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ABSTtLCT

In this paper, a general distributed parameter control problem in
Banach spaces with integral cost functional and with given initial and
terminal data is considcred. An extension of the Dubovitskii-Milyutin
method to the case of nonregular operator equality constraints, based on
Avakov’s generalization of the Lusternik theorem, is presented. This
result is applied to obtain an extension of the Extremum Principle for
the case of abnormal optimal control problems. Then a version of this
problem with nonoperator equality constraints is discussed and the
Extremum Principle for this problem is presented.
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1. INTRODUCTION

lesults on optimal control of distributed parameter problems have been considered in

several papers starting with Lions [7]. Lions’ results have been extended to the case of cost

functionals in the integral form [5, 6]. In [8], Lions considered a distributed parameter control

problem with the initial condition not a priori given; (so called "system with insufficient

data"). In [14], Papageorgiou presented a significant generalization of Lions’ results to the case

of a general convex integral functional. In a general setting of Banach spaces, by using the

Dubovitskii-Milyutin method, he proved necessary and sufficient conditions of optimality

which generalized several results previously given [5, 6].
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In this paper, a general distributed parameter control problem in a Banach space with

integral cost functional, as formulated by Papageorgiou in [14], is considered but in the case of

given initial and terminal data (Section 2). For this problem, the case of abnormal optimal

processes, i.e. processes for which the Extremum Principle is satisfied in the trivial way wih

multiplier A0 corresponding to the cost functional equal to zero, is discussed. An extension of

the Dubovitskii-Milyutin method to the case of nonregular operator equality constraints from

[11] obtained by the application of Avakov’s results [1] is briefly presented in Section 3. This

extension has already been applied to an abnormal optimal control problem of a system

governed by ordinary differential equations with given terminal data in [12]. Extended

versions of the local Maximum Principle for this problem have been obtained in [2] and [12].
In this paper, following the idea of [12], the result of [11] is applied to the problem from

Section 2 and an extension of the Extremum Principle for the distributed parameter control

system with given initial and terminal data in the abnormal case is formulated (Section 4).

In the last part of the paper (Section 5), the optimal control problem from Section 2 is

considered but without terminal data and without the assumption that the control set

possesses a nonempty interior in L2(y), i.e., this is a problem with a nonoperator equality

constraint. By using a generalization of the Dubovitski-Milyutin method to the ease of n

equality constraints in arbitrary, even nonoperator form from [15], a version of the Extremum

Principle is proved generalizing results of [5] and [10].

2. A GENEILAL OPTIMAL CONTROL PROBLEM IN A BANACH SPACE

Consider the following general optimal control problem as considered by Papageorgiou

[14], but with fixed initial and terminal data. Minimize the functional

b

I(x, u) / f(t,x(t), u(t))dt
0

under the constraints

:(t) + A(t,x(t)) = B(t,x(t))u(t)

x(O) = xo (2.3)

x(b) = x (2.4)

e tr(t)

where z E X C/jr; H is a separable Hilbert space, X is a separable reflexive Banach space

embedded continuously and densely in H; u E Y and Y is a separable Banach space modeling
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the control space; Zo, z1 E H.

In order to specify the assumptions of the problem, we need to introduce the following

notations. Let X* denote the dual space to X and let [[. [[, [. [, [[. [[. be norms in the

spaces X,H,X* respectively. By (.,.) we will denote the inner product in H and by (-,.)
the value of the functionals from X*on X or from Y* on Y. Then for every z E X C H and

H C X* w (,)= (,).

Suppose A: [0, b] x X---X*, B: [0, b] x H---,L(Y, X*) are operators, f: [0, b] x H x Y---,R is

a functional, U: [0, b]P(Y) is a multifunetion with P(Y) a nonempty, dosed, convex subset of

Y.

The problem above will be considered under the following assumptions:

(A1) tA(t,z)is measurable;

(A2) zA(t,z) is twice continuously Frchet differentiable and strongly monotone

uniformly in T;

(a3) II A(t,x)il. _< a(t) + b !1 II a.e. with a(. L2+, b > 0;

(A4) (A(t,z),z) >_ c II II 2, with c < 0;

(AS) t---,B(t,z)u is measurable for every (z, u)E H x Y;

(A6) zB(t,z)is continuous;

(A7) z---,B(t,z)u is twice continuously Frchet differentiable;

(m8) II B(t,)u il. _< b (t) / b(t)i z / b3(t II u I! with bx(. ), b(. E L+,
e

(A9) t---,f(t,z,u)is measurable;

(A10) (z, u)---,f( t, z, u) is continuously Frchet differentiable;

(All) intV # where V = {u(. e L2(y):u(t) e V(t) a.e.};

(A12) U: [O, b]--.P(Y) is a multifunction such that the set {(t,u) [O,b]xY:u U(t)}

B([0, b]) x B(Y), where B([0, b])is the Borel r-field of [0, b], B(Y)is a Borel r-

field of Y.

Let us call the problem (2.1)-(2.5), under assumptions (A1)-(A12), Problem I. These

assumptions are basically the same as in [14] except for the stronger requirement of twice

Frchet differentiability in (A2) and (A7) related to applications of results from Section 3.

We will look for a solution of the above problem in the space

W[0, b] = {x(. ) L2(X):k( ) L2(X*)}.

W[0, b] is a Banach space with norm
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1

II !1 wto, b] = II  (t)II 2dr + II  (t)Ii 2.dt
0 0

3. AN EXTENSION OF THE DUBOVITSKH-MILYUTIN METHOD

TO THE NONR.EGULAR CASE

In [1], Avakov generalized the Lusternik theorem to the case of nonregular operators

under twice Frchet differentiability assumption. In [11], this generalization was applied to

extend the Dubovitskii-Milyutin method to the case of m equality constraints given by

nonregular operators. Now we will present the main result of [11] which will be applied in our

investigation of Problem I.

Let us consider the following optimization problem: Minimize the functional

I(z).--,min

where I: XR, X a Banach space, under the constraints z E Zi, = 1, 2,..., n, n + 1,..., n + m.

Here Zi, = 1,2,...,n, represent inequality constraints (intZ 5 ), which for = 1,2,...,k are

of the form Z = {z E X: i(z) < 0), where i, = 1, 2,...,k are differentiable functionals on X,

for = k+ 1,...,n are convex sets, while Zn+j- {z X:Fj(z) = 0}, j- 1,2,...,m, where

Fj:XYj are given operators and Y1,Y2,...,Ym are Banach spaces.

Define an operator F: X---Y, where Y = Y1 x Y2 x... x Ym, by taking

F(z) = (F(z),F2(z),...,Fm(z)).

Let z0 X. We assume that F given by (3.1) is twice Frchet differentiable at the point

For arbitrary h X we introduce a linear mapping G(zo, h):XYxY/ImF’(a:o)
given by the formula

G(zo, h) = (F’(zo) 7rF"(Zo)(h)) (3.2)

where 7r:Y--.Y/ImF’(zo) is the quotient map from Y in to the quotient space Y/ImF’(zo).
We then denote

W=YxY/ImF’(xo)

Wi = ImF’(zo) x Y/ImF’(zo).

In [11], the above optimization problem was considered and by using Avakov’s

generalization of the Lusternik theorem to the case of nonregular operators from [1], the
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extended version of the Dubovitskii-Milyutin theorem to the case of m equality constraints in

the nonregular case was proved in the following form.

(i)

(ii)

(iii)

(iv)

Theorem 3.1 [11]: Suppose that
n+m

I(:) attains its local minimum on the set f’] Z at the point ’o;
i=1

I(z) is Frchet differentiable at zo with I’(zo) 0 and cone of decrease Co;
i, i= 1,2,...,k are Frchet differentiable at :o with (:o)5k 0 if i(Zo)= 0 and

the inequality constraints Z have feasible cones Ci, = 1,2,..., n at the point

the operator F given in (3.1) is twice Frkchet differentiable at zo and ImF’(zo)
is closed.

k
Then for every h E closC such that

i=o

h ker F(zo) j = 1, 2,..., m, 7r(F’’(Zo)(h h,..., F(zo)(h)h = 0 (3.3)

for which the second order feasible cones at zo to Zi, = k + 1,...,n, in the direction of h are

nonempty and convex, and for which Im G(zo, h is closed in W, there exist 2re+n+1

functionals, not all zero,

such that

and

fi(h) fi C, = 0,1,...,n, q(h),s(h) e Y, j 1,2,...,m,

’1 m m

fi(h) + Z FT(zo)q(h) + (F’j(Zo)(h))*s(h) = 0
,=o j=l j=l

e (tr 

In addition, if Im G(zo, h -Im F’(zo) Y/Im F’(Zo) then fi(h), i= 0,1,...,n, are

not vanishing simultaneously.

4. TIlE CASE OF ABNORMAL OPTIMAL CONTROL PROBLEMS

In this section the results of Section 3 will be used to prove the extended version of the

Extremum Principle for Problem I.

The classical type Extremum Principle for Problem I was formulated in [13] as an

additional case of Papageorgiou’s Extremum Principle from [14], by using some version of the

Dubovitskii-Milyutin method (Theorem 1 of [9]). However, due to the presence of the fixed

initial and terminal data, for some admissible processes (z, u), the Extremum Principle may be
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satisfied for this problem with the trivial multiplier corresponding to the cost functional,

Ao = 0. In this case, the adjoint equation and the minimum condition do not depend on the

minimized functional I(z,u) and the Extremum Principle describes only the structure of the

constraint set, but does not represent much value as a necessary condition of optimality.

Processes for which such a degenerate situation occurs are called abnormal.

Definition 4.1: An admissible process (z., u.) in Problem I is called abnormal iff

there"exists a function p(-) E W[0, b] satisfying the equation

such that

ig(t) = A*z(t,z.(t))p(t B*(t,z.(t))u.(t)p(t)

b b

f (B*(t,z.(t))p(t), u.(t))dt = / (B*(t,x.(t))p(t), u)dt
0 0

for all u U(t).

By applying Theorem 3.1, an extended version of the Extremum Principle to abnormal

cases, in the sense of the Definition 4.1, can be proved. In order to apply this theorem to

Problem I we need to introduce the following operators"

(i) El: W[0, b] x L2(y).---,L2(X*) x g given by the formula

F(x, u)(t) = (k(t) + A(t,z(t)) B(t,z(t))u(t),z(O) Zo);

(ii) F2: W[0, b] x L2(y)---,H defined in the form

F2(x u) = x(b)

Then we will define the operator F: W[0, b] x L2(Y)L2(X*) x H x H as

F(x, u) = (FI(X u), F2(x u)) (4.3)

where Fi(x u), i- 1,2, are given by formulas (4.1) and (4.2) respectively.

The first and second order Frchet derivatives of the operator F defined in (4.3) are

given by:

F’(z., u.)(’ )( t) = ( t) + Az( t, z.(t))’ (t) Bz(t, z.(t))u.(t)’ t)

B(t,x.(t))’ ,h (O),h (b)),

F"(z., u.,h, v)(h , )(t) = (Azz(t,z.(t))h(t)h (t) Bzz(t,x.(t))h(t)h (t)

Bz(t,x.(t))v(t)h (t) Bz(t,x.(t))h(t) (t), O, 0).

Then, following Theorem 3.1, let us define the operator

(4.4)

(4.5)
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G(x.,u.,h,v):W[O,b]xL2(y)-*L2(X*)xHxHx(L2(X*)xHx )/ImF (x.,u.)

given in the form:

G(z.,u.,h,v)(h,V (F u.)(h, ),rF"(x. u.)(h,v)(’, ))

where the Frchet derivatives F’(x.,u.) and F"(x., u.)(h, v) are given by (4.4) and (4.5)
respectively and r: L2(X*) x H x HL2(X*) x H x H/ImF’(x., u.) is the quotient mapping.

Let us then denote by P(x.,u.) the set of parameters satisfying the following

conditions (a)-(e):
(a)

()

()

] + Ax(t,x.(t))h- Bx(t,x.(t))u.(t)h- B(t,x.(t))v = O, with h(O) = O; (4.7a)
h() = 0; (4.)

(Axx(t,x.(t))h2 Bxx(t,x.(t))u.(t)h Sx(t,x.(t))vh- Sx(t,x.(t))hv, O,O) E

ImF’(x., u.), and G(x., u.,h, v) given by (4.6) has a closed image in

L:(X*) H x It (L(X*) It H)IImF’(x., u.)) (4.7c)
b

(d) f (fx(x.(t), u.(t), t)h(t) + fu(x,(t), u.(t), t)v(t))dt O, (4.7d)
o

(e) v is such that the second order feible cone to V at Uo(. in the direction of v is

nonempty and convex. (4.7e)
Then, by applying Theorem 3.1, the following extended version of the Extremum Principle can

be proved.

Threm 4.1: (Extremum Principle) Let

(i) an admissible process (x., u.) be optimal in Problem I;

(ii) II Ax(t,x.(t)) I L(X,X*) ;
(iii) Bx(t’x*(t))u*(t) [ L(H,X*)

for some constants 1, 2 > O;

(iv) Bx(t,x.(t))u.(t) x(. is dissipative;

(v) tfx(t,x.(t),u.(t)) belongs to L2(H);
(,i) o,o D: W[O, ] :(Y)--:(X*) x n n o

D(h , )(t) = (h (t) + Ax(t,x.(t))h (t) Bx(t,x.(t))u.(t)h (t) B(t,x.(t))V (t),h (O),h (b))

has a closed image in L2(X*) x H x H.

fo (h,,) P(., .) ,it, o = o(h,’) O, to p(. = p(h,,)(.

(. = (h, v)(. W[O, b] not all zero satisfying the "extended adjoint equation"

ig(t) = AoYz(t,x.(t), u.(t)) + Ax(t,x.(t))p(t Bz(t,z.(t))u.(t)p(t
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A*zz(t,z.(t))(h(t))(t + Bm(t,z.(t))(h(t))(t) + Bz(t,z.(t))(v(t))(t) (4.8)

for t e [0, b] a.e. where the function (. satisfies

(b(t) = A(t,z.(t))(t)- Bz(t,z.(t))u.(t)(t

b

(B’(t,z.(t))(h(t))(t), u u.(t))dt = u E L2(Y)0 for all

0

(4.9a)

(4.9b)

and the "eztended minimum condition"

b

/ ($ofu(t,x.(t), u.(t)) B*(t,x.(t))p(t) + B*(t,x.(t))(h(t))(t), u.(t)>dt >_ 0

0
(4.10)

for all u V.

Proof." Our optimal control problem will be formulated in terms of optimization
3

theory as a problem of minimizing the functional I(z,u) under the constraints (z,u) Z
i=1

where

= (4.11)

Zi +1 {(z, u): Fi(z u) = 0 }, 1, 2,

and F1 and F2 are given in (4.1) and (4.2) respectively.

We will say that the pair (z,u) W[O,b]xL2(y) forms an admissible process for

Problem I iff (z,u) Zi, = 1,2,3. In view of the assumptions of the problem, the sets Z2

and Z3 are equality constraints, i.e. int Z = 0, : 2,3, while Z1 is an inequality constraints,

i.e. int Z1 5 . By using Theorem 3.1, the Extremum Principle for Problem I can be proved.

In order to apply this theorem, we have to determine the cone of decrease of the functional I

at the point (z.,u.) denoted by DC(I,(z.,u.), the feasible cone to the set Z at the point

(z., u.) denoted by FC(Z, (z., u.) and the cones dual to them.

Following well known arguments as they can be found in [14], we get that

b

DC(I,(z.,u.)) {(,) W[O,b]xL2(y): /(fz(t,z.(t),u.(t))-(t)
0

+ fu(t,z.(t), u.(t)) (t))dt < 0},

b

(DC(I, (z., u.))* = {fo( , = A0 / (fz(t,z.(t), u.(t))’ (t) + fu(t,z.(t), (t)dt,
0
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where Ao >_ 0). (4.13)

Then let us analyze the inequality constraint Z1 given by (4.11). Theorem 10.5 of [4]
implies that

FC(Zx, = {/’x =

where f]( is a functional supporting the set V at the point u.}. (4.14)

Finally, consider the operator F defined by (4.3). Since F1 and F2 are continuously

Frchet differentiable at (z.,u.), so is F. Its derivative at this point has the form of the

operator D from assumption (vi). In view of (ii), the derivative of F has then a closed image

in H x H x L2(X*). Thus all the assumptions of Theorem 3.1 are satisfied. Then, in view of

this theorem, for every (h,v)E P(a:.,u.) there exist functionals, not all zero, fo(h,v)
(De(I, (z., u.)))*, fl(h, v) e (FC(ZI, (z., u.)))*, qj(h,* v), s(h, v) Yj,* j = 1,2, such that

fo(h) + fl(h) + F’l*(xo)q(h + F2*(:o)q;(h) + (F’l’(a:o)(h))*s(h)

+ (F’2’(Zo)(h))*s(h) : 0

and

(s;(h,v),s(h,v)) e (Im F( u.)) (4.16)

By using (4.4), (4.5), (4.13) and (4.14) and forms of the linear functionals on H and

L2(H*), the Euler-Lagrange equations will have the form

b

f,ko (fx(t,z.(t), u.(t))h (t) + fu(t,z.(t), u.(t)) (t))dt + f(
b 0

+ / (’ (t) + Az(t,z.(t))- (t) Bz(t,z.(t))u.(t)’ (t)- B(t,z.(t)) (t), p(t))dt + (a, (t)(O))
0 b

+ (b,h (b)) + J (Axz(t,z.(t))h(t)h (t)- Bxz(t,z.(t))h(t)h (t)- Bz(t,z.(t))v(t)h (t)
0

Bz(t,z.(t))h(t) (t), (t))dt = 0 (4.17)

for every (h, v) P(x., u.) and (,) E W[0, b] x L2(Y), where p(. ),(. L2(X*), a, b H.

Similarly, applying (4.4) in (4.16) and using the definition of the annihilator of the

subspace, we obtain that (-)satisfies
b

((t),i(t) + Az(t,z.(t))h(t B(t,z.(t))u.(t)h(t)- B(t,z.(t))v(t)}dt
0
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+ (, (0)) + (d, ()) = 0.

with c and d some elements of the space H.

First let us consider (4.17) for = 0. Changing p(t) on a set of measure zero, if

necessary, we obtain the existence of p(t)e W[0,T]. Applying in (4.17) Lemma 5.1 of [17]
about integration by parts and using the definition of adjoint operators for Ax, Axx and Bx,

Bxx we get
b

i)(t) ,ofx(t,z.(t), u.(t)) -t- Ax(t,z.(t))p(t) B(t,z.(t))u.(t)p(t)
0

+ Ax(t,x.(t))(h(t))(t)- B*xx(t,x.(t))(h(t))(t Bz(t,x.(t))(v(t))(t),h (t))dt

+ (- ;(0), (0)) + ( + ;(), ()) = 0. (4.19)

Equation (4.19) considered for h (0)= 0 and h (b)= 0 implies the "extended" adjoint equation

(4.8). Taking in (4.17) h -0 and using the definition of the adjoint operators B and Bz we

obtain

b

fl( = J (O/u(t,z.(t), u.(t)) B*(t,z.(t))p(t) + B*z(t,z.(t))(h(t))(t), (t))dt.
0 (4.20)

Then from the definition of a functional supporting the set U at u.(.), from (4.20) the

"extended minimum condition" (4.10) of this theorem follows.

This theorem has been proved under the assumption that DC(I,(z., u.))7 O. If this

assumption is not true, then from the form of DC(I,(z.,u.)) it follows that for every

( (t), (t) E W[0, b] x L:(Y) we have

b

/ (fz(t,z.(t), u.(t))h (t) + fu(t,z.(t), u.(t))’ (t))dt = O. (4.21)
0

Putting in (4.21) ’0 = 1 and taking 0, p 0, a = 0, b 0, f = 0, we obtain the

Euler-Lagrange equation (4.17) and then proceeding in the same way as in the first part of the

proof we obtain the proposition.

Finally let’s consider (4.18) for = 0. Changing (t) on a set of measure zero, if

necessary, we obtain the existence of (t) W[O,T]. Applying in (4.18) Lemma 5.1 of [17]
about the integration by parts and using the definition of adjoint operators for Ax, Bz and B

we get
b

(- b(t) Bz(t,z.(t))u.(t)(t),’ (t))dt+ Az(t,z.(t))(t)
0
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+ ( (0), (0)) + (d + (), ()) = 0. (4.22)

Taking (4.19) for h(0)= 0 and h(b)= 0 we obtain equation (4.9a).

(4.18) h = 0 and using the adjoint operator B we obtain condition (4.9b).

Then substituting in

Q.E.D.

t:temark 4.1:

that the mapping

If we assume in addition that U(.) is L2+ bounded in the sense

t---, u(t) = sup{ !1 u II-u e r(t)} belongs to L2+,
then, proceeding analogously as in Theorem 3.1 of [14] we can derive that the minimum

condition (4.10) can be expressed in the simpler form

(Aofu(t,z.(t), u.(t)) B*(t,x.(t))p(t), u u.(t)) > 0 (4.23)

for all u E U(t) and a.e. [0, b].

lmark 4.2: If U = L2(y), then condition (2.5) has the form u(. ) L2(y), i.e.

there are no constraints on the control functions. Then the minimum condition (4.23) of

lemark 4.1 takes the form

Aofu(t,x.(t),u.(t)) = B*(t,x.(t))p(t) a.e.

lmark 4.3: If in assumption (vi) ImD= L2(X*) x H x H (the regular case),
then from condition (4.9) we have that (.)=-0 and in Theorem 4.1 the following changes

occur:

conditions (4.9a), (4.9b)disappear;

the "extended adjoint equation" (4.8) takes the form of the classical "adjoint

equation"

c)

ig(t) = Aofz(t,x.(t), u.(t)) + Ax(t,x.(t))p(t Bz(t,x.(t))u.(t)p(t ), a.e. (4.24)

the "extended minimum condition" takes the form of the classical "minimum

condition"

b

/ (Aofu(t,x.(t), u.(t)) B*(t,x.(t))p(t), u(t) u.(t)) > u(dt 0 for V.

0
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5. AN OPTIMAL CONTROL PROBLEM WITII

NONOPEILTOI EQUALITY CONSTKAINTS

Let us now consider Problem I without the terminal data (2.4), but also without

assumption (All) that the set V possesses a nonempty interior in L2(y). Let us call such a

problem, Problem II. Under these changes the geometrical model of the problem, by using

the Dubovitskii-Milyutin approach, will change because we will have two equality constraints

ZI and Z2 given by (4.11) and (4.12) respectively. The situation here will be different than in

Problem I, because the constraints Z is firstly, an equality constraint and secondly, it is in

the nonoperator form. In order to prove the Extremum Principle for Problem II we have to

apply some generalization of the Dubovitskii-Milyutin method to the case of n equality

constraints in the arbitrary, even nonoperator form from [15].

Theorem 5.1" (Extremum Principle) Let he admissible process (z.,u.) be

optimal for Problem II and suppose assumptions (ii)-(v) of Theorem 4.1 are satisfied. Then

there ezist Ao >_ 0 and p(. W[0, b] not all zero salisfyin9 the "adjoint equation" (4.24) with

terminal condition p(b) = O, such that the "minimum condition" (4.25) holds.

Proof: In the proof we will use Theorem 4.1 of [15]. Assume first that the cone

DC(I, (z., u.)) (= . We will be able to use the form (4.13) of the cone (DC(I, (z., u.)))*. By

using Theorem 4.2 of [3] it is easy to see that F’(z., u.) given as

F](z., u.)(h , )(t) (h (t) + Az(t,z.(t))h (t) Bz(t,z.(t))u.(t)h (t) B(t,z.(t)) (t)h (0)),

maps W[O,b]xL2(Y) onto the space L2(X*)xH. Then applying the classical Lusternik

Theorem to the set Z2 given by (4.2), we get that

TC(Z2, (z., u.)) = {(h , )" h (t) + Az(t,z.(t))h (t) Bz(t,z.(t))u.(t)’O (t) B(t,z.(t)) (t) = O,

h(0)- 0}. (5.2)

Notice that, we don’t need to determine the dual cone to TC(Z2,(:e.,u.) in the proof.

From the form (4.11) of the equality constraint Z, we obtain that

TC(Z1, (z., u.)) = W[0, b] x ’1 (5.3)

where 71 C L2(y) denotes the tangent cone to the set V at the point u..
Theorem 10.5 of [4], the cone (TC(Z1, (z., u.)))* is given by (4.14).

On the basis of
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In order to apply Theorem 4.1 of [15] we have to show that, similarly as in [16], the

cones (TC(Zx, (z., u.)))* and (TC(Z2, (z., u.)))* are of "the same sense", according to

Definition 2.1 of [15]. In order to show this we have to analyze the form of the cones

TC(Zx,(z.,u.)) given by (4.14) and TC(Z2,(z.,u.)) given by (5.2). By applying Theorem 4.2

of [3] about the existence and uniqueness of solution to the following equation from (4.14)

(t) + Az(t,z.(t))- (t)_ Bz(t,z.(t))u.(t) (t)_ B(t,z.(t))’ (t) = 0, (0) = 0, (5.4)

we have that for every E L2(y) there exists a unique E W[0, b] satisfying (5.4). From

above and from the assumptions (A2)-(A8)about operators Az(t,z.(t)), Bz(t,z.(t)) and

B(t,z.(t)) we obtain that TC(Z2, (z., u.)) can be expressed in the form

TC(Z2,(z.,u.) = {(h, ):h M },

where M: L2(Y)--,W[O, b] is a linear and continuous operator such that = MV iff (,V)
satisfies equations in (5.2).

Applying then Theorem 3.1 of [15] to the cones given by (5.3) and (5.5) we obtain that

the cones (TC(Z, (:., u.)))* and (TC(Z4, (z., u.)))* are of "the same sense" i.e. assumption

(iv) of Theorem 4.1 of [15] is satisfied.

Assumptions (i) and (ii) of this theorem are also satisfied, since the cones

DC(I, (z., u.)), TC(Z1, (z., u.)) and TC(Z2, (z,, u.)) are convex. Then we only have to show

that assumption (iii) of this theorem is satisfied i.e.

TC(Z1, (z., u.)) C TC(Z2, (z., u.)) C_ TC(Z1 A Z2, (z., u.)). (5.6)

The proof of this fact will be similar to the one given in [16]. Consider Z2 given by (4.12),
where the operator F1 is given by (4.1). It is easy to check that in some neighborhood q.l, of

the point (z., u.) the operator F satisfies all the assumptions of the implicit function theorem.

Then, in this neighborhood q.t, the set Z2 can be expressed in the form

= =

where S: L2(Y)--,W[O, b] is an operator of the class C satisfying the condition F(S(u),u)= 0

for every u such that (S(u),u) . Differentiating the above we obtain that the cone

TC(Z,(z.,u.)) can be represented in the form

TC(Z2,(z.,u.) {(,) W[O,b]x L2(y)’- = Su(U.)’ }.
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Let us take an arbitrary (h,) TC(Z1, (z., u.)) N TC(Z2, (., u.)). Then from the

(t) /todefinition of the tangent direction, there exists an operator ru(t such that ]] ]] as

t---,0 + and

for sufficiently small and any (r(t)). Then from (5.7), for sufficiently small t, we have

(s(,. + + ,L()),,. + + ()) e z.
Since S is Frchet

il ,.(t)II/t-o s t-o / nd

diffcrentiable, there exists an operator r2(t) such that

s(,. + t + ,.(t)) = s(,.) + ts,,(,.) + ,.(t).

Then using (5.8) we get

(= ,,.) + ,(e, + (,-’ (5..2)., .(),,-(t)) e z.
Now it is enough to take in (5.9) r(t)- r(t) and then (5.10)-(5.12)imply that (5.6)

holds. So all the assumptions of Theorem 4.1 of [15] are satisfied. By making use of this

theorem we obtain that there exist functionals: fo e (D(I, (z.,u.)))*, fi e TC(Zi, (z.,u.)),
1, 2, not all zero, such that

fo(, "4" fl(’ " )-4- f2(, O.

The proposition now follows as in [14], using a classical Dubovitskii-Milyutin

framework (e.g. [4]). So does the case when De(I, (z., u.)) = , which ends the proof.

Rcmark 5.1: It is worth to notice that Remark 4.1 remains true for Problem II,

i.e. in the cases described in Remark 4.1 the minimum condition can be simplified to the form

(4.23).

Remark 5.2: As an example of the Theorem 5.1 we can consider optimal control

problems of systems governcd by partial differential equations discussed in [10]. The

Extremum Principle proved in [10] now becomes a simple corollary of Theorem 5.1.
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