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The properties of the solution set of stochastic inclusions
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1. INTRODUCTION

There is a large number of papers (see for example [11, [4] and [5]) dealing
with the existence of optimal controls of stochastic dynamical systems described

by integral stochastic equations. Such problems can be described (see [10]) by
stochastic inclusions (SI(F, G,H))of the form

x x, e ClL F,.(x.)dr + G(z)dw + H,(x)V (d,, dz)
8 8 8 n

where the stochastic integrals are defined by Aumann’s procedure (see [7], [9]).

The results of the paper are concerned with properties of the set of all

solutions to SI(F,G,H). To begin with, we recall the basic definitions dealing
with set-valued stochastic integrals and stochastic inclusions presented in [10].
We assume, as given, a complete filtered probability space (f,,(tt)t>o,P),
where a family (t)t>0, of a-algebras 5t C is assumed to be increasing:. C t if s _< t. We set N+ [0, c), and %+ will denote the Borel a-algebra on
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R+. We consider set-valued stochastic processes (F,),_>o,(,),>o and

(t.), >o..e", aking on values from he space Comp(l") of all nonempy
compacg subsegs of n-dimensional Euclidean space N". They are assumed go be

predictable and such ha Ef II , II dt < oo, p >_ 1, E f II g, II dt < oo d
o o

i i II ,,, II 2dtq(dz) < oo, where q is a meazure on he Borel a-algebra %’ of
oRn- d II A I1" = p{l I’ e A}, A e Comp("). The space Comp(N") is

considered with the Hausdorff metric h defined in the usual way, i.e.,

h(A, B) = maz{ (A, B), (B, A)}, for A, B Comp(R"), where (A, B)
= {dist(a, B): a e A} and (B, A) = {dist(b, A): b e B}. Although the classical

theory of stochastic integrals (see [3], IS], [12]) usually deals with measurable and

t-adapted processes, it can be finally reduced (see [4], pp. 60-62) to predictable

ones.

2. BASIC DEFINITIONS AND NOTATIONS

Throughout the paper we shall assume that a filtered complete

probability space (f, q, (t)t > o, P) satisfies the following usual hypotheses" (i)qo
contains all the P-null sets of , (ii) - V t> ot and (iii) t = f’l , for all

u>t
t, 0 _< t < c. As usual, we consider a set N+ x f as a measurable space with the

producg a-algebra N+ (R) . Moreover, we introduce on N+ x f he predictable

-algebra generated by a semiring % of all predictable rectangles in [+ x f of

the form {0} xAo and (s,t]xA,, where Ao o and A for s < t in N+.
Similarly, besides the usual product a-algebra on N+ x f x N", we also introduce

ghe predicgable o’-algebra ’ generaged by a semiring %" of all segs of ghe form

{0}xA0xD and (s,t]xAxD, with Aoabo, A,, for s<t in N+ and

D %, where N consists of all Borel sets D C N" such that their closure does

not contain the point 0.

An n-dimensional stochastic process x, understood as a function

x:+ x g/N" with Zb-measurable sections xt, each t > 0, is denoted by (xt)t >_o.
It is measurable (predictable) if z is %+ (R) (, resp.)-measurable. The process

(Xt)t > 0 is t-adapted if z is qt-measurable for t > 0. It is clear (see [3], [8], [11])
thag every predicgable process is measurable and :t-adapged. In whag follows ghe

Banach space LP( + f,, dt P, "), p >_ 1, with the norm II II zg defined in
ghe usual way, will be denoted by . Similarly, the Banach spaces
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L’(12, Jt, P,") and L(f, ff, P,") with the usual norm II-II g e denoted by

L,(t) and L(), respectively.

Throughout the paper, by (w,)t>o, we mean a one-dimensional

Brownian motion starting at 0, i.e., such that P(wo = 0)= 1. By u(t,A) we

denote a t-Poissoa measure on N+ x N", and then define a t-ceatered Poisson

measure P (t, A), t > 0, A %", by taking V (t,A)= (t,A)- tq(A), t >_ O, A e
where q is a measure on " such that Eu(t, B)= tq(B) and q(B) < o0 for B e %.

For a given t-centered Poisson measure (t,A), t >_ 0, A %",
denotes the space L( + f ", P",dt P q), with the norm II II w.
defined in the usual way. We shall also consider the Banach spaces

L’(R +, % +, dr, R + ), p > 1 and L2(R + x ",% + (R) %", dt x q, + ), with the usual

norms by l" 1, and I1" II , respectively. They will be denoted by L(%+)and
.AI,,( ,q) we shallL(N+ x%"), respecgively. Finally, by .Ag(), p >_ 1 and "

denote ghe families of all -measurable and "-measurable funcgions

f: + x f---" and h: + x f x N---,, respectively, such that f ft dt < cx
o

oo

.AL.( ,q) willand f f [ht, [dtq(dz)< cx, a.s. Elements of Mb(), p >_ 1 and

be aeoa by f = (L)
_
0 a h = (h,,.)

_
o, e, respectively. We have

x = {f e (’). f IL at < }, p _> ,
0

and W {h e At3(P", q): E f f ht,= 2dtq(dz) < }.

0

(I f h,.,,’ (dr, d))t >o, we denote their sochasic integrals wih respect to
oRn

Brownian motion (wt)t> o and a qt-centered Poisson measure "g(t,A), t>_ O,
A N", respectively. These integrals, understood as n-dimensional stochastic

processes, have quite similar properties (see [61).

Let us denote by D the family of all n-dimensional t-adapted cdlg pro-

cesses (xt)t > o such that

Esupt >olxtl <
and lim-.oSuPt > o suPt < < + xt xs = O.

Recall that an n-dimensional stochasgic process is said to be a cgdlgg process if it

has almost all sample paths right continuous with finite left limits. The space D
is considered as a normed space with the norm II’lle defined by
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II II a = II p,_> o I, II o = (,),_> o E O. It can be verified that

(O, I1" II )is a Banach space.

Given 0 a < < d (xt)t > o E D let x"’a= (xT’a), > o be defined by

x’ = x and x’ = x for 0 t a d t fl, respectively, d z’ = x for
t . It is cle that D’: = {z’o:z e D} is a line subspace of D, closed

in he I1" II -om opology. hen (D’, I1" II )i so gc

PinMly, usual, by (D,D’) we shall denote a weak gopology on D.

In what follows we shall deal with upper and lower semicontinuous set-

valued mppings. Recall that a set-valued mapping % with nonempty values in

a topological space (Y,y)is said to be upper (lower) semicontinuous [u.s.c.
(1.s.c.)] on a topological space (X,x)if -(C):
(%_(0): = {x e X:%(x)C C}) is a closed subset of X for every closed set

C C Y. In particular, for % defined on a metric space (%,d) with values in

Comp(R"), it is equivalent (see [9]) to lih (%(x,), %(x)) = 0

(li.ooK (%(x), %(x,)) = O) for every

converging to x. If, moreover, % takes convex values then it is equivalent to

upper (lower) semicontinuity of a real-vlued function s(p, %(. )) on " for every

p R", where s(., A) denotes a support function of a set A Comp("). In what

follows, we shall need the follow well-known (see [9]) fixed point and continuous

selection theorems.

Theorem (Schauder, Tikhonov)" Let (X, ffx) be a locally convex

topological Hausdorff space, % a nonempty compact convex subset of X and f a

continuous mapping of % into itself. Then f has a fixed point in %.

Theorem (Covitz, Nadler)" Let (%,d) be a complete metric

space and ):---,C/() a set-valued contraction mapping, i.e., such that

H((x), (y)) < d(x, y) for x, y e % with E [0,1), where H is the Hausdorff
metric induced by the metric d on the space Cl(%) of all nonempty closed

bounded subsets of %. Then there exists x E such that x E %(x).

Theorem (Kakutani, Fan)" Let (X,x) be a locally convex

topological Hausdorff space, % a nonempty compact convex subset of X and

COl(%) a family of all nonempty closed convex subsets of %. If : %---}CC1(%) is

u.s.c, on % then there exists x E % such that x E
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Theorem (Michael)" Let (X, ffx) be a paracompact
space and let % be a set-valued mapping from X to a Banach space (Y, I1" II)
whose values are closed and convez. Suppose, further % is l.s.c, on X. Then
there is a continuous function f:XY such that f(x) %(x), for each x X.

3. SET-VALUED STOCHASTIC INTEGILS

Let =(t)t>0 be a set-valued stochastic process with values in

Comp("), i.e. a family of 9-measurable set-valued mappings t:fComp("),
t > 0. We call measurable (predictable) if it is + (R) 9 (9, resp.)-measurable.
Similarly, is said to be 9t-adapted if t is 9t-measurable for each t >_ 0. It is

clear that every predictable set-valued stochastic process is measurable and 9t-
adapted. It follows from the Kuratowski and Ryll-Nardzewski measurable
selection theorem (see [9]) that every measurable (predictable) set-valued process
with nonempty compact values possesses a measurable (predictable) selector.
We shall also consider %+ (R) 9 (R) %" and 9"-measurable set-valued mappings
%: R + x 12 x "---,Cl("). They will be denoted as fmilies (%t,)t >_ o, e R" and

called measurable and predictable, respectively set-valued stochastic processes

depending on a parameter z R". The process %- (%t,)t >o, e R" is said to be

t-adapted if %t,, is t-measurable for each t > 0 and z R".

Denote by Alf_ (9), p >_ 1, and ./t1_ (9", q) the families of all set-valued

predictable processes F = (F,)t>_o and % = (%t, )t >_ o, e R", respecgively, such

that E f 11F 11 ’dt < o and Ef f 11 t,z [[ 2dtq(z) < - Immediately from the
0 0Rn

Kuragowski and Ryll-Nardzewski meurable selection heorem ig follows hag for

every F E Mh[_ (9), p > 1, and E Ah_ (9", q) the sets

and

are nonempty.

5R(F): = {f E : ft(w) e Ft(w), dt x P- a.e.}

tf](%): = {h e W,: h,,,(w) e %t,,(w), dt x P x q- a.e.}

Given set-valued processes F- (Ft) > o E dtt_ ,,(9), = (Ot)t > o

E Al_() and = (t,,)t o, E R" E

_
(", q) by their stochastic integrals

9F, and we me families F-(tF)t>o =(t)t>0, and

= (t)t >o subsets of L(t) p k 1 and L(t) respectively, defined by
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F = {tf: f e P’(F)}, J, = {J,g: g e :J’()} and ,% = {if,h: h (%)}, where

tf = f f.ds, tg = f g,dw. nd ,h = f f h,, (da, dz). Given 0 < fl < ,
0 0 oRn

set-vMued stochastic integrals e ven in [10].

The following properties of

Proposition 1: Let F ./fi (P) p >_ l .A o(P) and
Then

t and t% are closed subsets of L(t) for each t >_ O.
If, moreover, F, and , take on convex values then tF, t and t%
are convex and weakly compact in L(t) and L(t), respectively, for
each t > O.

Proposition 2: Let F e ./_,(P), e .A:,_ ,(P)
.AI_ (", q). Assume (xt) > 0 e D is such that

X Xs ClL2 Frdr + ,dw, + %r,z (dr, dz)
8 8 8 n

and

for every 0 < s < t < c. Then for every e > 0 there are f" P(F), g" ()
and h" :fq(%) such that

u II I(,- 0)- fdr + ad, + h’,,p (d, dz) II: -< ,.
t>o

0 0 0 n

Proposition 3: Assume F e ._ (9), e :,_ (@)
_

o(n, q) take on convex vatues and let (xtl, > o e D. Then

and

t t t

8 8 8 n
for 0 s < t < if and only if there are f 2(F), g 2() and h (%) such
that

t t t

0 0 0 Rn
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4. STOCHASTIC INCLUSIONS

Let F = {(F(x)) > o: x e "},

{(H,,=(x))= > o,= R": x E "}. Assume F,G and H are such that (F(x))> o

e .Abe_ ,,(P), (Gt(x))t > o e Mb2s_ v(9) and (Ht,=(x)) > o,= " e .Abe_ ,,(P", q) for

each

By a stochastic inclusion, denoted by SI(F, G,H), corresponding to F, G
and H given above, we mean the relation

xt x, e ClL F(x)dr + a(x)dw + H,=(x)ff (dr, dz)
s s s R

that is to be satisfied for every 0 <s <t <cx by a stochastic process

x = (x) > o e D such that F mx e

_
(P), G o mx e

_
(P) and

g o mx e .A_ (P’, q), where f mx = (F,(x)) > o, V o mx = (V(x)) > o and

H o mz = (g,(x)) >_ o, e "" Every stochastic process (z) > o e D, satisfying the

conditions mentioned above, is said to be global solution to SI(F, G,H).

Corollary 1: If F, G and H take on convex values then SI(F, G, H) has

and (x)>o D is a global solution to SI(F,G,H) if and only if there are

f e (F o mx), g e :(G o mx) and h e f2(g o rex) such that
t t t

xt=Xo+ffrd’+fgrdwr+ffhr,z(dr, dz),a.s, foreacht>_O.
0 0 0 R"

Given 0 < < , socsic process z > o 6 D is i o loc1

e + +
8 8 8 n

or<.
Corollary 2: A stochastic process (Xt) >0 D is a local solution to

SI(F, G, H) on [c,/] if and only if x’’ is a global solution to SI(F,G’, gn),
here F = |[,,1F, G’ = I[,,IG and H0 = |[,,1H.
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A stochastic process (z) >0 e D is called a global (local on [a, fl], resp.)
solugion go an inigial value problem for sgochasgic inclusion SI(F,G, tI) wigh an

initial condition V e L(a,o,g") (V e L(a,,.R"), resp.) if (xt)t >o is a global
(local on [a, fl], resp.) solution to SI(F,G,H) and x0 = y (x=- y, resp.). An
initial-value problem for SI(F,G,H) mentioned above will be denoted by

SI(F,G,H) (SI’(F, G, H), resp.). In what follows, we denote a set of all
global (local on [a,], resp.) solutions to SI(F,G,H) by hu(F,G,g)
(A’(F, G, H), resp.).

Suppose F, G and H satisfy the following conditions (J[1):
(i) F -- {(Ft(x)) > o: x e Rn}, G {(Gt(x)) > o: x e Rn} and H =

{(Ht,(x))t _> o, e R": x R"} are such that mappings R + x

(t, ,)F()()e C("), , x a x - (t, ,)a,()()

" @ N"-measurable, respectively.

(ii) (Ft(x))t o, (Gt(x)), o, (H,(x))t o, " are uniformly
square-integrable bounded, respectively, i.e.,

CooU 3: Fo (.). > o D .d F..H .tf.a ()
F o mx

_
v(), G o mx

_
v(@) and H o mx

_
v(@n, q).

Now define a linear continuous mapping on Z x xW by taking
(f, g, h) (tf + Jtg -{" th)t > o to each (f, g, h) , x , x W,. It is clear that

maps , x Z x W, into D. Given above F,G and H satisfying (A1) define

set-valued mapping 3t; on D by setting

%(x) = cle(((F o mx) x If:(G o rex) X (H o mx))) (1)

for x-(xt)t>oC:-D, where the closure is taken in the norm topology in

(D, I! II ), Similarly, for given 0 _< a < fl < c, we define a st-lued mapping
:11;’ on D by taking

%a’#(x) = cl.(q?(tfP(F’ o mx) :f(G’ o rex) fq(H’ o mx))

where F, G and H are as above.

Corollary 4: For every F,G and H taking on convex values and
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satisfying (Jt), one has 3(x) = O(tf’(F o rex) tf(G o mx) (H o rex))
%"’a(y) = (lP(F o mx) x I:(G o rex) f(H o rex)) for x G D.

and

Let S(F,G,H) and S’a(F,G,H) denote the set of all fixed points of :E
and N"O, respectively. It will be showa below that S’’O(F, G, H) C. D’.
Immediagely from Proposition 2 (see [101) ghe following resulg follows.

Proposition 4: Assume F, G and H satisfy (.ix) and take on convex

values. Then A0(F, G, H) = S(F, G, H) and hg’a(F, G, H) = S’a(F, G, H) for
every 0 <_ < fl < c, respectively.

Proposition 5: Assume F, G and H
0 <_ a < < c. Then x G S’b(F, G,H) if and only if

(i) x = 0 a.s. for t e [0, a],
(ii)
(iii)

satisfy ("1) and let

zt = z a.s. for t > fi,

for every e > 0 there

(f’, g’, h’) e fP(F o rex) x (G o rex)x (H o mx))
/s

such that

Proof: (=,) Let x S’(F,G,H). By the definition of %", for every

e > 0, there is (if, g’, h’) (F o mx)X 2(Ga# o rex) X (H o rex)) such that

IIx- (f’,g’,h’)lle<e. We hve of course t(f’,g’,h’)-O and

t(f, g,h) = (f,g,h), a.s. for 0 t and t k fl, respectively. Then

and

sup xt t(f, g’, h’)l II i

By the properties of ff(f’, g’, h’), (i) and (ii), (iii) easily follow.

(=) Conditions (i)- (iii)imply

a<t<[
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Therefore, x cl@("(F o rex) (G o rex) y2q(H o rex)).

Poposition 6: Assume F,G and H satisfy (Ax) and let (rn)= be
a sequence of positive numbers increasing to + oo. If x e S’(F,G,H) and
x"+*6x,." + S’"’ "" +*(F,G,H) for n=l,2,..., then

x" - ) belongs to S(F, G, H) where x = 0rn_ I

Proof: For every n = 1,2,... one has x"-Xn-1rn-- 1

Then, by Proposition 5, for

(f", ", h-)e (F--’ om"1 x
that

6 S’"-""(F,G,H).
every n=l,2,.., and e>0 there is

2(evn -lrn o mxn) )< (g"-" o rex") such

sup
rn_ 1 <t<_rn

Put f-n=l[] 0[rn 1,rn)fn, ge=n=]l|[rn -l’’.)g" and h -n=l|[rn 1,rn)h". By the

decomposability (see [9], [10]) of :f2(Fomx), 2(Gomx) and Y(homx), we get

fee y2(F o mx), g" G Y(G o mx) and beg 12q(H o mx). Moreover

II p
2-- I rn-l<-t<-rn

n --1 @t(f’*, g", h") II L(X? Xrn_ 1

II p I(x--x-,_ 1
T-- 1 "rn-1 --< t--< rn

@t(f", g", h")[ Ii L < "
Therefore, x e cl.(Y:(F o mx) :(G o rex) Y(H o rex). []

In wht follows we shall deal with F={(F,(x)),>o:X"),
G = {(Gt(x)) >_ 0: x R"} and H {Ht, z(Z))t > o,z Rn: z ,n} satisfying
conditions (A) and any one of the following conditions.

(A2) F, G and g are such that set-valued functions D
D x(G o mx)t(w) C " and D x---,(H o mx)t,(w) C " are w.-w.s.u.s.c.

on D, i.e., for every x e D and every sequence (x,) of (D, 11.
converging weakly to x, one has z ( f f (F o mx,,)t dtdP,

A

f f (F o mx)tdtdP)---O (f f (G o mXn)tdtdP f f (G o mx)tdtdP)--- 0 and
A A A

h(f f f (H o mXn)t, z dtq(dz)dP, f f f (H o mx)t, zdtq(dz) dP)-+ O.
B B
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(A3) F,C and H are such that set-valued functions D x(F o mx),(w) C a",
D x---, (G mx)(w) C N" and D x(H mx),,,(w) C N" are s.- w.s.l.s.c.
on D, i.e., for eve x e D and eve sequence (x,) of (D, 11. [I )
converging weakly to x, one h h((Fomx)t(w),(fomx")t(w))O
h ((G o mx)t(w), (G o mxn)t(w))O and h ((H o mx)t,z(W), (H o mxn)t,z(w))O

(A4): There are k, and m W such that II h[(F o mx)t (F o my)t]dt il Lo
Ef kt x, y, dr, II h(G o rex, G o my)II Ey , , y, dt and

0 0

II h(H o rex, H o my)II S E: f m,, ,- Y, dtq(dz) for x, y D.

() There re k, e(+) d m e(+ x) sch that h(F,()(w),

It is clear that the upper (lower) semicontinuity of F, G and H does not

imply their wek (strong) weak sequential upper (lower) semicontinuity

presented above. We shall show that in some special cases, i.e., for concave

(convex, rasp.), set-valued mappings such implication holds true. Recall a set-

valued mapping %, defined on a locally convex topological space (X, CJ’x) with

values in a normed space is said to be concave (convex)if .%(cx + fizz)C
(x) +Z() ((a)+ Zu() c(+Z)), or ev , e X nd

a,/3 e [0,1] satisfying c +/3 1.

Lamina 1: Suppose F,G and H satisfy (A1) with p- 1, take on

convex values and are concave (convex} with respect to x n. If moreover F, G
and H are u.s.c. (.s.c.) with respect to x n then they are w.-w.s.u.s.c. (s.-
w.s.l.s.c.).

Proof: Let x D be fixed and let (x") be a sequence of D weakly

converging to x. Denote K,(t, w, y): = s(p, Ft(yt)(w)) for p e ", y e D, t >_ 0

and w f. We shall show that for every A and every p " one has

f f Kp(t,w,z)dtdP <_ liu_nf / f Ko(t,w,x)dtdP,
A A

which is equivalent to the weak-weak sequential upper semicontinuity of F at

x D in the sense defined in (A). Similarly, the weak-weak sequential upper
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semiconfinuiy of G and H can be verified.

Le A 9, p tt" be given. Denote j,, = f f K,(t, w,z")dtdP for
A

n = 1, 2,... and pu i: = liminf,,..+ f f Kt,(t , z")dtdP. By aking suitable
A

subsequence, say (n) of (n) we may well assume that j,---d as k--.oo. By the
Sanach and Mazur theorem (see [2]) for every s = 1,2,... there are numbers

Na >_ 0 with k = 1,2,...,N and N = 1,2,... satisfying cI = 1 and such that

II z --z II g-+0 N--+0, where Z’N(t,w)= aixt:+’(w). By the definition of
k=l

the norm I1" II there is a subsequence, say again (Zv), of (ZN) such that

supt > o Zv(t, w)- x,(w) 0 a.s. for s = 1, 2, Put
N

rlN: = E aKp(.,.,x" +
k=l

Jk = f f K(t, w, x"k + )dtdP
A

and let = maxN > +max < k < N J: i for s 1, 2, We have ---0 as

sc. By the uniform square boundedness of F there is mR
_.. such that

"n sTSN k- mF a.e. for N, s = 1,2, Therefore, lim fN--,oCIN >--mF a.e. for

s- 1,2, Then by Fatou’s lemma one obtains

for s 1, 2,..., because for every s = 1, 2,..., we have i <_ f f y*gdtdP <_ i + 5.
A

Taking y=liminf_oo[liminfy.ooy’g] a.e., we get rl>--mR a.e. and

We shall verify that we also have K(t,w,x)<_ y(t,w) for a.e.

Indeed, by upper semicontinuity of F with respect to x ", a

real valued function x---- s(p, Ft(x))is lower semicontinuous on I", a.s. for every

t > 0 and p ". Therefore for every m, s = 1,2,... there is M > 1 such that

N
s(p, Ft(x,)) < s(p, F,(E ’-’#,,’,t"’’’’ +

k=l

a.s. for every t >_ 0 and N >_ M. Hence, by the properties of F, it follows

(;, Ft(xt)) < E a[ (;, Ft(zt + "))l = "7v(t," )
k=l

a.s. for t >_ 0, s,m = 1,2... and N >_ M. Therefore, for m-1,2,.., almost

everywhere, one gets
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Finally, we ge

Kp( z)- < liminf[liminfN] =

5. PR.OPEKTIES OF SOLUTION SET

We shall prove here the existence theorems for SI(F,G,H). We show

first that conditions (A) and anyone of conditions (A)-(A)or (A)imply the

existence of fixed points for the set-valued mappings and ’ defined above.

Hence, by Propositions 4 and 5, the existence theorems for SI(F,G,H) will

follow. We begin with the following lemmas.

Lemma 2: Assume F,G and H take on convex values, satisfy

with p = 2 and (Az). Then a se-valued mapping 3g is u.s.c, as a mulifunction
defined on a locally convex topological Hausdorff space (D, cr(D,D*)) with

otu,t (D, o(D, D*)).

Proof: Let C be a nonempty weakly closed subset of D and select a

sequence (x")of %-(C) weakly converging to x D. There is a sequence (y")of
C such that y" %(x") for n = 1,2, By the uniform square-integrable
boundedness of F,G and H, there is a convex weakly compact subset

% C x L x <W such that %(x")C (). Therefore, y"e (%), for n = 1,2,...
which, by the weak compactness of if(%), implies the existence of a subsequence,
say for simplicity (y), of (y")weakly converging to y if(%). We have

e () o = 1, e, t (p, a,) e (F om) (a om) ](H o)
be such that ?(fk, gk, h)=yk, for each k-1,2, We have of course

(f,g,h) %. Therefore, there is a subsequence, say again {(f,g,h)} of

{(f,gk, hk)} weakly converging in x x ’IV to (f,g,h)e . Now, for every

A 9 one obtains

< i i[ft_.A ft]dtdP-t" dT.s:l;( i f i i
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A A

Therefore (see [S], Lemma 4.4) f 12(Fomx). Quite similarly, we also get
t 12(G o rex) and h I(H o rex). Thus, (f, g,h) X(z), which implies
y %(x). On the other hand we also have y e C, because C is weakly closed.

Therefore, z 30-(C). Now the result follows immediately from Eberlein and

mulian’s theorem. FI

Lemm& 3: Assume F,G and H take on convex values, satisfy (A1)
with p = 2 and (t3). Then a set-valued mapping 3 is l.s.c, as a multifunction
defined on a locally convex topological gausdorff space (D,a(D,D*)) with

nonempty values in (D, a(D,D*)).

Proof: Let C be a nonempty weakly closed subset of D and (x") a

sequence of %_ (C) weakly converging to x D. Select arbitrarily y %(z) and

suppose (f,g,h)e (Fomx)x tf(G omx)x (Homx) is such that y = q(f,g,h).
Let (fn, g,, h") e Y:(F o mxn) X Y2(G o mxn) x (g o mxn) be such that

ft(w)- fT(w) = dist(ft(w), (F o mxn)t(w)),
,()- ar() dist(gt(w), (G o mx")t(w)) and

[ht, z(W) gtn, z(W)[ = dist(ht,(w), (H o mxn)t,z(w)) on I + f and ! + x f x N",
respectively, for each n = 1, 2, By virtue of (.A3) one gets ft@)- f’() --+0,

,(<.<,1- 7(,.,,1 -+o =d hi,=(<.,.,)- h",,:(1 I-+0 a.e. as n---+c. Hence, by (.All we
can easily see that a sequence (y), defined by y" = (f", g", h"), weakly
converges to 5’. Bug 9" (z") C 6’ for n 1,2,... and 6’ is weakly closed. Then

y e C which implies (x) C C. Thus x e %_ (C). I-I

Suppose F,G and H satisfy (A) and (A4)or (A’4). Then

H((),()) _< L II - u !1 e o H(%(z), X(y)) _< L’ II U II , respectively, for
every x,y D, where H is the Hausdorff metric induced by the norm I1" II ,
s; II <o ,dt II I + 2 ii 7o e,dt !i I + 2 !17oa.f m,.,:d’rq(dz)II 1

,,d S;’-

+21el=+211mll.

Proof: Let x, y D be given and let u (x). For every e > 0, there is

(f’, g’, h’) e Y(F o rex) Y(G o mz) x Y](H o mx) such that 1[ u q(f’, g’, h’)1[ t
~" 12(Fomy) x o l(Ho< e. Select now (f,,h) e 2(G my)x my) such that
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f(w)- f(w) = dist(f(w), (F o my)t(w))

g(w)- "(w) = dist(g(w), (G o my),(w)) and

h’ ’ h’ z(w), (H o my)t,z(w)) on R + x a and R + x a x an
respecgively. Now, by (4) ig follows

t

0

< E ((F o rex),., (F o my).)d < E k,. Ix,. y,.
0 0

< E sup xt- Yt kdr < E kdr II - y II =
t>_o

0 0

Similarly, by Doob’s inequality, we obtain

E sup
t

0
< 4El g3-31d

0

(7 1<_ 4Ef[ ((G o rex),., (G o my),.)]dr <_ 4 E ,,. x,. y,. dT
0 0

7 )I (7)sup x’ Yt ,,.dT < 4E e,.dv II x- y II =
t>_o

0 0

Quite similarly, we also get

E [sup

Therefore

< 4 m,.,=dTq(dz) II II =
0 Rn
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where L is such as above. This implies r(%(z),%(y))< L II z--y II a. Quite
similarly we also get r(%(y), %(z)) <_ L II -- y II e. Therefore H(%(z), %(y))
< L Ix-ylg. Using conditions (A)instead of (A4) we also get H(%(y),%(z))
<_ L’ II -- Y II . t

Imm& 5: Suppoae F, G and H satisfy (A) and (A4) or (A’). Then

for every 0 < < fl < one has H(%"’Z(x),%"’a(y)) L, !1 - y II o

H(%’a(x), %’a(y)) L;a x- Y , respectively, for eve x, y c D’, where H
is a Hausdorff metdc induced by the no !1" II e, ,- II flt,l(t)ktdt II Lo

+ 2 II flta’l(t)etdto II L + 2 II f0.f I[,] (t) mt,dtq(dz)I! L and

+ t, + II t,TM II .
Proof: The proof follows immediately from Lemma 4

F I[,a]F, G = I[,NG and H’a = l[,a]H.
Immediately from Lemma 2 and the Kakutani and Fan fixed

theorem the following result follows.

applied to

point

Lemma 7. If F, G and H take on convex values and satisfy ("1) and

(Aa), then S(F, G, H) .
Proof. Let % be as in Lemma 6. By virtue of Lemma 3, % is l.s.c, as a

set-valued mapping from a paracompact space % considered with its relative

topology induced by a weak topology a(D,D*) on D into a Banach space

(D, I1" II ). By (ii) of Proposition 1, %(x)is a closed and convex subset of D, for

Proof: Let % = {(f, g, h) e x x ’W: ft() II F,(,)II,
Igt(w) _< II a,(o)II, ht,.()l II nt,(w)II and put - ff(). It is clear

that % is a nonempty convex weakly compact subset of D such that %(x) C % for

x D. By (ii) of Proposition 1, %(x)is a convex and weakly compact subset of

D, for each x D. By Lemma 2, is u.s.c, on a locally convex topological
Hausdofff space (D, a(D, D*)). Therefore, by the Kakutani and Fan fixed point

theorem, we get S(F, G, H) .

I,emma 6" If F, G and H take on convex values and satisfy (A) and

(.), th, S(F, a, H)# .
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each z %. Therefore, by Michael’s theorem, there is a continuous selection

f:%--,D for %. But %(%)C %. Then f maps 2; into itself and is continuous

with respect to the relative topology on %, defined above. Therefore, by the
Schauder and Tikhonov fixed point theorem, there is x% such that
x = f(x) e %(x). 0

S(F,G,H)#.
If F,G and H satisfy (A,) and (A) or (A’) then

Proof. Let (r,)= 1 be a sequence of positive numbers increasing to

+ oo. Select a positive number a such that Lk,(k + )a < 1 or L,( +) < 1,
respectively, for k = 0,1,..., where Lk,( + 1) and L:,( + 1) are as in Lemma 5.

Suppose a positive integer nI is such that nxcr < Tx < (n1+ 1)a. By virtue of
Lemma 5, %k,(k + 1) is a set-valued contraction for every k- 0,1, Therefore,
by the Covitz and Nadler fixed point theorem, there is zX S’(F,G,H). By

1 So" 2r( 1 20"the same argument, there is z2 6 z,, + _F, G,H), because z. +" is again
a set-valued contraction mapping. Continuing the above procedure we can

n1 r1finally find a z" + * 6 z. + S"’ (F, G, H). Put
nI 1

xl [[[ka,(k + 1)a)(zk +1 Zkk(r)
k=0

+ |[n1 er,, ,’1 l(znl
+ 1 nla,) 2ff l(Vl,CX)( nl + 1

Znl Z’rI Znl

where Zo
o = 0. Similarly, as in the proof of Proposition 6, we can easily verify

that x S’(F,G,H). Repeating the above procedure to the interval [T,r2],
we can find x2 x + S*v*2(F, G,H). Continuing this process we can define a

sequence (x") of D satisfying the conditions of Proposition 6. Therefore

S(f G, H) 7/: O.

Now as corollary of Proposition 4 and Lemmas 6-8, the following results

follow.

Theorem 1. Suppose F, G and H take on convex values, satisfy (’fill)
and (A2) or (A3). Then A0(F G,H) # O.

Theorem 2. Suppose F,G and H satisfy (’[1)a?%d (Jr4)Or (Jt)
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take on convex values. Then Ao(F, G, H)

From the stochastic optimal control theory point of view (see [6]), it is

importaxt to know whether the set Ao(F,G,H) is at least weakly compact in

(D, 11. [I). We have the following result dealing with this topic.

Suppose F,G and H take on convex values and satisfy
Then Ao(F,G,H) is a nonempty weakly compact subset of

Theorem 3.

(.) ,,d (.).
(D, I1" II e).

Proof. Nonemptiness of A0(F, G, H) follows immediately from
Theorem 1. By virtue of Propositioa 4 and the Eberein and mulian theorem for
the weak compactness of A0(F, G,H), it suffices only to verify that S(F,G,H)is
sequentially weakly compact. But S(F,G,H)C (I)(%), where % is a weakly
compact subset of x x N’ defined in Lemma 6. Hence, by the properties of

the linear mapping , the relative sequengial weak compactness of S(F,G,H)
follows. Suppose (x") is a sequence of S(F, a, H) weakly converging go z (%),
and let (f", g", h") e :(F o rex") x (a o rex") x q(H o rex") be such that

z" (f", g", h"), for n = 1,2, By the weak compactness of %, there is a

subsequence, denoted again by of {(f",f,h")} weakly converging
to (f,9,h)c= %. Similarly, as in ghe proof of Lemma 2, we can verify ghat

(f 9, h) e f(F mz) x (G mz) x Ifq(H mz). This and he weak convergence of

{(I)(f", g", h")} to ,I,(f, g, h) imply that x (I)(f, g, h) e (x). Thus x e S(F, G, H)[:]
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