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ABSTRACT

It is known that practical stability is neither stronger nor weaker than
Lyapunov stability. In this paper we combine perturbing Lyapunov technique
with stability in terms of two measures to obtain nonuniform practical stability
results under weaker assumptions. We also use comparison methods to obtain
these results.
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1. Introduction

It is well-known [6] that stability and even asymptotic stability themselves are neither
necessary nor sufficient to ensure practical stability. The desired state of a system may be mathe-
matically unstable; however, the system may oscillate sufficiently close to the desired state, and
its performance is deemed acceptable. It is also known [6] that practical stability is neither
weaker nor stronger than the usual stability; an equilibrium can be stable in the usual sense, but
not practically stable, and vice versa. Practical stability is, in a sense, a uniform boundedness of
the solution relative to the initial conditions, but the bound must be sufficiently small.

Lyapunov’s second method, also known as the direct method, is a widely recognized and
used technique for studying the stability of nonlinear systems. This method employs the
construction of a Lyapunov function. Unfortunately, a Lyapunov function may not satisfy all the
desired conditions. As a result, one may find it more advantageous to perturb that Lyapunov
function as opposed to discarding it [5]. Also, through the use of two measures [5], rather than
the usual norm, one can unify a variety of earlier known boundedness and stability results.

In this paper, we obtain practical results via perturbing Lyapunov function techniques
and in terms of two measures. We also use the comparison method to obtain our results. These
result refine the earlier results in [5], and are analogous to the composite boundedness results in

Printed in the U.S.A. (C)1996 by North Atlantic Science Publishing Company 69



70 DONNA STUTSON and A.S. VATSALA

2. Prehminaries

Let us list the following definitions and classes of functions:

K -[r E C[[p, oe), + ]" or(u) is strictly increasing and

CK-[aC[R+ x[p,),+]: a(t,u)@Kforeacht@R+],
F-[hC[+ xn,R+]" inf h(t,x)-OforeachtR+].

xRn

Consider the differential system

x’- f(t,x)

Z(o) Zo, o >-
(2.1)

where f E C[+ x n,n]. We shall assume, for convenience, that f is smooth enough to ensure

global existence of solutions of (2.1).
Definitions: Let ho, h F. Then differential system (2.1) is said to be

(PS1) (ho, h)-practically stable if given (,, A) with 0 < , < A, we have ho(to, Xo) < , implies
h(t,x(t)) < A, for some to e +, where x(t) x(t, to, Xo) is any solution of (2.1);

(PS2) (ho, h)-uniformly practically stable if (PS1) holds for all to +;
(PS3) (ho, h)-practically quasi-stable if given (,,T,B)> 0 and some to +, we have

ho(to, Xo) < A implies h(t,x(t)) < B, t >_ to + T;
(PS4) (ho, h)-uniform practically-quasi stable if (PS3) holds for all to G +;
(PSh) (ho, h)-strongly practically stable if (PS1) and (PS3) hold together;
(PS6) (ho, h)-strongly uniformly practically stable if (PS2) and (PS4) hold together;
(S1) (ho, h)-equi-attractive in the large if for each > 0, a > 0 and to G +, there exists a

positive number T- T(to,,a) such that ho(to, Xo) < a implies h(t,x(t)) < ,
t>to+T;

($2) (ho, h)-uniformly attractive in the large if (S1) holds for T T(, c);
(PST) (ho, h)-asymptotically practically stable if (PSi) and (S1) hold together with a .

See [3, 5] for more definitions.

We will need the following theorem to develop our main results [5].
Theorem 2.1: Let Y(t,x) C[+ xn,+] and Y(t,x) is locally Lipschitzian in x for

c +each t G +. Assume further that the fun tion D V(t,x) satisfies

D+V(t,x)<_g(t,V(t,x)), (t,x)+ n,

where g G C[N + x N,N]. Let r(t) r(t, to, Uo) be the maximal solution of

’ (t, ), (to) o

existing on J [to, o + a), 0 <_ a <_ cx. Then for any solution x(t) x(t, to, Xo) of (2.1) existing
on J,V(to, Xo) < uo implies that V(t,x(t)) < r(t), J.

3. Main Results

(A1)
Theorem 3.1" Assume that
(A,A)>O with O < A < A;
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(A2)

(A3)

(A4)

(A5)

(A6)

(AT)

ho, hl,h2 G F, hl(t,x(t)) <_ l(t,x(t)), h2(t,x(t)) <_ 92(t, ho(t,x(t))), whenever
ho(t,x(t)) < A and 9l(t,x(t)), 992(t,x(t)) CK;
Vo(t x) e C[R + x Un, R + ], Vo(t x) is locally Lipschitzian in x and
(a) Vo(t,x < ao(t, ho(t,x)) for (t,x) eff(ho, a), where ao(t,x e CK;
() D + Vo() o(t. Vo) o. + wh o(t. ) C[U + + .];
Vl(t,x G C[N + x SC(hl,) S(hl,A),N + ], Vl(t,x is locally Lipschitzian in x and
(a) bl(hl(t,x)) Vl(t,x);
(b) Vl(t,x al(hl(t,x)) + Vo(t,x);
(c) D + (Vl(t,x + VO(t,x)) gl(t, Vl(t,x + VO(t,x)) on SC(hl,A) SC(hl,) where

al,bIGK andgl(t,w) GC[N+ xN+,N];
Fo ac A > () > O, V(t.) e C[U + S(h:.A) S(h:.r(a)) S(hl. r(a)), u + ];
V2(t,x is locally Lipschitzian in x and
(a) V2(t,x a2(hl(t,x + h2(t,x)) + Vo(t,x on S(h2, A SC(h2, L()) S(hl,L());
() :(h:.(t, )) < v:(t, ) o. S(h:, A) S(h:, ()) S(h, ());
(c) D+(V2(t,x+Vo(t,x))g2(t, V2(t,x)+Vo(t,x)) on S(h,A)SC(h2, L(1))

S(h1, ()), h a:. e It" a.d :(t. ) e C[U + +.
al(A + ao(to, < bl(A), a2(2A + 3ao(to, < b2(A), l(to,)< A and 2(to,)< A
hold for some to +

’ o(t, ), (to) o (.)

w’ gl(t, w), W(to) w0 (2.3)

v’ g2(t, v), v(to) vo. (2.4)

If (2.2) is practically stable, (2.3) and (2.4) are uniformly practically stable, then the system (2.1)
is (ho, hI)-practically stable and (ho, h2)-practically stable.

Proof: Since (2.2) is practically stable with respect to (ao(to, A),ao3(to, A) > O, then
uo < ao(to, A) implies

u(t)<ao(to, A), t>_to for some oR+. (2.5)

Suppose ho(to, Xo) < A for some solution x(t)- x(t, to, Xo) of (2.1). Then from assumptions (A2)
and (A6) we have that hl(to, Xo)<_ Wl(to, A)-ct1 < A. Let r]-max{A,Cl}. If (2.1)is not
(ho, h1)-practically stable, there exists tI and t2 such that t2 > I > to,

hl(tl,X(tl))-], hl(t2, x(t2))-A and

r <_ hl(t,x <_ A for e It1, t2], whenever ho(to, Xo) <_ A.
(2.6)

By assumption (A3)(a), Vo(to, Xo) <_ ao(to, A), and by (A2)(b), D + Vo(t,x <_ go(t, Vo(t,x)) on

[to, tl]. Therefore, by Theorem 2.1,

Vo(t, x) _< o(t, to, Vo(to, o))

where ro(t to, Vo, to, Xo) is the maximal solution of (2.2). Consequently,

Vo(t,x(t)) <_ ao(to, A on [to, t1] (2.7)

by (2.5). Also, (2.3)is uniformly practically stable with respect to (al(A) + 3ao(to, A), hi(A))>
0. Therefore,
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wo < al(A + 3ao(to,, implies that w(t) < bl(A), t >_ to, (2.8)

for any to E R+. By assumption (A4)(b) and (2.6),

Vl(tl,x(tl)) + Vo(tl,x(tl) <_ al(hl(tl,x(tl)))-t- 2Vo(tl,x(tl)

_< al(r/) + 2(a2(t0, ))
_< al(r/) + 3ao(to,/)

_< aI(A) + 3ao(to, ,)

and

D + (Vl(t,x(t))+ Vo(t,x(t)) <_ gl(t, Vl(t,x(t))+ Vo(t,x(t)) on [tl, t2].

Therefore, by Theorem 2.1,

Vl(t,x(t))-- Vo(t,x(t)) <_ rl(t, t1, Vl(tl,x(tl)) + Vo(tl,x(tl)))

where rl(t, tl,Vl(tl,x(tl))+ Vo(tl,x(tl)))is the maximal solution of (2.3).
(A4)(a) and (2.8), we obtain

Consequently, by

bl(A) _< Vl(t2, x(t2))+ Vo(t2, x(t2)) < bl(A), (2.9)

which is a contradiction. Hence, (2.1) is (ho, hj)-practically stable.

Next we show that (2.1) is (h0, h2)-practically stable. If x(t, to, Xo) is some solution of
(2.1) satisfying ho(to, Xo) < ,. Then, by assumption (A1) A > a2 P2(to,,) >_ h2(to, Xo). Choose
L(1) such that A> L(,)> max{,,a2}. Since (2.1)is (h0, hl)-practically stable, and given
(,,L(,)) > 0, we have that ho(to, Xo)< , implies that hl(t,x(t))< L(), t>_ to. We claim that
(2.1) is (ho, h2)-practically stable. If this is not the case, then there exist 2 and t1 such that t2 >
tI > t0,

h2(tl,x(tl) L(A), h2(t2, x(t2) A and

L(A) <_ h2(t,x(t)) <_ A for E [tl,t2] whenever ho(to, Xo) <_ . (2.10)

Using the fact that (2.4) is uniformly practically stable with respect to (a2(2L(A))+ 3ao(to,,),
b2(A)) > 0, we have that

vo < a2(2L(,))+ 3ao(to,, implies v(t)< b2(A), >_ to, (2.11)

3 [to, tj] andfor any o G R +. As before, Vo(t,x <_ -ao(to, ) on

V2(tl,x(tl)) + Vo(tl,x(tl)) <_ a2(2L()))+ 3ao(to,/),

by (As)(c). Also, D + (V2(t,x(t))+ Vo(t,x(t)) <_ g2(t, V2(t,x(t))+ Vo(t,x(t)) ).
by Theorem 2.1,

Consequently,

V2(t x(t)) + Vo(t x(t))

_
r2(t tl, V2(tl, x(t 1)) -k- Vo(t 1, x(t1))),
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where r2(t, tl,V2(tl,x(tl) + Vo(tl,x(tl)))is the maximal solution of (2.4) on [tl,t2].
by (2.10), (2.11)and assumption (A5)(b),

Therefore

<_ + < (2.12)

This results in a contradiction; therefore, (2.1) is (h0, h2)-practically stable.

The next theorem gives conditions for which one can obtain uniform practical stability.

Theorem 3.2: Assume that the assumptions of Theorem 3.1 hold, except that (A1)
(A2)(a) and (A6) are strengthened to
(A) hl(t,x(t)) <_ l(ho(t,x(t))), h2(t,x(t)) <_ 2(,ho(t,x(t))), whenever ho(t,x(t)) < , and

l(t,x(t)), 2(t,x(t)) E K;
(A2) (a*) Vo(t,x <_ ao(ho(t,x)) for (t,x) e S(ho,/), where ao(t,x K;
(A) al(A + 3a0() < bl(A), a2(2A -t- 3a0(. < b2(A), 91(,) < A and 992(,) < A hold for

t0ER +
f (.), (.) a (.4) a iom acticat ta, t (.1) i (0,1) a (o,:)-io,-
ly practically stable.

Proof: The proof follows along the same lines as in Theorem 3.1 since the conclusions
now holds for all to .

Under similar conditions, one can also obtain strongly uniformly practical stability
results.

Theorem 3.3: Assume that the assumptions of Theorem 3.2 hold, with (As) holding on
[ + x S(h2, A f’l S(hl,L()). Then, system (2.1) is (ho, hl)-uniformly practically stable and
(ho, h2)-strongly uniformly practically stable, provided (2.2) and (2.3) are uniformly practically
stable and (2.4) is strongly uniformly practically stable.

Proof: By Theorem 3.1, (2.1) is (h0, hl)-uniformly practically stable and (h0, h2)-uniform-
ly practically stable. Therefore, it suffices to prove that (2.1) is (h0, h2)-uniformly practically
quasi-stable with respect to (),A,B,T)> 0. Suppose (2.4) is uniformly practically-quasi stable
with respect to (3a0() + a2(2A), b2(A), b2(B), T)> 0. Then,

vo < 3ao(A + a2(2A implies that v(t) < b2(B), t > to + T,

for any to N+, where v(t, to, Wo) is any solution of (2.4). Suppose x(t, to, Xo) is any solution of
(2.1) satisfying ho(to, Xo) < "0" Then h2(t,x < A, t >_ to and hl(t,x < i(,), t >_ to. Proceeding
as in the proof of Theorem 3.1, we obtain

Vo(t,x(t)) + V2(t,x(t)) <_ r2(t o + T, Vo(t0 + T, xo) + V2(t0 + T, xo) < b2(B),

t>_t0+T. Consequently, h2(t,x) < B, >_ o + T, since

_< Vo(t, + v (t, z(t)) < >_ to +

Hence, (2.1) is (h0, hl)-uniformly practically stable and (h0, h2)-strongly uniformly practically
stable.

The following two theorems provide us with the assumptions needed to establish a

combination of practical stability and stability.

Theorem 3.4: Let the assumptions of Theorem 3.1 hold with (As) holding on + x

S(h2, A) NS(hl, L())). Then, (2.1) is (ho, hl)-practically slable and (ho, h2)-asymptotically practi-
cally stable, provided (2.4) is uniformly asymptotically practically stable, (2.3) is uniformly
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practically stable and (2.2) is practically stable.

Proof: Let e > 0, ( < A). From Theorem 3.1, (2.1) is (h0, hl)-practically stable with res-

pect to (A,L(A)) and (h0, h2)-practically stable with respect to (A,A). Therefore, it suffices to
show that ($1) holds for a- A. Since (2.4) is uniformly practically asymptotically stable, given

1 b2(e), to C R +, c1 2a0(t0, A) + a2(L(A + A), there exists a T(, A) such that

v0 < o1 implies that v(t) < 1 b2(), t > to + T.

By assumptions (A3)and (A5)(a), we have that

Vo(to, X(to) + V2(to, X(to) <_ a2(L($ + A)+ 2ao(to, ,k) oz1.

We also have by (A5) that

D + (Vo(t,x(t)) + V2(t,x(t)) <_ g2(t, Vo(t,x(t)) + V2(t,x(t)) ).

Consequently, by Theorem 2.1,

Vo(t,x(t)) + V2(t,x(t)) <_ r2(t, to, Vo(to, x(to)) + V2(to, x(to)) < b2(e).

As a result, we obtain h2(t,x(t))< , since

b2(h2(t,x(t))) <_ V2(t,z(t)) <_ Vo(t,x(t)) + V2(t,x(t)) < b2(),

t k to + T. This completes the proof.

Theorem 3.5: Let the assumptions of Theorem 3.2 hold with (A5) holding on +
S(h2, A) g S(hl, L(,k)). Then, (2.1) is (ho, h1)-uniformly practically stable and (h0, h2)-uniformly
asymptotically practically stable provided (2.2) is uniformly practically stable, (2.4) is uniformly
asymptotically practically stable and (2.3) is uniformly practically stable.

Proofi The proof the the uniform practical stability follows along the same lines as in
Theorem 3.1; whereas, the proof for the uniformly attractive in the large is the same as that in
Theorem 3.3.

As a special case of the above theorem, we have the following corollaries which do not
require the knowledge of the comparison equations.

3.1 Corollaries

Corollary 3.1: Assume that assumptions (A1) through (A6) of Theorem 3.1 hold with
assumptions (A3)(b), (A4)(c) and (As)(C) replaced by

(A3) (b*) D + Vo(t,x(t)) <_ 0 on + n;
(A4) (c*) D + (Vo(t,x(t)) + Vl(t,x(t)) <_ 0 on SC(hl,) S(hl,A);
(A5) (c*) .D + (Vo(t x(t)) + V2(t x(t))) < 0 on S(h2, A) f3 S(hl, L(&)) n SC(h2, L(&)).

Then, (2.1) is (ho, hl) and (ho, h2)-practically stable.

Corollary 3.2: Assume that the assumptions (A1) through (A6) of Theorem 3.2 hold with
assumptions (A3)(b), (A4)(c) and (A5)(c) replaced by assumptions (A3)(b*), (A4)(c*) and
(As)(C*) in Corollary 3.1. Then, (2.1)is (ho, h) and (ho, h2)-practically stable.

Corollary 3.3: Assume that assumptions (A1.) through (A6) of Theorem 3.4 hold with
assumption (A5)(c) replaced by
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(A) (c*) D + (Vo(t x(t)) + V2(t x(t))) <_ C(h2(t x(t))) on S(h2, A) N S(hl, L(A)).
Then, (2.1) is (ho, h1)-practically stable and (ho, h2)-asymptotically practically stable.

The proofs of the above corollaries can be obtained by appropriate modifications of the
proofs in our main results.
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