. The implication $\left(F_{4}\right) \Rightarrow\left(F_{3}\right)$ follows from Lemma 1. The implication, $\left(F_{3}\right) \Rightarrow\left(F_{1}\right)$ has a proof similar to the proof that $\left(F_{4}\right) \Rightarrow\left(F_{2}\right)$.

Definition 11: Transition function $P(s, t, x, B)$ is said to be Feller, if for any $\bar{t} \in \mathbb{R}_{+}^{2}$, $T_{\bar{t}}\left(C_{B}\right) \subset C_{B}$. The corresponding *-Markov field will be called a Feller field. (Note that if E is a compact set, then $C_{B}(E)=C(E)$, where $C(E)$ is the space of continuous functions.)

Theorem 6: 1) Let X be a P-continuous field. Then $T_{\bar{t}}=T_{1, t_{1} t_{2}}=T_{t_{1} t_{2}, 1}$ on $C_{B}(E)$.
2) Let E be a compact set and X be a P-continuous Feller field. Then $T_{\bar{t}}$ is a C_{0}-semigroup on $C(E)$.

Proof: 1) According to Lemma 7, for any $x \in E$ and $f \in C_{B}(E)$, with $u_{0}, v_{0}>0$,

$$
\lim _{u \downarrow 0} T_{u, v_{0}} f(x)=\lim _{u\rfloor 0} T_{u_{0}, v} f(x)=f(x) .
$$

Therefore from the boundedness of f and Lebesgue convergence theorem,

$$
\begin{aligned}
& \lim _{t_{1} \downarrow s_{1}} T_{t_{1}, s_{2}} f(x)=\lim _{u \downarrow 0} T_{\bar{s}} T_{u, s_{2}} f(x)=T_{\bar{s}} f(x), \\
& \lim _{\left.t_{2}\right\rfloor s_{2}} T_{s_{1}, t_{2}} f(x)=\lim _{v\rfloor 0} T_{\bar{s}} T_{s_{1}, v} f(x)=T_{\bar{s}} f(x) .
\end{aligned}
$$

Now, let $u_{n}=\frac{p_{n}}{q_{n}} \in Q^{+}, \frac{p_{n}}{q_{n}} \downarrow s_{1}$ as $n \rightarrow \infty$. Then for any $x \in E$ and $f \in C(E)$,

$$
T_{\bar{s}} f(x)=\lim _{n \rightarrow \infty} T_{u_{n}, s_{2}} f(x)=\lim _{n \rightarrow \infty} T_{1, u_{n} s_{2}} f(x)=T_{1}, s_{1} s_{2} f(x) .
$$

Therefore, $T_{\bar{s}}=T_{1, s_{1}, s_{2}}$ on $C_{B}(E)$. Similarly, $T_{\bar{s}}=T_{s_{1} s_{2}, 1}$ on $C_{B}(E)$.
2) Taking into account statement 1), we obtain that $\tilde{X}_{t}:=X_{1, t}$ is a homogeneous Markov $\underset{\sim}{P}$-continuous, Feller process. According to famous results for Feller processes, the semigroup $\widetilde{T}_{t}:=T_{1, t}, t \geq 0$, is continuous on $C(E)$. Therefore,

$$
\lim _{t \rightarrow \bar{s}}\left\|T_{t_{1}, t_{2}}-T_{s_{1}, s_{2}}\right\|=\lim _{t \rightarrow \bar{s}}\left\|T_{1, t_{1} t_{2}} f-T_{1, s_{1} s_{2}} f\right\|=0, \text { for } f \in C(E)
$$

i.e., $T_{t_{1}, t_{2}}$ is a C_{0}-semigroup.

The Hille-Yosida theorem for Feller fields on compact sets is similar to the one-parameter case.

Theorem 7: An operator A with domain $D(A)$ that is dense in $C(E)$ generates a P-continuous Feller field on the compact set E if and only if the following conditions are satisfied.
(G) a) There exists $\lambda>0$ such that $(\lambda I-A)(D(A))=C(E)$.
b) If $f \in D(A)$ and $f\left(x_{0}\right) \geq f(x)$, then $A f(x) \leq 0$.

Proof: If A generates a P-continuous Feller field, then from Theorem 1, A is a generator of a Feller one-parameter semigroup, $\widetilde{T}_{t}=T_{1, t}$, and necessity follows. If assumption (G) is satisfied, then from Theorem 1, there exists a semigroup $\widetilde{T}_{t}, t \geq 0$, such that $\widetilde{T}_{t}(C(E)) \subset C(E)$ and $\widetilde{T}_{t} f \rightarrow f$ as $t \rightarrow 0$ for any $f \in C(E)[2, \mathrm{p} .167]$. Let $T_{s, t}=\widetilde{T}_{s t}$. Then $T_{s, t}(C(E)) \subset C(E)$. Since $T_{s, t} f(x)$, for any s, t and x fixed, is a linear functional on $C(E)$, then there exists a measure $P(s, t, x, B)$ on 8 such that $T_{s, t} f(x)=\int f(y) P(s, t, x, B)$. Moreover, $P(s, t, x, E)=1$ and P is a transition function by the semigroup property of $T_{s, t}$. Now, as with the proof of Lemma 7, choose $f_{\epsilon}(y) \geq \alpha>0$ with $y \in E \backslash U_{\epsilon}(x), f(x)=0$ and $f \in C(E)$. Then

$$
P\left(s, t, x, \overline{U_{\epsilon}(x)}\right) \leq \alpha^{-1} T_{s, t} f(x)=\alpha^{-1} T_{1, s t} f(x) \rightarrow \alpha^{-1} f(x)=0 \text { as } s \vee t \downarrow 0 \text {, }
$$

i.e., the transition function is P-continuous. The construction of an $*$-Markov field with transition function P, under the assumptions of its Feller property and P-continuity, is realized in [6].

5. Diffusion Fields and Evolutions

Let $(E, \mathcal{B})=\left(\mathbb{R}^{n}, \mathfrak{B}\left(\mathbb{R}^{n}\right)\right), \bar{B}=R^{n} \backslash B, \Delta s=s_{2}-s_{1}$, and $\Delta t=t_{2}-t_{1}$.
Definition 12: An *-Markov field with transition function,

$$
P\left(s, t, s^{\prime}, t^{\prime}, x, B\right):=P\left\{(s, t),\left(s^{\prime}, t^{\prime}\right), x, x, x, B\right\}
$$

with

$$
(s, t),\left(s^{\prime}, t^{\prime}\right) \in \mathbb{R}_{+}^{2}, \quad(s, t) \leq\left(s^{\prime}, t^{\prime}\right), \quad x \in \mathbb{R}^{n}, \text { and } B \in \mathscr{B}\left(\mathbb{R}^{n}\right),
$$

is called a diffusion field, if the following conditions are true for any $\epsilon>0$ uniformly in $x \in K$ where K is any compact set, $K \subset \mathbb{R}^{n}$.

$$
\begin{gather*}
P\left(s_{1}, t_{1}, s_{2}, t_{2}, x, \overline{U_{\epsilon}(x)}\right)=o(\Delta s \Delta t) \tag{H}\\
P\left(s_{1}, t, s_{2}, t^{\prime}, x, \overline{U_{\epsilon}(x)}\right)=o(\Delta s) \\
P\left(s, t_{1}, s^{\prime}, t_{2}, x, \overline{U_{\epsilon}(x)}\right)=o(\Delta t) .
\end{gather*}
$$

and
b)
$\int_{U_{\epsilon}(x)}\left(y^{i}-x^{i}\right) P\left(s_{1}, t_{1}, s_{2}, t_{2}, x, d y\right)=b_{0}^{i}\left(s_{1}, t_{1}, x\right) \Delta s \Delta t+o(\Delta s \Delta t)$,

$$
\int_{U_{\epsilon}(x)}\left(y^{i}-x^{i}\right) P\left(s_{1}, t, s_{2}, t^{\prime}, x, d y\right)=b_{1}^{i}\left(s_{1}, t, t^{\prime}, x\right) \Delta s+o(\Delta s),
$$

and

$$
\int_{U_{\epsilon}(x)}\left(y^{i}-x^{i}\right) P\left(t_{1}, s, t_{2}, s^{\prime}, x, d y\right)=b_{2}^{i}\left(s, s^{\prime}, t, t_{1}, x\right) \Delta t+o(\Delta t)
$$

c)

$$
\int_{U_{\epsilon}(x)}\left(y^{i}-x^{i}\right)\left(y^{j}-x^{j}\right) P\left(s_{1}, t_{1}, s_{2}, t_{2}, x, d y\right)=a_{0}^{i j}\left(s_{1}, t_{1}, x\right) \Delta s \Delta t+o(\Delta s \Delta t),
$$

$$
\int_{U_{\epsilon}(x)}\left(y^{i}-x^{i}\right)\left(y^{j}-x^{j}\right) P\left(s_{1}, t, s_{2}, t^{\prime}, x, d y\right)=a_{1}^{i j}\left(s_{1}, t, t^{\prime}, x\right) \Delta s+o(\Delta s)
$$

and
as

$$
\int_{U_{\epsilon}(x)}\left(y^{i}-x^{i}\right)\left(y^{j}-x^{j}\right) P\left(t_{1}, s, t_{2}, s^{\prime}, x, d y\right)=a_{2}^{i j}\left(s, s^{\prime}, t_{1}, x\right) \Delta t+o(\Delta t)
$$

$$
\Delta s \rightarrow 0 \text { and } \Delta t \rightarrow 0 .
$$

Here,

$$
\left\{b_{0}^{i}, a_{0}^{i j}, i, j=\overline{1, n}\right\} \subset C\left(\mathbb{R}_{+}^{2} \times R^{n}\right) \text { and }\left\{b_{k}^{i}, a_{k}^{i j}, i, j=\overline{1, n}\right] \subset C\left(\mathbb{R}_{+}^{3} \times R^{n}\right) \text { for } k=1,2
$$

Remark 9: Different classes of diffusion fields on the plane were considered in [1, 3, 4, 7], similar class of diffusion processes were considered in [9, 10].

Let us introduce the notations,

$$
(b, \nabla f)=\sum_{i=1}^{n} b_{i} \frac{\partial f}{\partial x_{i}} \text { and }(a \nabla, \nabla f)=\sum_{i, j=1}^{n} a^{i j} \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}} .
$$

Consider the families of differential operators
and

$$
\begin{aligned}
& \ell_{0}(s, t, x) f=\frac{1}{2}\left(a_{0} \nabla, \nabla f\right)+\left(b_{0}, \nabla f\right), \\
& \ell_{1}\left(s, t, t^{\prime}, x\right) f=\frac{1}{2}\left(a_{1} \nabla, \nabla f\right)+\left(b_{1}, \nabla f\right)
\end{aligned}
$$

$$
\ell_{2}\left(s, s^{\prime}, t, x\right) f=\frac{1}{2}\left(a_{2} \nabla, \nabla f\right)+\left(b_{2}, \nabla f\right), \text { where } f \in C^{2}\left(\mathbb{R}^{n}\right) .
$$

Note that the following family of evolutions, $T_{s s^{\prime} t t^{\prime}}$, is connected in a natural way with the diffusion field

$$
T_{s s^{\prime} t t^{\prime}} f(x)=\int_{R^{n}} f(y) P\left(s, t, s^{\prime}, t^{\prime}, x, d y\right)
$$

where f is a bounded measurable function.
Denote $C_{f i n}^{2}=C_{f i n}^{2}\left(\mathbb{R}^{n}\right) \subset C^{2}\left(\mathbb{R}^{n}\right)$ as the space of functions with compact support.
Theorem 8: Let the diffusion field X satisfy the condition
(I) for any compact set $K \subset \mathbb{R}^{n}$ there exists a compact set $K^{\prime} \supset K$ such that

$$
P\left(s_{1}, t_{1}, s_{2}, t_{2}, x, K\right)=o(\Delta s \Delta t), \quad P\left(s_{1}, t, s_{2}, t^{\prime}, x, K\right)=o(\Delta s)
$$

and

$$
P\left(s, t_{1}, s^{\prime}, t_{2}, x, K\right)=o(\Delta t) \text { as } \Delta s \rightarrow 0 \text { and } \Delta t \rightarrow 0
$$

uniformly in $x \in \mathbb{R}^{n} \backslash K^{\prime}$. Then $C_{f i n}^{2} \subset D\left(A_{s t}^{ \pm}\right) \cap D\left(A_{s t t^{\prime}}^{1, \pm}\right) \cap D\left(A_{s s^{\prime} t t}^{2, \pm}\right)$ for any $\left(s, s^{\prime}, t, t^{\prime}\right) \subset$ \mathbb{R}^{4} and the following equalities hold on $C_{f i n}^{2}: A_{s t}^{ \pm}=\ell_{0}(s, t), A_{s t t^{\prime}}^{1,}=\mathcal{L}^{1}\left(s, t, t^{\prime}\right)$ and $A_{s s^{\prime} t}^{2, \pm}=$
$\mathcal{L}^{2^{+}\left(s, s^{\prime}, t\right) \text {. }}$

Proof: Consider one of the generators, $A_{s t}^{+}$, for example. Let $f \in C_{f i n}^{2}, f=0$ if $x \bar{\in} K$. It follows from (I) that

$$
\sup _{x \bar{\epsilon} K^{\prime}}\left|\frac{1}{h k}\left(T_{(s, h)}{ }_{(t, k)^{+}} f(x)-f(x)\right)-\ell_{0}(s, t, x) f\right|
$$

$$
\begin{array}{r}
=\sup _{x \bar{\epsilon} K^{\prime}}(h k)^{-1}\left|\int_{K} f(y) P(s, t, s+h, t+k, x, d y)\right| \\
\leq\|f\| \sup _{x \bar{\epsilon} K^{\prime}}(h k)^{-1} P(s, t, s+h, t+k, x, K) \rightarrow 0, \text { as } h \vee k \downarrow 0 . \tag{13}
\end{array}
$$

Furthermore, the functions $f, \frac{\partial f}{\partial x_{i}}$ and $\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$ are bounded and uniformly continuous on the set $K_{\delta}=\bigcup_{x \in K^{\prime}} U_{\delta}(x)$. For any $\epsilon>0$ the value $\delta>0$ can be chosen in such a way that

$$
\left|\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x)-\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(y)\right|<\epsilon \text { if } x, y \in K_{\delta}, \quad|x-y|<\delta .
$$

Now choose $\lambda>0$ in such a way that all $o()$ in (H) be less then $\epsilon \Delta s \Delta t$ for $\Delta s \vee \Delta t<\lambda$ and for any $x \in K^{\prime}$. Put the Taylor expansion,

$$
f(y)=f(x)+\left(f^{\prime}, y-x\right)+\frac{1}{2}(y-x)^{T} f^{\prime \prime}(y-x)+\alpha\left|y-x^{2}\right|,
$$

where $|\alpha|=|\alpha(x, y)| \leq \frac{1}{2} n^{2} \epsilon$ for $|y-x|<\delta$, into the following estimations

$$
\begin{aligned}
& \quad \sup _{x \in K^{\prime}}\left|(h k)^{-1}\left(T_{(s, h)^{+}(t, k)}+f(x)-f(x)\right)-\ell_{0}(s, t, x) f\right| \\
& \sup _{x \in K^{\prime}}\left|(h k)^{-1}\left(\int_{U_{\delta}(x)} f(y) P(s, t, s+h, t+k, x, d y)-f(x)\right)-\ell_{0}(s, t, x) f\right| \\
& \quad+\sup _{x \in K^{\prime}}(h k)^{-1} \int_{U_{\delta}(x)}|f(y)-f(x)| P(s, t, s+h, t+k, x, d y) \\
& \leq \sup _{x \in K^{\prime}}(h k)^{-1} \int_{U_{\delta^{\prime}(x)}}|\alpha(x, y)||y-x|^{2} P(s, t, s+h, t+k, x, d y)+C \epsilon \\
& \leq \frac{1}{2} n^{2} \operatorname{csup}_{x \in K^{\prime}}\left|\sum_{i=1}^{n} a_{0}^{i i}(s, t, x)\right|+C \epsilon
\end{aligned}
$$

where

$$
\begin{equation*}
C=2\|f\|+n \max _{i}\left\|\frac{\partial f}{\partial x_{i}}\right\|+\frac{n^{2}}{2} \max _{i j}\left\|\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right\| . \tag{14}
\end{equation*}
$$

The proof follows from (13) and (14).
Corollary 1: Let the functions b_{1}^{i} and $a_{1}^{i j}$, be continuously differentiable in t and t^{\prime} and let b_{2}^{i} and $a_{2}^{i j}$ be continuous differentiable in s and s^{\prime}. Then from Remark 5, we obtain that, on the space $C_{f i n}^{2}$,

$$
\ell_{1}\left(s, t, t^{\prime}, x\right) f=\int_{t}^{t^{\prime}} \ell_{0}(s, v, x) f d v_{1} \text { and } \ell_{2}\left(s, s^{\prime}, t, x\right) f=\int_{s}^{s^{\prime}} \ell_{0}(u, t, x) f d u .
$$

Furthermore, we consider the condition
(J) the transition function P has a density

$$
P\left(s, t, s^{\prime}, t^{\prime}, x, B\right)=\int_{B} p\left(s, t, s^{\prime}, t^{\prime}, x, y\right) d y, \text { for } B \in \mathscr{B}\left(\mathbb{R}^{n}\right) .
$$

Suppose that the conditions (I) and (J) are satisfied. Consider each operator \mathcal{L}_{k}^{*} that is formally adjoint of ℓ_{k} :

$$
\mathcal{L}_{k}^{*}=\frac{1}{2} \nabla \nabla\left(a_{k} f\right)-\nabla\left(b_{k} f\right), \text { for } k=0,1,2
$$

where
and

$$
\begin{gathered}
\nabla \nabla(a f)=\sum_{i, j=1}^{n} \frac{\partial^{2}}{\partial y_{i} \partial y_{j}}\left(a^{i j} f\right) \\
\nabla(b f)=\sum_{i=1}^{n} \frac{\partial}{\partial y_{i}}\left(b^{i} f\right) .
\end{gathered}
$$

Let $C>0, \varphi>0, C=C\left(s, t, s^{\prime}, t^{\prime}, y\right) \in C\left(\mathbb{R}_{+}^{4} \times \mathbb{R}^{n}\right)$ and $\varphi=\varphi(x) \rightarrow 0$ while $|x| \rightarrow \infty$. We say that the function g satisfies the (C, φ) condition, if $|g| \leq C \varphi$. We say that the set E of functions satisfies (C, φ)-condition if every element of it satisfies this condition. Let also,

$$
T=\left\{f \in C^{2}\left(\mathbb{R}^{n}\right): \max \left(|f|,\left|\frac{\partial f}{\partial x_{i}}\right|,\left|\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right|\right) \leq \varphi(x)\right\} .
$$

Theorem 9: 1) Let $\left\{p, \frac{\partial p}{\partial s}, \frac{\partial p}{\partial t}, \frac{\partial^{2} p}{\partial y_{i} \partial y_{i}}\right\} \subset C\left(\mathbb{R}_{+}^{4} \times \mathbb{R}^{2 n}\right)$. Then $\frac{\partial p}{\partial s^{\prime}}=\ell_{1(y)}^{*}$ and $\frac{\partial p}{\partial t^{\prime}}=\ell_{2(y)}^{*} p$, where index y means that the operator ℓ_{1}^{*} is applied to p as a function of y under fixed x.
2) Let $A^{i, \pm}=\ell_{i}, i=1,2$ on the set T; let

$$
\left\{p, \frac{\partial p}{\partial s}, \frac{\partial p}{\partial t}, \frac{\partial^{2} p}{\partial x_{i} \partial x_{i}}\right\} \subset C\left(\mathbb{R}_{+}^{4} \times \mathbb{R}^{2 n}\right)
$$

and let $p, \frac{\partial p}{\partial x_{i}}$ and $\frac{\partial^{2} p}{\partial x_{i} \partial x_{j}}$ satisfy the (C, φ)-condition. Then $\frac{\partial p}{\partial s}=-\ell_{1(x)} p$ and $\frac{\partial p}{\partial t}=-\ell_{2(x)} p$.
Proof: The scheme of the proof is the same in both cases, so we prove only 2). Let $f \in C_{f i n}^{(2)}$, with

$$
\begin{equation*}
T_{s s^{\prime}, t t^{\prime}} f(x)=\int_{R^{n}} p\left(s, t, s^{\prime}, t^{\prime}, x, y\right) f(y) d y \tag{15}
\end{equation*}
$$

The (C, φ)-condition permits us to differentiate (15) under the integral sign:

$$
\frac{\partial T}{\partial s}=\int_{R^{n}} \frac{\partial p}{\partial s} f(y) d y, \frac{\partial T}{\partial x_{i}}=\int_{R^{n}} \frac{\partial p}{\partial x_{i}} f(y) d y, \frac{\partial^{2} T}{\partial x_{i} \partial x_{j}}=\int_{R^{n}} \frac{\partial^{2} p}{\partial x_{i} \partial x_{j}} f(y) d y .
$$

The (C, φ)-condition also ensures that $T_{\left\{s^{\prime}, t t^{\prime}\right.} f \in T$, whence

$$
A_{s t^{\prime}}^{1} T_{s s^{\prime} t t^{\prime}} f(x)=\int_{R^{n}} \sum_{1} \mathfrak{l}_{1}^{\prime}\left(s, t, t^{\prime}, x\right) p\left(s, t, s^{\prime}, t^{\prime}, x, y\right) f(y) d y
$$

Since $f \in C_{f i n}^{2}$ is arbitrary, we obtain that $\frac{\partial p}{\partial s}=-\ell_{1}\left(s, t, t^{\prime}, x\right) p$. (The second equality in 2) is proved the same way.)

Denote $D_{x}^{k} g$ as the family of partial derivatives of g in x of order k.
Theorem 10: 1) Suppose the following conditions are satisfied.

$$
\begin{aligned}
& \left(K_{1}\right) \text { a) }\left\{a_{l}^{i j}, p\right\} \subset C^{(4)}\left(\mathbb{R}_{+}^{4} \times \mathbb{R}^{n}\right), \\
& \quad\left\{a_{0}^{i j}, b_{l}^{i}\right\} \subset C^{(2)}\left(\mathbb{R}_{+}^{4} \times \mathbb{R}^{n}\right) \text { and } b_{0}^{i} \in C^{(1)}\left(\mathbb{R}_{+}^{4} \times \mathbb{R}^{n}\right) \text { for } l=1,2 \text { and } i, j=\overline{1, n .}
\end{aligned}
$$

b) The set

$$
\left\{\frac{\partial p}{\partial s^{\prime}}, \frac{\partial p}{\partial t^{\prime}}, \frac{\partial^{2} p}{\partial s^{\prime} \partial t^{\prime}}, \frac{\partial^{2} p}{\partial t^{\prime} \partial s^{\prime}}\right\} \subset C\left(\mathbb{R}_{+}^{4} \times \mathbb{R}^{2 n}\right)
$$

and satisfies (C, φ)-condition.
Then

$$
\begin{equation*}
\frac{\partial^{2} p}{\partial s^{\prime} \partial t^{\prime}}=\mathcal{L}_{0(y)}^{*}\left(s^{\prime}, t^{\prime}\right) p+\mathcal{L}_{1(y)}^{*}\left(s^{\prime}, t, t^{\prime}\right) \mathcal{L}_{2(y)}^{*}\left(s, s^{\prime}, t^{\prime}\right) p \tag{16}
\end{equation*}
$$

2) Suppose the following conditions are satisfied.
$\left.\left(K_{2}\right) a\right) A^{i}=\mathfrak{L}^{i}$ on the set T for $i=0,1,2$.
b) $\left\{\frac{\partial z}{\partial t}, \frac{\partial z}{\partial t^{\prime}}, \frac{\partial u}{\partial s}, \frac{\partial u}{\partial s^{\prime}}, \quad z=a_{1}^{i j}, b_{1}^{i}, u=a_{2}^{i j}, b_{2}^{i}\right\} \subset C\left(\mathbb{R}_{+}^{4} \times \mathbb{R}^{2 n}\right)$.
c) The set $\left\{p, \frac{\partial p}{\partial s}, \frac{\partial p}{\partial t}, \frac{\partial^{2} p}{\partial s \partial t}, \frac{\partial^{2} p}{\partial t \partial s}\right\} \subset C\left(\mathbb{R}_{+}^{4} \times \mathbb{R}^{2 n}\right)$ and satisfies (C, φ)-condition.
d) The set $\left\{D_{x}^{k} p, k=\overline{0,4}\right\} \subset C\left(\mathbb{R}_{+}^{4} \times \mathbb{R}^{2 n}\right)$ and satisfies (C, φ)-condition.
e) The set

$$
\left\{D_{x}^{k}\left(a_{0}^{i j} \frac{\partial^{2} p}{\partial x_{i} \partial x_{j}}\right), D_{x}^{k}\left(b_{0}^{i} \frac{\partial p}{\partial x_{i}}\right), D_{x}^{k}\left(a_{0}^{i j}\right), D_{x}^{k}\left(b_{0}^{i}\right), k=0,1,2\right\} \subset C\left(\mathbb{R}_{+}^{4} \times \mathbb{R}^{2 n}\right)
$$

and satisfies (C, φ)-condition.
Then

$$
\begin{align*}
& \frac{\partial^{2} p}{\partial s \partial t}=\mathscr{L}_{0(x)}(s, t) p+\ell_{1(x)}\left(s, t, t^{\prime}\right) \ell_{2(x)}\left(s, s^{\prime}, t\right) p \\
& \quad=\mathscr{L}_{0(x)}(s, t) p+\mathscr{L}_{2(x)}\left(s, s^{\prime}, t\right) \ell_{1(x)}\left(s, t, t^{\prime}\right) p \tag{17}
\end{align*}
$$

3) Suppose the following conditions are satisfied.
$\left.\left(K_{3}\right) a\right) A^{i}=\mathcal{L}^{i}$ on the set T for $i=0,1$.
b) The set $\left\{p, \frac{\partial p}{\partial s}, \frac{\partial p}{\partial t^{\prime}}, \frac{\partial^{2} p}{\partial t^{\prime} \partial s}, \frac{\partial^{2} p}{\partial s \partial t^{\prime}}\right\} \subset C\left(\mathbb{R}_{+}^{4} \times \mathbb{R}^{2 n}\right)$ and satisfies (C, φ)-condition.
c) $\left\{D_{x}^{k} p, D_{y}^{k} p, D_{x}^{k} D_{y}^{l}\left(a_{2}^{i j} p\right), D_{x}^{k} D_{y}^{m}\left(b_{2}^{i} p\right), k=\overline{0,2}, l=2, m=1\right.$,

$$
D_{x}^{k}\left(a_{0}^{i j}\right), D_{x}^{k}\left(b_{0}^{i}\right\} \subset C\left(\mathbb{R}_{+}^{4} \times \mathbb{R}^{2 n}\right)
$$

and satisfies (C, φ)-condition.
Then

$$
\begin{equation*}
\frac{\partial^{2} p}{\partial t^{\prime} \partial s}=-\mathcal{L}_{0(y)}^{*}\left(s, t^{\prime}\right) p-\mathcal{L}_{1(x)}\left(s, t, t^{\prime}\right) \mathcal{L}_{2}^{*}(y)\left(s, s^{\prime}, t^{\prime}\right) p \tag{18}
\end{equation*}
$$

If, in addition, $\left(K_{2}\right)$ b), d) and e) hold, then

$$
\frac{\partial^{2} p}{\partial t^{\prime} \partial s}=-\ell_{0(x)}\left(s, t^{\prime}\right) p-\ell_{1(x)}\left(s^{\prime}, t, t^{\prime}\right) \ell_{2(y)}^{*}\left(s, s^{\prime}, t^{\prime}\right) p
$$

4) Under conditions $\left(K_{3}\right)$ where we change $i=0,1$ to $i=0,2$ in $\left(K_{3}\right)$ a), if we change $\frac{\partial}{\partial s}$ on $\frac{\partial}{\partial s^{\prime}}$ and $\frac{\partial}{\partial t^{\prime}}$ on $\frac{\partial}{\partial t}$ in $\left(K_{3}\right)$ b) and if we change $a_{2}^{i j}$ and b_{2}^{i} to $a_{1}^{i j}$ and b_{1}^{i}, then we have that

$$
\begin{equation*}
\frac{\partial^{2} p}{\partial t \partial s^{\prime}}=-\mathcal{L}_{0(y)}^{*}\left(s^{\prime}, t\right) p-\mathcal{L}_{2(x)}\left(s, s^{\prime}, t\right) \mathcal{L}_{1(y)}^{*}\left(s, t, t^{\prime}\right) p \tag{19}
\end{equation*}
$$

If, in addition, $\left(K_{2}\right)$ b), d) and e) hold, then

$$
\frac{\partial^{2} p}{\partial t \partial s^{\prime}}=-\mathscr{L}_{0(x)}\left(s^{\prime}, t\right) p-\mathscr{L}_{2(x)}\left(s, s^{\prime}, t\right) \mathscr{L}_{1}^{*}(y)\left(s, t, t^{\prime}\right) p
$$

Proof: We prove only 1) and 2) (the other parts are proved in the same way).

1) Let $f \in C_{f i n}^{2}$. Then assumption $\left(K_{1}\right) b$) implies that

$$
\frac{\partial^{2} T}{\partial s^{\prime} \partial t^{\prime}}=\int_{R^{n}} \frac{\partial^{2} p}{\partial s^{\prime} \partial t^{\prime}} f(y) d y
$$

Assumption (I) ensures that

$$
\begin{gathered}
A_{s^{\prime} t^{\prime}} f(x)=\ell_{0}\left(s^{\prime}, t^{\prime}, x\right) f=\left(a_{0} \nabla, \nabla f\right)+\left(b_{0}, \nabla f\right), \\
A_{s^{\prime} t t^{\prime}}^{\prime} f(x)=\ell_{1}\left(s^{\prime}, t, t^{\prime}, x\right) f=\left(a_{1} \nabla, \nabla f\right)+\left(b_{1}, \nabla f\right),
\end{gathered}
$$

and the last expression belongs to $C_{f i n}^{2}$. Therefore,

$$
\begin{gathered}
A_{s s^{\prime} t^{\prime}}^{2} A_{s^{\prime} t t^{\prime}}^{1} f(x)=\ell_{2}\left(s, s^{\prime}, t^{\prime}, x\right) \ell_{1}\left(s^{\prime}, t, t^{\prime}, x\right) f \\
=\left(a_{2} \nabla, \nabla \ell_{1} f\right)+\left(b_{2}, \nabla \ell_{1} f\right) .
\end{gathered}
$$

Fulfillment of the conditions $\left(E_{8}\right)$ and $\left(E_{9}\right)$ is obvious. Furthermore, from statements 5) and 6) of Theorem 5 and from the assumptions $\left(K_{1}\right) a$),

$$
\begin{gather*}
\int_{R^{n}} \frac{\partial^{2} p}{\partial s^{\prime} \partial t^{\prime}} f(y) d y=\int_{R^{n}} p\left(s, t, s^{\prime}, t^{\prime}, x, y\right)\left[\sum_{i, j} a_{0}^{i j}\left(s^{\prime}, t^{\prime}, y\right) \frac{\partial^{2} f(y)}{\partial y_{i} \partial y_{i}}+\sum_{i} b_{0}^{i}\left(s^{\prime}, t^{\prime}, y\right) \frac{\partial f(y)}{\partial y_{i}}\right] d y \\
+\int_{R^{n}} p\left(s, t, s^{\prime}, t^{\prime}, x, y\right)\left[\sum_{i, j} a_{2}^{i j}\left(s, s^{\prime}, t^{\prime}, y\right) \frac{\partial^{2}\left[\ell_{1}\left(s^{\prime}, t, t^{\prime}, y\right) f(y)\right]}{\partial y_{i} \partial y_{j}}\right. \\
\left.\quad+\sum_{i} b_{2}^{i}\left(s, s^{\prime}, t^{\prime}, y\right) \frac{\partial\left[\ell_{1}\left(s^{\prime}, t, t^{\prime}, y\right) f(y)\right]}{\partial y_{i}}\right] d y \\
\int_{R^{n}}\left[\sum_{i, j} \frac{\partial^{2}}{\partial y_{i} \partial y_{j}}\left(a_{0}^{i j}\left(s^{\prime}, t^{\prime}, y\right) p\right)-\sum_{i} \frac{\partial}{\partial y_{i}}\left(b_{0}^{i}\left(s^{\prime}, t^{\prime}, y\right) p\right)\right] f(y) d y \\
\quad+\int_{R^{n}}\left[\sum_{i, j} \frac{\partial^{2}}{\partial y_{i} \partial y_{i}}\left(a_{2}^{i j}\left(s, s^{\prime}, t^{\prime}, y\right) p\right) \ell_{1}\left(s^{\prime}, t, t^{\prime}, y\right) f\right. \\
\left.\quad-\sum_{i} \frac{\partial}{\partial y_{i}}\left(b_{2}^{i}\left(s, s^{\prime}, t^{\prime}, y\right) p\right) \ell_{1}\left(s^{\prime}, t, t^{\prime}, y\right) f\right] d y \\
=\int_{R^{n}}\left[\ell_{0(y)}^{*}\left(s^{\prime}, t^{\prime}\right) p\right] f(y) d y+\int_{R^{n}}\left[\ell_{2(y)}^{*}\left(s, s^{\prime}, t^{\prime}\right) p\right] \ell_{1}\left(s^{\prime}, t, t^{\prime}, y\right) f d y . \tag{20}
\end{gather*}
$$

The second integral in (20) can also be transformed by integration by parts, and we obtain that

$$
\int_{R^{n}} \frac{\partial^{2}}{\partial s^{\prime} \partial t} f(y) d y=\int_{R^{n}}\left[\mathcal{L}_{0(y}^{*}\left(s^{\prime}, t^{\prime}\right) p\right] f(y) d y+\int_{R^{n}}\left[\mathcal{L}_{1(y)}^{*}\left(s^{\prime}, t, t^{\prime}\right) \mathcal{L}_{2(y)}^{*}\left(s^{\prime}, s^{\prime}, t^{\prime}\right)\right] f(y) d y .
$$

By virtue of an arbitrary choice of $f \in C_{f i n}^{4}$ and by $\left(K_{1}\right) b$) and Remark 8 , we obtain (16).
2) Note that conditions $\left(K_{2}\right) a$) and b), Remark 5 and Corollary 1 imply that $\mathcal{L}^{1}\left(s, t, t^{\prime}\right)=$
$\int_{t}^{t^{\prime}} \ell_{0}(s, v) d v$ and $\mathscr{L}^{2}\left(s, s^{\prime}, t\right)=\int{ }_{s}^{s^{\prime}} \ell_{0}(u, t) d u$ on T. Condition $\left.\left(K_{2}\right) 3\right)$ implies that

$$
\frac{\partial^{2} T}{\partial s \partial t}=\int_{R^{n}} \frac{\partial^{2} p}{\partial s \partial t} f(y) d y
$$

for any $C_{f i n}^{2}$. Also from $\left.\left(K_{2}\right) c\right), T_{s s^{\prime}, t t^{\prime}} f \in T$. Condition $\left(K_{2}\right) d$) gives us that
and also,

$$
A_{s t} T_{s s^{\prime} t t^{\prime}} f(x)=\ell_{0}(s, t, x) T_{s s^{\prime}, t t^{\prime}} f=\int_{R^{n}}\left[\ell_{0}(s, t, x) p\right] f(y) d y
$$

$$
A^{i} T f(x)=\ell^{i} T f=\int_{R^{n}}\left[\ell^{i} p\right] f(y) d y=\left\{\begin{array}{c}
\int_{R^{n}}\left[\int_{s}^{s^{\prime}} \ell_{0}(u, t) p d u\right] f(y) d y, i=2 \\
\int_{R^{n}}\left[\int_{t}^{t^{\prime}} \ell_{0}(s, v) p d v\right] f(y) d y, \quad i=1
\end{array}\right.
$$

Under conditions (K_{2})d) and e), $A^{i} T f \in T$; therefore,

$$
A_{s t t^{\prime}}^{1} A_{s s^{\prime} t}^{2} T_{s s^{\prime}, t t^{\prime}} f(x)=\int_{R^{n}}\left[\ell_{1}\left(s, t, t^{\prime}\right) \ell_{2}\left(s, s^{\prime}, t\right) p\right] f(y) d y
$$

We must verify conditions $\left(E_{1}\right)$ and $\left.\left(E_{2}\right) .\left(E_{1}\right) a\right)$ and b) are evident. Since the derivatives $\frac{\partial^{2} T}{\partial s \partial t}$ and $\frac{\partial^{2} T}{\partial t \partial s}$ exist, it follows from Remark 7 that we must verify only $\left(E_{1}\right) d$). From Remark 6 , it is sufficient to verify $\left(E_{3}\right) .\left(E_{3}\right) a$) follows from $\left(K_{2}\right) b$). To show $\left(E_{3}\right) b$), let $g(x)=T_{s s^{\prime}, t t^{\prime}} f(x)$, $g_{1}(x)=T_{u s^{\prime}, t t^{\prime}} f(x)$. Then from $\left.\left(K_{2}\right) d\right)$ and e) and Lemma 5, part 1), we get that

$$
\begin{gathered}
\left\|A_{u t}\left(\frac{1}{h} \Delta^{1} T_{h s, t t^{\prime}} g\right)\right\|=\left\|A_{u t}\left(\frac{1}{h} \int_{s-h}^{s} A_{v t t^{\prime}}^{1} T_{u s, t t^{\prime}} g d v\right)\right\| \\
\leq \sup _{v \in[s-h, s]}\left\|A_{u t} A_{v t t^{\prime}}^{1} g_{1}\right\| .
\end{gathered}
$$

From $\left.\left(K_{2}\right) a\right), b$ and e), Remarks 5 and Corollary 1,

$$
\begin{gather*}
A_{u t} A_{v t t^{\prime}}^{1} g_{1}=\int_{t}^{t_{\prime}} A_{u t} A_{v v^{\prime}} g_{1} d v^{\prime} \\
-\int_{t}^{t^{\prime}}\left(\sum_{i j} a_{0}^{i j}(u, t, x) \frac{\partial^{2}}{\partial x_{i} \partial_{j}}+\sum_{i} b_{0}^{i}(u, t, x) \frac{\partial}{\partial x_{i}}\right) \\
\times\left(\sum_{k, l} a_{0}^{k l}\left(v, v^{\prime}, x\right) \frac{\partial^{2} g_{1}(x)}{\partial x_{k} \partial x_{l}}+\sum_{k} b_{0}^{k}\left(v, v^{\prime}, x\right) \frac{\partial g_{1}(x)}{\partial x_{k}}\right) d v^{\prime} . \tag{21}
\end{gather*}
$$

Since $f \in C_{f i n}^{2}$ and because condition $\left(K_{2}\right) d$) is satisfied, each derivative $D^{k} g_{1}(x)$ for $k=\overline{1,4}$ is bounded in the following sense:

$$
\begin{equation*}
\left|D^{k} g_{1}(x)\right|=\left|\int_{K} D^{k} p f(y) d y\right| \leq \varphi(x) \int_{K} C\left(u, t, s^{\prime}, t^{\prime}, y\right) f(y) d y \leq C_{1}\left(t, s^{\prime}, t^{\prime}\right) \tag{22}
\end{equation*}
$$

where $u \in[s-\delta, s], s>0$ and $K \supset \operatorname{supp} f$.
Any term in (21) has the form,

$$
c_{0}^{i j}(u, t, x) D^{p} d_{0}^{k l}\left(v, v^{\prime}, x\right) D^{r} g_{1}(x)
$$

where $p=1,2, r=\overline{1,4}$, and $c_{0}, d_{0}=a_{0}$ or b_{0}. Then from $\left.\left(K_{2}\right) e\right)$ and (22), each of them is uniformly bounded in x. Hence $\left(E_{3}\right) b$) follows. Condition $\left(E_{2}\right)$ is verified in the same way. From Theorem 4, our proof follows.

Remark 10: As in the one-parameter case [10], under the assumption that $A^{k}=\mathscr{L}^{k}$ on $C_{f \text { in }}^{2}$ and

$$
a_{k}^{i j} \varphi(x) \rightarrow 0, b_{k}^{i} \varphi(x) \rightarrow 0, \text { as }|x| \rightarrow \infty, \text { for } k=0,1,2
$$

it follows that $A^{k}=\mathscr{L}_{k}$ for such f that each of the functions $f, \frac{\partial f}{\partial x}, \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$ is majorized by $C \varphi(x)$
for sufficiently large x.
Remark 11: A particular case of equation (16) was considered in [3, 4].

References

[1] Gikhman, I.I., A model of a diffusion field of two arguments, Theory of Random Processes 16 (1984), 15-20 (in Russian).
[2] Gikhman, I.I. and Skorohod, A.V., Theory of Random Processes 2, Nauka, Moscow, Russia 1973 (in Russian).
[3] Hoy, L., Kolmogorov backward equations to diffusion-type random fields, Electron. Inform. Sverarb. Kybernet. 20:7-9 (1984), 505-510.
[4] Hoy, L., Semigroup properties of Markov processes with a several dimensional parameter, Lecture Notes Control and Inform. Sciences 96 (1987), 45-50.
[5] Korezlioglu, H., Lefort, P. and Mazziotto, G., Une proprété Markovienne et diffusions associeés, Lecture Notes Math 863 (1981), 245-274.
[6] Mazziotto, G., Two-parameter hunt processes and a potential theory, Annals of Probab. 16:2 (1988), 600-619.
[7] Nualart, D., Two-parameter diffusion processes and martingales, Stoch. Processes and Appl. 15:1 (1983), 31-57.
[8] Reed, M. and Simon, B., Methods of Modern Mathematical Physics 1, Academic Press, New York 1975.
[9] Stroock, D.W. and Varadhan, S.R.S., Multidimensional Diffusion Processes, SpringerVerlag, New York 1975.
[10] Ventzel, A.D., Theory of Random Processes, Nauka, Moscow, Russia 1975 (in Russian).
[11] Zhou, X.-W. and Zhou, I.-W., Sample function properties of two-parameter Markov processes, Stoch. Processes and Appl. 47:1 (1993), 37-52.

