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ABSTRACT

A one dmensonal ablation model wth transpiration cooling
control and nonlinear effect s studed, which s a dstributed parameter
control system with moving boundary and both governing equation and
boundary condtons involving control variable... A solution s gven by a
Rothe approximation scheme.
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1. INTRODUCTION

When a space vehicle flies quickly through the air, the high temperature due to the

friction between the front surface of the vehicle and air may cause ablation of the material

which will cause damage to the structure of the vehicle. The ablation is even serious for the

sideways of launching of the electromagnetic gun. In engineering, a thermal shield must be

designed to prevent this event [1-4]. In [1, 2], it is realized by coupling a transpiration cooling

control design, which cart be demonstrated by a one dimensional version of a solid thermal

shield as shown in Figure 1.
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Zigure 1" Schematic representation of he ranpiraion cooling control
sZsem of porous medium slab

The thermal shield consists of a porous solid structure of thickness g. The gaseous coolant is

inputted at z- and the heated air flow enters at z--0. The coolant flows through the air

hole of the slab and enters into the heater air flow Q(m), a specified flow function of the

coolant flux re(t) (mass of coolant per unit time flowing through per unit area) on the outer

layer of the structure [1, 2]:

(m) = , = o(Z -), (z)

where q0 is the theoretical heat flow, hr is the recovery enthalpy,

outer surface. The blocking coefficient is different for different coolants:

for helium, = 1- 0.724 m- 0.1 m);

for water, = 1- 1.04mAhi/qo. (2)

= cpuw is the enthalpy of

When the temperature of the front face exceeds the melting temperature urn of the

material, the outer layer melts and recedes to the new position z = s(t) after time t (Figure 1).

Denoting by u(z, t) the temperature of the medium at the space-time point (z, t) and denoting

by uc the temperature of the coolant inside the tank, Yang [1] formulated this process as the

following partial differential equation with a moving boundary:

ot o= + Z(t) = + s’(t),_ Cx

a(, ) = ,()(AV Ah) = ,()%(,,(, ) ),

;L’(t) O((), )
O= = O(r(t)),

(3)
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where L is the latent heat of melting. Symbols AhN = CpLUN, Ahc= CpLUc denote the

enthalpy of the coolant at inner face and at tank storing coolant, respectively. The thermal

conductivity x, density p and the specific heat cp of the ablation material are constants, CpL is

the specific heat of the coolant, c2 = x/(pcp) and/3(t) = CpL/(Pc)m(t).

Since the melted part is broken away (by wind for example) from material

immediately after melting, the following Signorini boundary condition is necessary (see [5]):

((t), t) <_ ..,’(t) >_ o, [u.. ((t), t)]’(t) = o.

Observing that uw = u(s(t), t) and uN = u(g, t), we finally formulate the ablation transpiration

cooling control process as the following Stefan-Signorini problem:

=(e, t) + (tl(e, t) = (), > o,
,((t), t) _< ,.,, ’(t) >_ o, b,.,- ,((t), t)]’(t) = o,

s’(t) = ---[uz(s(t), t) al(fl(t))u(s(t), t) + a2((t))], s(O) = O,

(4)

where

qc’al(/3(t)) = "r a2(/3(t)) = (5)

The initial condition u(z,O)= u0(z and the function /3(t) should satisfy the consistency

condition:

(6)

To simplify notation, let

v(=, t) = .. (=, t), Vo(=) = r. 0(=)"

Then problem (4) can be written in the form

vt(=, t) ,,,=.(=, t) + Z(t),,=(=, t) + ,’( , .(t)v=(=, t),

c2vz(e, t) + fl(t)v(e, t) qfl(t), q = um uc > O,

v(s(t), t) > O, s’(t) > O, v(s(t), t)s’(t) = O,

v(=, o) = Vo(=),
s’(t) = -[ vz(s(t), t) + al(fl(t))v(s(t), t) + Q(fl(t))]

where Q((t)) ---(1 ---um) > O.

(8)

(9)
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In the paper, the symbol [I [[ is used for the CO norm of a continuous function.

2. A FIXED PROBLEM

For any fixed time T > 0, and a function

s(t) 6. cl[0,T], s(0) = 0, s’(t) >_ O, s(T) <

the standard transformation

z-s(t)0= ,=(,), 0(,, t) = (, t)

will map Is(t), ] onto [0, ] and the fixed problem (8) becomes a fixed domain problem:

t(y,t a2 , 2: (e = + +

s(t)%(e, t) + (t)(, t) (t),

O(O, t) >_ O, -,,,,,,, (t)Oy(O, t) + al(/3(t))O(O t) + Q(fl(t)) >_ O,

O(O, t)[
_

0u(0 t) + ai((t))O(O, t) + Q(’(t))] 0.

Let

(0)

(ii)

0 o < t1 < 2 < < N = T, tn tn 1 = At : T___
N

be a uniform partition of [0, T]. Considering

’,, = ’(t,,), ,, = (t,,),

and applying the Rothe approximation scheme to (11), we obtain a boundary value problem as

follows:

t
-l(V) = 2.( _S_,,)2;(v)+ [’,, -S,, + 2"" -,t""- --,,,,,v

(i)
On(O >_ O, .,,snO(O) + al(n)On(O + Q(/3n) >_ o,

’On(O)[-" -’8,’0(0) -’F’ al(n)l)n(O "" Q(,/n)] O.

Using the transformation

z = s. + -s,n,g, v.(z) = On(y (13)

we finally obtain the Rothe approximation scheme of the fixed problem (8):
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a2v(/) + nVn() = qn,

Vn(Sn) >_ O, Vn(Sn) + al(n)Vn(Sn) + Q(fln) >- O, (14)

Vn(Sn) V’n(Sn) + al(n)vn(sn) h" Q(fln)] = 0,

where

Lemma 1: There exists a unique solution {vn(x), 1 < n <_ N) to (14) and

o <_ .() < , c <_ ’.() <

c1 min V’o(Z), c2 max{ !1 0 !i ,qflM/t2, q il II + II Q II )-

(15)

Proof:

method) (see [9]):

Equation (14) can be solved by the method of invariant imbedding (sweep

V’n(Z Rn(z)vn(z + zn(z)

where

Observe that by defining

where

R.(z) =- ./a2ezp / p(r)dr)- l/(a2At) f exp( / p(r)dr)ds < O,

Vn(Z) can be determined from (16) with initial condition

vn(sn) = max{O, Q(fln),,-- Zn(Sn) ,
Rn(sn) + al(fln)J"

If vn attains its maximum at zo (sn, g), then

(16)

(7)

(18)
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+/- ’r,(=O) --< v,,_ (a(XO))-

If Vr, attains its negative minimum at z----g, by the maximum principle (see [10]), v(g)< O,

and hence Vr,(, > q from the boundary condition at z =/. Therefore, we have a contradiction.

If vn attains its positive maximum at z = Sn, then V’n(Sn)< 0 and hence Vn(Sn)= 0 by the

boundary condition at z sn. Therefore, we obtain a contradiction. If vn attains its positive

maximum at z = e, by the maximum principle, v(e)> 0, and hence Vn(e, < q from the

boundary condition at z = e. Notice that if v.(s.) > o and 0 < v0(z < q, then 0 < vn(x <_ q.

Next, let Cn(:)= v’n(z). Then

At - sn

0 _< a2n(/) fln(q-" Vn()) <

0 _< (s.) _< a(Z)v(.) + Q(Z.) _< q !1 ax II + II Q II.

The second inequality of (15) can be obtained by a direct application of the maximum

principle for elliptic ordinary differential equations (see [10]). The proof is complete.

Next, take a family of nonpositive functions fie E C2(- c, cx3) with fl’e < 0, e > 0, and

0, if > 0,
3,(t) =

(t + e)/e, if t < 2e,
(19)

and consider a penalized problem of (14)"

At

V’en(Sn) -f" al(n)Ven(Sn) + Q(n) q- ,(V,n(Sn)) = O,

,,o(X) = ,,o(X), o(x) = 8n 8n 1.e,-s
n

e,-s
n

(20)

Note:

Lemma 2: There ezists a unique solution to (20) and the following estimates hold:

(i) --Coe < V,n(X <_ q, co max{2, 1 + I! II };

(ii) c: <_ V’,r,(X <_ c2
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c1 = ma:e{min v)(z), (co II al II +
C2 = maz{q II al II + II !1 ,(qflM+cOe)/a2, max v(z)};

(iii) Ven(Z v.(._ x)() + Ct, II v’ II C,

where C is a constant depending only on the C norm of fl(t), s(t) and e-s(T), and the C2

norm of vo.

Proofi Again, we solve Equation (20) by the method of invariant imbedding.

The solution is related by the Riccati transformation:

(21)

Substituting V’en(X = Rn(z)v,n(z + Zn(Z into the boundary condition of (20) at sn, we obtain

Rn(sn) q" al(fln))Ven(Sn)- Zn(Sn) "t" Q(fln) -t- fle(Ven(Sn)) = O.

Define

f(t) = Rn(sn) + al(fln))t- Zn(Sn) + Q(fln) + fie(t)

Then

f’(t) (- Rn(sn) + hi(fin)) + fl’e(t) > O,

f( +) = , f( ) = ,
and hence there exists a unique to such that f(to)= 0. Therefore, Equation (20) has a unique

solution with vn(sn) = o.

Now, we shall use mathematical induction. For n = 0, the conclusions (i) and (ii)
hold. Suppose that it is correct for k < n. We shall consider the case of k = n. By the

maximum principle from [10], if yen attains its negative minimum at :0, then either

Vn(:o) > v(n_l)((ZO) or Q(fln)+fl(Vcn(ZO))>_ 0 depending on whether zo lies on the

interior of (sn, e) or on its boundaries. So

either V,n(Z > -2e

or ven( > --[1 -I-Q(fln)] -[1 -!- li Q II ],
since Vo(Z >_ O. This is the first part of (i). If yen attains its positive maximum at Zo, then

V,n(ZO) <_ re(n_ 1)(9(z0) ), Ven(XO) < q, or v,n(ZO) <. O. This is the second part of (i). To prove

(ii), let Cn(Z)= V’en(Z). Then
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i

cx2n(g) :/3n(q yen(g))
(22)

42n(sn) --" a1(3n)ven(sn) q" Q(n) q"/3e(ven(sn))"

Using a similar argument as above, we get the second part of (ii). Now, we shall prove (iii).

For this purpose, let

.() = + ,,,( ) -x(=--6)2,6= :2 ,X>0.

Then r/n(z satisfies the following equation:

;() + [4x( + 6) + .
4X2a2( g + 6)2 2X(Z + 6)(zn

where

K(z) : 1--eX(O(x)-’--6)2--X(X--’--6)2(g-sn-1 )--sn
and the following boundary conditions:

(::i2.i(() "-I- (n "I- n- 1 -I"

:k 2
sn -Atsn , 13n3n 1/O2 Ven "

8n -- n
re(n-- 1)(

(23)

+ t3n nn- 1 (q v<n(,))lot2] e- x62 K2(),At

----+ (a:(Z._ :) + Z’(:))(Z. + 2s"

Sn Sn 1 ___v Sn Sn 1 1., v’+ /3’(0) + al(/3n) +- At- e sn) <n(s") At , s. ("- 1)(s"- l)

al (fin) al (fin 1)Ven(Sn + Q(fln) Q(13n 1)] e X(sn t 6)2 K3(e+ At At

where -c0e < < q and X > 0 is such that

2X62 > 1 2X2(( sn 6) n 2sn- sn- > 1.At
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Suppose that r/n_ l(Z) _< Ca_ 1" Then if r/a attains its maximum in the interior of (sa, ), then

by the inequality g(z) _< Kot, we obtain

a(Z) <_ Ca / KloAtCa_ , where K10 > 0 is a constant,

and hence

rla(z <_ (1 + KlOAt)NCo, At = TIN.

If r/a(z attains its maximum at z or z = sa then by (i) and (ii),

r/a(x) _< K2(e) _< K2o, rla(x) <_ K3(e) _< K3o.

Since

lira (1 + KoAt)N- KoT
we, finally, get from (20) that r/a(z _< C’ or v’n _< C. Since

-() (-- )() ,,. .- e = 1, ()_ ,At = a vaLz + [za + 2,, At -- sa
en e(a-1)()z

we have

Since the constant C in Lemma 2 is independent on e, by the Ascoli-Arzela theorem

applied for any integer n, there exists a subsequence of {vea(z),v’en(z)}, which for easier

notation is still denoted by yen such that

uniformly as e--O,

and, from equation (20),

v" -" uniformly as e---,Oa’-Ua

If Vn(ZO)> 0, then by uniform convergence, for sufficiently small e, there exists a constant

c > 0 such that yen(z0) >_ c > 0. Therefore, from (20), v’en(sn) + al(n)Ven(Sa) + Q(n) = O,

and hence v’n(sn) + al(Za)Vn(Sa) + Q(a) O, i.e. vn(z is the solution of (14). Since the

solution of (14) is unique, the whole sequence of solutions of (20) converges uniformly to the

solution of (14) as e goes to zero.

We thus have proved the following lemma.
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Lemma 3: The solution of Equation (14) satisfies the inequality

where C is a constant depending only on the C1 norm of fl(t), s(t), -s(T), and the C2 norm

of v0

Define

sN(t) = tt[( tn-1)Sn + (tn-- t)Sn-1] for [tn_ 1, tn),

VN(X,t = t[(t-- tn_ 1)Vn(X) + (tn t)Vn_ l(X)] for" e Itn 1, tn).
(24)

Lemma 4:

(a) o _< v(t) _< !! ’ II,"
(b) 0 <_ VN(X t) <_ q;

(c) VN(Z, t) _< raaz{ II Vo !!, q/3M/2, q il al 11 + II II );

(d) VNx( t) >_ O, if CO(Z < O;

(e) VN(x,t) < C;

(f) VN(, tx) VN(X, t2)[ < C ltx tz[ 1/2 for any t, tz
where C has the same meaning as in Lemma 3.

Proof.- Conditions (a)-(e) are direct consequences of Lemma 1 and Lemma 3, and

the definition of vN(z, t). Now, we shall only consider condition (f). Notice that

v,(, t) = V(X) Vn 1()
At

and

VNxt(X, t) c2v’() q.-[fl "4" 28n 8n X.lv( .-[28.9.-" sn 1 18rt]V(

where G.()I _<C,

7" (t2 t1)1/2,

"- -z = ..,;i’(:) +v (), Xt - .,
(tg(x), z), t [tn 1, tn)" For any tn-t <--tl < t2 < tn,

z+vt2
[VNz(Y’ tl VNz(Y’ t2 )]dy = / / vNzt(y’ t)dydt

z tl

7") v:(x)] + an(Y)dy (t2 tl).
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Hence there exists a point E (z,z + r) such that

VN(, x) VN(, t)l _< c tx tz x/z.

Thus

VNar(a:, tl) VNx(’, t2) --< VNx(:r, tl) VNx(, tl)

/ VN(Z, t2) VN(, t2) / C tx t21 x/2 _< (C + 2 II VN II )1 tx t2 1/2,

and consequently (f) holds. The proof is complete.

Since s’(t)is a continuous function on [0,T],

By the Ascoli-Arzela theorem, there exist subsequences of VN(a:,t), SN(t), which for easier

notation are still denoted by VN, SN, and a function (z, t) such that

SN.---,s VN-.-., VNx--.-fx uniformly as N---<x,

VNt’-*ft VNxz---*xz in L weak star topology, (26)

and

0 q, i(z,t) Co, ICt(z,t) C, Cza,(z,t) C,

(:,t) (z, t2) _< C It ti x/2, for any tx, t2 [0, T],

where C is the constant from Lemma 4.

Notice that

VN(SN(tn), tn) + al(fl(tn))VN(SN(tn),tn) + Q(fl(tn) >_ O,

c2VV(e, tn) "b fl(tn)VN(e, tn) qfl(tn),

at each point of the partition {tn} associated with N. Since these points are dense in [0, T] as

N---,oo and the convergence of VNz(Z t), VN(Z t), sN(t) is uniform, it follows immediately that

Cz(s(t), t) + a((t))(s(t), t) + Q(fl(t)) >_ O,

(s(t), t)[- ’(s(t), t) + al(t?(t))(s(t), t) + Q(fl(t)] = 0,

(, t) + Z(t)(, t) (t).

(27)

We shall show that (z, t)= v(z, t)is the solution of fixed problem (S). In fact, since



172 GUO BAO ZHU

8n 8n- 1 t--- 1,;,() + Kn(z)v2v(,, t) = ,,,’(:) + [,, + ,st ,.
: g, := ,,v(,, t,,) + [(t,,) + r(t)_SN(,)lvNA, t.) +

SN(tn) < : < , E (tn ,tn), n >_ 1,

where

Kn(z = [v(z)- vn 1()]sn sn " "At --sn
= [v;,(:)- v. (:)],s. ._

At g- sn

For any f(z, t)

where

,t vr,(:, t).(:, t,,),: t .:,(, t.)(, t.)a
(t.)

N
+ tf [(t)+ (t.). -. x .(t.) Ivy.(=, t.)y(=, t.)a= +,

lira GN = O.

By using integration by parts and by uniform convergence of (2g) and (26), we can obtain

-//ftCdzdt+/s’(t)[f](s(t),t)dt+ f [f](z,T)dz- f f(z,O)vo(z)dz
o (T) o

T

=a2/[[zf](l, t) [zf](s(t), t)]dt- a2 / / Czfzdzdt
0 f

and (28) holds for any continuous function f with first order derivatives bounded on f2 by

smooth function approximation.

From Equation (8) it also holds for its solution v that
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f /ftvdzdt+ /s’(t)[vf](s(t), t)dt+ / [fv](z, T)dz- f f(z, O)vo()dz
f 0 s(T) 0

T
= a2 / [[vzf](l, t) [vzf](s(t), t)]dt z f fvzfdzdt

0 f2

’(t)Let > I]t a(t),ll, f=(v--)e -St in (28)and f=($-v)e -*t in (29).
substitutions, and then adding (28) and (29), we obtain

a2 f f (v )2 -*tdzdt+l/2e-ST (v $)2(z, T)dz
s(T)

T T

+ / f(t)(v-)(e,t)e-*tdt + fs’(t)(v-)(s(t),t)e-tdt
0 0

T
+ 1/2 ()(v-)(s(t),)e-tdt + 1/2

T
0.

0

(29)

After these

The last inequality comes from the fact that

(v )(v )z(s(t), t)dt <_ O,

by the condition at z- s(t). tlence - v. This demonstration implies that the (weak)
solution of fixed problem (8) is unique and, hence, that (26) holds for the whole sequence vy.

Thus we have proved the following"

Theorem 1" Let SN(t and VN(Z,t be defined as in (24), where vn(z is produced by

the Rothe approximation scheme (14) for fixed problem (S). Then

VNV VNz-.-,vz uniformly as Noo,

VNt--+vt, VNxx---*Vxx in L weak star topology,

where v is the unique solution of Equation (8), and v satisfies

O<v<q, Iv=(z,t)l <_Co, Ivt(zz, t)i <_C, Iv==(,t)l <C,



174 GUO BAO ZHU

v=(, tl)[ IvAn, t2){ -< c Ih. 211/2 or ny tl, 2 [0, T],

where C depends only on the C1 norm of , 8, ,-s(T), and the C2 norm of vo.

3. EXISTENCE OF THE SOLUTION

This section will contribute to the existence of solution of Equations (8)-(9). For this

purpose, we construct the Rothe approximation scheme of Equations (8)-(9) as follows:

Vn(X)--Vn--I((X)) 02 Sn--Sn-l : :nzx = ’;;(:) + [,, + 2 +/-t _- ]v,(:), . < : < ,

Vn(Sn) > O, V’n(Sn) "4" al(fln)Vn(Sn) + Q(fln) >- O,

Vn(Sn)[- V’n(Sn) + al(fln)Vn(Sn) + Q(fln)] = 0, n = 1,2,...,N,
(3O)

Sn 8n 1"o(’) =- v0(), () = ,,- s._
_

-S,

sn = sn_ 1 "4"--’[- v’n l(Sn 1) -4- al(n 1)vn_ l(Sn_ 1) + Q(n- 1)]At’ s0 = 0,

and SN(t), vN(z t) are defined in the same form as in (24) but sn and vn are produced by (30).

Arguing as in Lemma 1-4, we have

Lemma 5: There exists a unique solution to Equation (30) and the corresponding

functions sN(t and VN(X t) satisfy conditions (b)-(f) of Lemma 4. Moreover,

Now

0 <_ S’N(t C0 <_ 2-maz{ II o II, qflMIa2, q II al II + II Q II }.

N
sN(T) = SN E (sn- sn-1)

n---1

N---- -nl[= V_ l(Sn_ 1) -]" al(fln- 1)Vn- l(Sn- 1) "]" Q(fln- 1)]zt -< CoT"

(31)

If T is sufficiently small, then sN < const. < e for all N. Let $(t) and (I)(z, t) be the uniform

limits of subsequence of Sy(t) and Vy(Z t), which for easier notation are still denoted by sN

and VN, as N goes to infinity. Observe that

N

n----1
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N

E [-- V l(Sn 1) 4- al(n- 1)Vn- 1(8n- 1) 4- Q(]n- 1)]At
n-l

N
= ((t._ ),

N

n 1)At 4- E al(n 1)vN(sN(tn 1), Srt 1)

N
+ (Z._ )x.

N
= [%(v(t. ), t. x)- v((t. ), t._

N
4- E [’- ffPx[SN( tn 1)’ tn 1) 4- ffPx(S tn 1)’ t

N

rt l

N
4- E al(fln-1)[ff(SN(tn-1)’tn-1)-- (S(tn-1)’tn-1)]At
n=l

N

n--1
n- 1) 4- al(n- 1)(I)($(tn 1), tn- 1) 4" Q(fln 1)]At"

The last term of the above formula is a Pdemann sum. From uniform convergence we have

immediately that

T
$(T) = [- Oz($(t), t) + a(fl(t))(z, t) + Q(fl(t))]dt.

0

Considering t as any t (0, T] we also have

t

$(t) = - x($(t), t) + a(fl(t))(z, t) 4" Q((t))]dt.
0

(32)

From the same arguments in (26), we also have

(b($(t), t) > O, (b’($(t), t) + a(fl(t))O(z, t) + Q(fl(t)) > O,

($(t), t)[ ’($(t), t) + a(fl(t))(x, t) 4" Q(fl(t)] O,

a2Oz(e, t)+ fl(t)ff(e, t) = qfl(t).

(33)

From (32), $(t) is a C1 function on [0,T]. Using the same argument as in the proof of

Theorem 1, we can prove for $(t), if(z, t) is a solution of Equations (8)-(9). Finally, it is easy

to see that

II ’ II <c,
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where C depends only on the C norm of and s(), the C2 norm of v0(z), and -s(T).
Since $’(t) <_ Co, where CO is defined in (31), C only depends on the C of fl, the C2 norm of

Vo(X), and/- s(T). We can extend this solution until $(T) = (e.g. [12]).

Theorem 2:

(i) There exists a solution (s(t), u(x, t)), (x, t) Is(t), ] x [0, T] to Equation (4) and

either T = oo, s(t) < for all t >_ O;

or T < cw and s(T) = .
This solution can be obtained as the uniform limit of the following Rothe approximation

otio N(t) N(,t)"

SN(t) = [(t tn 1)an + (tn t)sn 1], for t
(34)

(, t) = [(t t. ,).() + (t. t). _,()], fo [ , ),
in which sn and vn are produced by

s, = s,_ +[Un l(Sn 1) al(n 1)Vn l(Sn 1)

Un(Sn) rain{urn 2(.n_). + zn(sn)___
Rn(sn) + el(fin)’

e-s_z sn-sw R.() < O, z.() O, () -._ . _ ,,
() ()-[Z. + 2,

(ii)

(iii)
u <_ u(z, t) <_

,(, t) <_ o, "o(,) <- o.

4. NUMERICAL SIMULATION

The following parameter is taken from a real material with a steel bar as the ablation

material. The melting point is 1450C, and helium is the coolant.

e = O.O15m, cp = 0.153kcal/kg.C, x = O.O063kcal/*C.s.m.,

CpL = 1.24kcal/kg.C, p = 7850kg/m3, hr. = 3500kcal/kg,
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he = 1728kcal/kg, qo = 5000kcal/s’m2, L = 65kcal/kg,

um = 1450"C, uc = 315"C, Uo(Z = 516"C.

The numerical results are calculated through solving (35) by a FOR,TItAN program. The

results demonstrate that if coolant is not added, the steel bar is almost melted at 10 seconds,

but in the case of inputting coolant m = 2 (the maximum coolant value in our example:

m = 4.38), the temperature of the outer surface never attains the melting point: the coolant is

very effective.

(i) m = 0, T = 10, N = 30

t, sN(tn) UN(SN(t,),tn)

0.3333333 3.823523E-003
0.6666667 3.823523E-003 237.8863
1.0000000 3.823523E-003 1172.275
1.3333330 4.159586E-003 1450.000
1.6666670 4.159586E-003 1405.850
2.0000000 5.066955E-003 1450.000
2.3333330 5.066955E-003 993.608
2.6666670 5.235254E-003 1450.000
3.0000000 5.714478E-003 1450.000
3.3333330 5.714478E-003 1322.453
3.6666660 6.508625E-003 1450.000
4.0000000 6.508625E-003 1077.579
4.3333330 6.868615E-003 1450.000
4.6666670 6.868615E-003 1412.066
5.0000000 7.886279E-003 1450.000
5.3333330 7.886279E-003 957.884
5.6666670 8.059592E-003 1450.000
6.0000000 8.614007E-003 1450.000
6.3333340 8.614007E-003 1277.720
6.6666670 9.440608E-003 1450.000
7.0000010 9.440608E-003 1090.880
7.3333340 9.941348E-003 1450.000
7.6666680 9.941348E-003 1349.251
8.0000010 1.097733E-002 1450.000
8.3333340 1.097733E-002 985.194
8.6666670 1.140899E-002 1450.000
9.0000000 1.144755E-002 1450.000
9.3333330 1.276071E-002 1450.000
9.6666660 1.276071E-002 953.719
9.9999990 1.355138E-002 1450.000
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m = 2, T = 10, N = 30

sN(t.) uN(sN(tn),tn)

0.3333333 2.393934E-003
0.6666667 2.393934E-003 241.9474
1.0000000 2.393934E-003 660.9301
1.3333330 2.393934E-003 805.6894
1.6666670 2.393934E-003 887.0065
2.0000000 2.393934E-003 942.0304
2.3333330 2.393934E-003 983.4641
2.6666670 2.393934E-003 1016.6440
3.0000000 2.393934E-003 1044.0590
3.3333330 2.393934E-003 1068.1590
3.6666660 2.393934E-003 1087.3070
4.0000000 2.393934E-003 1104.1690
4.3333330 2.393934E-003 1117.2270
4.6666670 2.393934E-003 1137.4850
5.0000000 2.393934E-003 1142.5890
5.3333330 2.393934E-003 1146.9740
5.6666670 2.393934E-003 1151.2580
6.0000000 2.393934E-003 1155.2860
6.3333340 2:393934E-003 1158.9660
6.6666670 2.393934E-003 1162.2390
7.0000010 2.393933E-003 1167.0030
7.3333340 2.393933E-003 1174.3570
7.6666680 2.393933E-003 1173.6960
8.0000010 2.393933E-003 1173.3640
8.3333340 2.393933E-003 1173.7020
8.6666670 2.393933E-003 1174.3910
9.0000000 2.393933E-003 1175.2630
9.3333330 2.393934E-003 1176.2150
9.6666660 2.393934E-003 1177.1690
9.9999990 2.393933E-003 1178.0520

O.OIE

0.01

O. OOS

I 2 3 4 S 6 7 8 9 10

Figure 2. Numerical simulation of an ablation steel bar
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