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ABSTRACT

Existence principles and theorems are established for the nonlinear problem
Lu- f(t, u) where Lu- -(pu’)’+ hu is a quasi-differential operator and f is a

Carathodory function. We prove a maximum principle for the operator L and
then we show the validity of the upper and lower solution method as well as the
monotone iterative technique.
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1. Introduction

The linear equation

-(p(t)u’(t))’+ h(t)u(t) O, (1.1)

is one of the most widely studied differential equations in the mathematical literature. In the
mid-1800s, Sturm and Liouville observed that even for p 1 there is no closed form available in
general, and they started a study of the qualitative properties of the solutions. On the other
hand, it is obvious that one of the most relevant areas of research in the qualitative theory of dif-
ferential equations is the study of existence of periodic solutions. Consequently we shall study the
periodic boundary value problem for some linear and nonlinear equations related to the quasi-dif-
ferential operator

Lu -(pu’)’+ hu. (1.2)
After imposing some conditions on p and introducing the new independent variable x- f ,

so that (1.1) becomes c

-v"+H(x)v--O, (1.3)
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we study the operator L in the form (1.2) since it is symmetric (formally self-adjoint) and many
of the celebrated equations of mathematical physics appear as in (1.2). For the relation between
these two forms for second and higher order differential equations, the reader is referred to [4] and

We consider the following periodic boundary value problem

(pu’)’ + hu f(t, u), for a.e. G I --[0, 2r] (1.4)

u(0) u(2r), u’(0) u’(2r). (1.5)
Throughout this paper, we shall refer to the nonlinear problem (1.4), (1.5) as (NP), and

further, we shall assume that the coefficient functions p and h satisfy
(i) p G WI’I(/) (Sobolev space of first order), p(t) >_ P0 > 0, p(0) p(2r).
(ii) h LI(I), h > 0; that is, h(t) > 0 for a.e. I and h(t) > 0 on a subset of I of positive

measure.

Also, the function f:I x lRIR is assumed to satisfy the Carathodory conditions; that is,
I(’,u) is measurable for every u R, I(t,’) is continuous for a.e. t e I, and for every R > 0
there exists a function h/ LI(I) with

If(t, u) <_ hR(t for a.e. t G I and every u <_ R. (1.6)
By a solution of (NP) we mean a function u e W2’1(I) satisfying the equation for a.e. t e I

and u(0)- u(2r), u’(0)- u’(2r), where W2’1(I) denotes the Sobolev space of second order [3]. If
p 1 and h- M > 0 then Lu- -u" + Mu and we extend the well-known results for the exis-
tence of periodic solutions of -u"-f(t,u) for f continuous (see [5], [8]) and for f a Caratho-
dory function (see [9]).

We first prove a maximum principle for the operator L with periodic boundary conditions.
In particular, we obtain that L is invertible and that the corresponding Green’s function is non-

negative. This allows us to give some existence results.

In section 3 we define the concept of upper solution, , and lower solution, ct. If a _< then
(NP) has at least one solution between c and . In the study of (NP) the function F(t)-

](t,)
limsuplul--* u plays an important role. In 4, we show that h > F implies that (NP) is

solvable. Finally, under a one-sided Lipschitz condition, we show that validity of the monotone
iterative method that approximates the minimal and maximal solutions between c and/3.

2. Preliminary Results

In this section, we present some results concerning the linear problem

p(u’)’ + hu (2.1)

(2.2)

where r LI(I). We shall refer to problem (2.1), (2.2) as (LP).
Theorem 2.1" Assume r @ LI(I) and r > O.

u(t) >_ 0 for a.e. e I.
Then, any solution u of (LP) is such that

Proof: Since u is a solution of (LP),



Periodic Solutions of Quasi-Differential Equations 13

2r 27r 2r

0 0 0

2" 2"w

Thus, f h(t)u(t)dt- f c(t)dt.
0 0 2r

Now, if u < 0 on I, then hu (_ 0 and hence f {r(t)dt (_ 0, which is a contradiction with the
0

condition on r. Hence, u(tM) rnax{u(t);t E I} )_ O. Let us show that the minimum of u is non-
negative. Assume U(trn rnin{u(t);t E I} < 0. If m (0,27r) and trn < tM, let (trn,tM)
with u(t) < 0 on (t,, t1), u(tl) 0. Then hu <_ 0 on (tin, t1), and hence

(pu’)’)_ (pu’)’ + hu {r, a.e. on (tm, 1),

which shows that pu’ is decreasing on (tin, tl). Since tm is minimum of u, u’(t,)- O, and hence
pu’<_ 0 on (tin, tl). Also, from (i) it follows that u’(t)<_ 0 on (t, tl) and thus u(t) is decreasing
on (tin, tl) which is a contradiction. If tm > tM, let t2 (tM, tin) with u(t) > O, t (t2, trn), and
u(t2)- 0. As before, we have that pu’ is decreasing on (t2, t). Now, from u’(tm)-0 we get
that u’>_ 0 on (t2, tin) and that u is increasing on (t2, trn), which is again a contradiction.

Next, assume the minimum to be attained at trn- O. Then u’(0) >_ 0. It follows that t- 27r
is also minimum, and hence u’(2r) _< 0 and u’(0)- 0. The proof follows as in the previous case.

Remark 2.1" The conclusion of the previous theorem is still valid if we replace the periodic
conditions by u(0)- u(2r), u’(0)<_ u’(2r).

Corollary 2.1" (LP) (with r- O) has only the trivial solution.

Proof: Multiplying (2.1) by u and integrating over [0,2r] we get

271"

f [p(s)(u’(s)) + h(s)u2(s)]ds O.
o

Thus, u 0.

Corollary 2.2: (LP) has a unique solution u, given by

27r

/ a(t,
0

where G(t,s) is the Green’s function corresponding to (LP) for cr- O.

Proof:
form

It is enough to construct the Green’s function G(t,s). Write (2.1) in the following

u"(t) + a(t)u’(t) + b(t)u(t) c(t),

where a(t)- p’(t)/p(t), b(t)- -h(t)/p(t)and c(t)- -r(t)/p(t).

Let ul,u2 be two linearly independent solutions of the homogeneous equation (2.1) with
a- 0. Then, the general solution of (2.1) is given by

271"
ltl(t)lt2(S - u2(t)ltl(St(t) c1111(t + c21t2(t -+- W(s)

0
where W is the Wronskian of u and u2. The derivative of u is given by

(2.4)
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27r

’(t) c’l(t) + c’(t) + /
0

tti(t)tt2(8 -t- lt(t)t/l(8
w()

To determine c and c2, we use (2.2) and get the following system

where
i(o)- i() (o)- (.) c2

27r
tt1(UTr)lt2(8 + tt2(U7r)tt1(8

w() c(s)ds,

dl
d2 )’

27I"
ui(27r)u2(s + u2(27r)u1(s)

w() c(s)ds.

It follows from Corollary 2.1 that the above system has a unique solution

c: i(o)- i() (o)-() d:
Substituting the values of c and c2 into (2.4) we obtain the unique solution u(t) of (LP).

2r
Moreover, u(t) has the form f G(t,s)a(s)ds, with a uniquely determined function G(t,s), which

0
satisfies all the properties of the Green’s function. [-!

Lemma 2.1: Let 7 E LI(I) with 0 > 7. Then there exists 6(7 6 > 0 such that

27r

B.(u) B(u) / {p(t)[u’(t)]2 "/(t)u2(t)}dt > 5 II u II 2

H(),
0

where Hi(I) denotes W2’1(I)[31
Proof: In L2(I) consider the following inner product

27t"

(u, v)p f p(t)u(t)v(t)dt,
0

which is equivalent to the usual one. We first show that B(u) 0 if and only if u 0. Obvious-
27r

ly u- 0 implies B(u)- O. Let B(u)- O. Thus u is constant on I since B(u)>_ f p(t)[u’(t)]2dt.
2r 0

Consequently, 0 u2 f 7(t)dt and u 0.
0

If the conclusion of the lemma is not true, then there exists a sequence {Vn} in HI(I) such
2 Let un Vn/[I Vn [I HI(I)" Thus (passing to a subsequence) we havethat B(vn) < II v II ul(i)

that {B(u,)}+0, {un}--+u in C(7 ), {Un}-+u (weak)in Hi(I)and {u’}--+u’ (weak)in L2(I).
27r 27r

Thus f p(t)[u’(t)]2dt <_ liminff p(t)[u’n(t)]2dt and
o 0
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2r 2"

lim p(t)[un(t)]2dt
0 0

-7(t)u2(t)dt.

2r 2r
Hence, B(u) <_ 0 and u- 0 which implies that f p(t)[u’n(t)]2dt 0 and f u2n(t)dt O.

0 0
From this we obtain that lim [I Un II 1 0 which is a contradiction. V1

noo H (I)
Remark 2.2: If 71,72 E LI(I) satisfy 0 > 72 >- 71, then we can take 5(71)

_
5(72) > 0 since

27r

B.,/l(tt) / [fl(tt’)2-71tt2] > / [fl(tt’)2-72tt2] > 5(72)II tt II HI(z)
0 0

Now, let W- {u e w2’l(l);u(O)-u(2r)- u’(0)-u’(2r)-0}. From corollaries 2.1 and 2.2
we have that L: W-LI(I) is invertible and L-1 iS the integral operator whose kernel is G.

We end this section with the following result concerning (NP).
Theorem 2.2" Suppose f:I x NHN is a bounded function in the Carathodory class. Then

(NP) has at least one solution.

Proof: Let N’LI(I)-LI(I) be defined by (iu)(t)- f(t,u(t)). Since f is bounded, there
exists a constant co such that

If(t, u) _< Co, V(t, u) I x N.

This implies that N maps LI(I) into the closed ball of radius 2rc0 in LI(I). Consequently (see
[1, Ch. 3]), N is continuous. Also, (NP) is equivalent to the fixed point problem

where T o L- 1 o N, i" LI(I)-L(I) being the inclusion.

Note that there exists a constant c > 0 such that II Tu II _< c for all u LI(I). Therefore, all
solutions of u-;Tu, [0,1] are bounded. This implies that T has a fixed point [11, Th.
4.3.2], and hence, problem (NP) has at least one solution. V1

3. Upper and Lower Solutions

We say that c W2’1(I) is a lower solution of (NP), if

-(pc’)’+ hc <_ f(t, c), a.e t I

o(0) o(2’) (3.1)
>_

Similarly, we say that /3 E W2’1(I) is an upper solution of (NP), if

-(p’)’+ h >_ f(t, ), a.e t G I

/3(0) =/3(2r) (3.2)
<_

Next, we will show that the existence of lower and upper solutions with c <_ is a sufficient
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condition to guarantee the existence of solution of (NP) in the sector [a,/]--{u E w2’l(I);
a(t) <_ u(t)<_/3(t),Vt}). Relative to a, consider the following functions p(t,u)- max{a(t),
rnin{u,(t)}}, F(t, u)- f(t, p(t, u)), and the modified problem

+ e(t,
(3.3)

Since F(t,u) is a Carathodory function on I, and moreover, it is bounded, it follows
from Theorem 2.2 that (3.3) has a solution.

Theorem 3.1" Suppose that a, fl are lower and upper solutions for (1.4), (1.5) respectively,
such that a(t) <_ fl(t) for every I. Then there exists at least one solution u of (NP) such that
a(t)

_
u(t)

_
fl(t) for every I.

Proof: It is clear that the modified problem (3.3) coincides with (NP) in the sector [a,/3].
Hence, it will suffice to show that any solution of (3.3) lies between a and ft. Let us show that
a _< u. (That u </3 is obtained in an analogous way.)

2rr 2r

2Let us suppose that u(t) < a(t), Vt e I. Since -(pu’)’+ hu F(t,u), f (pu’)’+ f hu

f f(t,a), and using the properties of p and (3.3), 0 0

0

27["

If(s, a(s)) h(s)u(s)]ds

27r

> 0.

which is a contradiction. Hence, there exist points t’ I such that a(t’) <_ u(t’).
Consider the function (t) a(t)- u(t) and take to I with (to) rnax{(t);t I}. Next

assume that (to)>0 and take tlI with p(tl)_<0. If to(0,2u) and to<tl, take t2(to,tl)
such that (t2) 0, (t) > 0 for all t [to, t2).

Since -(pa’)’ + ha <_ f(t, a) and p(t, u) a in [to, t2) -(pu’)’ + hu f(t, a), and hence, p99’
is increasing on [to, t2). Since ’(t0)- 0, ’(t)> 0, Vt E [t0, t2). This shows that is increasing
in [to, t2) which is a contradiction. If o > tl, the result will be obtained in the same way (see the
proof of Theorem 2.1).

Next, if a attains its maximum at t0-0 a’(0)_ 0. Since t-2 is also maximum,
’(2r) >_ 0. Now, since ’(0)>_ 99’(27r), y)’(0) must equal 0, and the result follows as in the pre-
vious case.

If a is a constant lower solution then a must satisfy

h(t)a<_f(t,a) for a.e. t I.

Analogously, if/ is a constant upper solution, then h(t)/ >_ f(t,/) for a.e. I.
the following corollary.

Corollary 3.1" Assume that

f(t,u)
u <_ h(t) for u sufficiently large and a.e. I.

Thus we obtain
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Then (NP) has at least one solution.

Proofi Let R>0 be such that R _h(t) for a.e. tGI. Hence /3(t)-R, tGI is an upper

solution. Similarly a(t) r < 0 I with ](t,r)
r <_ h(t) for a.e. I is a lower solution.

4. Existence Results

We first consider the problem

(pu’)’ + hu cu + r (4.1)

(o) (2), ’(o) ’(2) (4.2)

where c,r LI(I).
If h > c on I then by Corollary 2.2 (4.1), (4.2) has exactly one solution. To extend this result

to (NP) we need some % priori" estimates for the solutions of the nonlinear problem.

Lemma 4.1: Suppose that there exists 7 LI(I) with 0 > 7 and [0,5), where 5 is defined
by Lemma 2.1, with

c(t) <_ h(t) + 7(t) + for a.e. t G I.

Then there exists a > 0 such that

I[ u II HI(I) --< a(5 )- 1 II II L1

for any solution of (4.1), (4.2).
Proof: Multiply (4.1) by u and integrate on I to get

Hence,

27r 27r 27r

p(t)[u’(t)]2dt + J [h(t)-c(t)]u(t)2dt- /
0 0

r(t)u(t)dt.

27r 27r

0 0

27["

{p(t)[u’(t)]2 7(t)u(t)2}dt /
0

u2(t)dt

L2(I)
> ()II II 2 - II II 2

HI(I) L2(I)
> (-)1111 HI(I)"

On the other hand,
2r

cr(t)u(t)dt <_ [[ cr ]] LI(I 11 u [[ LCX(i)

_
a I] r [I LI(I)

0

< a(( )- II r II LI(I)In consequence, I[U II HI(I)_
Theorem 4.1" Suppose that there exists 7 LI(1) with 0 > 7 and
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(t,)h(t) + 7(t) >_ F(t) limsup u

uniformly for a.e. E I. Then the nonlinear problem (NP) has at least one solution.

Proof: There exists M > 0 such that ul >_ M implies

f(t,u)
u <_ h(t) -+- 7(t)+ , for a.e. t E I.

Define

(t, )

](t,M)
M

](t, -M)
-M

0<u<M

-M<u<0

(t)+(t) =0

and d(t, u) f(t, u) g(t, u)u.
It is easy to see that g and d are Carathodory functions such that

g(t,u) <_ h(t)+ 7(t)+, for u and a.e. t I

and

d(t, u) <_ sup f(t,u)- g(t, u)u
lul <_M

Thus, (NP) is equivalent to

(p’)’ + (t, ) + (t,)

(o) (2), ’(o)= ’(2).

This suggests to consider the following homotopy:

(pu’)’ + hu [(1 )-y + (1 )h + g(t, u)]u + d(t, u), (4.3)

(o) (2),
Equation (4.3) is equivalent to

u’(0) u’(29r). (4.4)

(pu’)’- 7u [- 7u hu + g(t, u)u + d(t, u)]. (4.5)

If L.: W2,1(I)-LI(I) is defined by Lu (pu’)’- 7u with 7 > O, then the set of equations
(4.3), (4.4)is equivalent to

u ,(L- o N)u (4.6)

where Nu 7u hu + g(t, u)u + d(t, u).
On the other hand, (4.3) is of the form (4.1) with

c(t) (1 A)7(t)+(1 A)h(t)+ Ag(t, u(t))
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and (t)- Ad(t, u(t)). We have that

c(t) <_ (1 A)[h(t) + 7(t)] + A[h(t) + 7(t)] + A
<_ h(t) + 7(t)- 2’

<211 and Ad(t, u(t)) <_ 2hM(t for a.e. G I, which implies that II r II LI(I)- M (I)
Consequently,

< a 2 ]1 hM II LI(/) 4a5- 1]] hM ]] LI(I)[I [I HI(I)-
and all the solutions of (4.3), (4.4) are bounded independently of A E (0, 1).

In consequence, by [11, Th. 4.3.2], (4.6) has a fixed point for A- 1 which is a solution of
(NP).

5. The Monotone Method

In this section we assume that a is a lower solution and /3 is an upper solution of (NP)
respectively, such that c _</3 on I.

We introduce the following additional hypothesis: There exists M E LI(I) with M(t) >_ 0 for
a.e. t I, and

f(t, u) f(t, v) >_ M(t)(u v), a(t) <_ v <_ u <_ (t).
Next, for each 1] LI(I), consider the modified problem

(5.1)

(Lu)(t)+ M(t)u(t) f(t, 1](t))+ M(t)1](t) r(t)
(.)

(0) (2), ’(0) ’(2).

Note that, since rn G LI(I) and M(t) >_ 0 for a.e. t G I, then (5.2) has a unique solution since
h + M > 0. Define an operator A" LI(I)--E by A1] u to be the solution of (5.2). The basic pro-
perties of A are summarized in the following.

Lemma 5.1" Assume that (5.1) holds. Then the operator A has the following properties.
1. If 1] G LI(I) is such that a <_ 1] <_ for a.e. t I, then

a <_ A1] <_ , for a.e. I.

Ifl]1,112 LI(I) are such that c <_ 111 112 -- t for a.e. G I, then

c < A1] <_ A1]2 < fl, for a.e. G I.

Proof: Let us show that c _< A1] for a.e. G I. (The case A1] _</3 can be proved similarly.)

Let v-u-a, where u-A1]. From (5.1) it follows that (Lv)(t)+M(t)v(t)>_O for a.e. tI.
Moreover, v(0) v(2r) and v’(0) <_ v’(2r). Also note that h + M > 0. Hence v >_ 0 for a.e. t I
as a consequence of Remark 2.1, and thus c _< u A1].

To prove the second part, put v-u2-ul, where ui- A1]i, (i-1,2). Then (Lv)(t)+
M(t)v(t) >__ 0 for a.e. I, and the result follows as before.
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Theorem 5.1: Suppose lhat a and are lower and upper solutions of (1.4), (1.5) respectively,
such that a <_/. Assume that condition (5.1) holds. Then there exists monotone sequences {an)
{tim} such that

1. {an} is increasing and {tim} is decreasing.
2. an - /m for any n,m E N.
3. g -liman is the minimal solution of (NP) in In, ].
4. /? -lim/?m is the maximal solution of (NP) in In,/].

Moreover, if u is a solution of (NP) with u In, fl], then u [’ fl ].
Proof: Let a0-a and define {an} inductively by an+l -Ann, for n >_ 0. Similarly, let

/0 -/ and /m + 1 Afire for m >_ 0. It follows now from the previous lemma that {an} is in-
creasing and {tim} is decreasing. Also, an <_/?m for all n, m G N.

Therefore, {an} is uniformly bounded and increasing, and it has a pointwise limit, say (t),
t G I. Using the integral representation for an + given by (2.3) and by standard arguments, it
can be shown that is a solution of (NP) and properties 1-4 are valid.
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