OPTIMAL CONTROL OF NONLINEAR SECOND ORDER EVOLUTION EQUATIONS ${ }^{1}$

N.U. AHMED
University of Ottawa
Department of Electrical Engineering
Ottawa, Ontario, CANADA K1N $6 N 5$
SEBTI KERBAL
University of Ottawa
Department of MATHEMATICS
Ottawa, Ontario, CANADA K1N 6N5

Abstract

In this paper we study the optimal control of systems governed by second order nonlinear evolution equations. We establish the existence of optimal solutions for Lagrange problem.

Key words: Evolution triple, compact embedding, monotone and hemicontinuous map, hyperbolic systems, Dirichlet form.

AMS (MOS) subject classifications:

1. INTRODUCTION

In this paper we establish the existence of optimal controls for a class of systems governed by second order nonlinear evolution equations. Our results extend some earlier work of Papageorgiou [8]. We introduce more general conditions, admitting strong nonlinearities. In fact, Papageorgiou's result follows from our general results.

2. BASIC ASSUMPTIONS

Let $T=[0, r]$ and Y a separable, reflexive Banach space. Let H be a separable Hilbert space and X a dense subspace of H, carrying the structure of a separable, reflexive, Banach space, which embeds in H continuously. Identifying H with its dual (pivot space), we have $X \zeta_{>} H \zeta X^{*}$, with all embeddings being continuous and dense. We will also assume that all the embeddings are compact. By $\|\cdot\|_{X}$ (resp. $|\cdot|_{H},\|\cdot\|_{X^{*}}$) we will denote the norm of X

[^0](resp. of H, X^{*}). Also by $\langle\cdot, \cdot\rangle$, we will denote the duality brackets for the pair $\left(X, X^{*}\right)$ and by (\cdot, \cdot), the inner product of H. The two are compatible in the sense that $\langle\cdot, \cdot\rangle_{X \times H}=$ (\cdot, \cdot). Let $W_{p, q}(T)=\left\{x \in L^{p}(X): \dot{x} \in L^{q}\left(X^{*}\right)\right\}$. The derivative in this definition is understood in the sense of vector-valued distributions. This is a separable, reflexive Banach space with the norm $\|x\|_{W_{p, q}(T)}=\left(\|x\|_{L^{p}(X)}^{2}+\|\dot{x}\|_{L^{q}\left(X^{*}\right)}^{2}\right)^{1 / 2}$. Recall that $W_{p, q}(T)$ embeds into $C(T, H)$ continuously (see Ahmed and Teo [1]). So very equivalence class in $W_{p, q}(T)$ has a unique representative in $C(T, H)$. Furthermore, since we have assumed that X embeds into H compactly, we have that $W_{p, q}(T)$ embeds into $L^{p}(H)$, compactly too. Finally, Nagy [6] proved that if X is a Hilbert space, then the injection $W_{p, q}(T) C_{\square} C(T, H)$ is compact. For further details on evolution triples and the Banach space $W_{p, q}(T)$, we refer to Zeidler [11], chapter 23.

3. EXISTENCE OF OPTIMAL CONTROLS

Let $T=[0, r],\left(X, H, X^{*}\right)$ an evolution triple, with $X \varsigma_{\square} H$ compactly (hence $H \iota_{\sim} X^{*}$ compactly) and Y a separable, reflexive Banach space, modeling the control space. We consider the following Lagrange type optimal control problem:

$$
\left\{\begin{array}{c}
J(x, u)=\int_{0}^{r} L(t, x(t), \dot{x}(t), u(t)) d t \rightarrow i n f=m \tag{P}\\
\text { subject to the following state and control constraints: } \\
\ddot{x}(t)+A(t, \dot{x}(t))+B x(t)=f(t, x(t)) u(t), x(0)=x_{0} \in X, \dot{x}(0)=x_{1} \in H, u(t) \in U(t) a . e .
\end{array}\right\}
$$

By an admissible "state-control" pair for (P), we understand a pair of a state trajectory $x(\cdot) \in C(T, X)$ and of a control function $u(\cdot) \in L^{\infty}(Y)$ so that $\dot{x}(\cdot) \in W_{p, q}(T)$ and both functions $x(\cdot), u(\cdot)$ satisfy the constraints of problem (P). Recall that $W_{p, q}(T)$ embeds into $C(T, H)$ continuously, and so the initial condition $\dot{x}(0)=x_{1} \in H$ makes sense. An admissible "state-control" pair $\{x, u\}$, is said to be "optimal", if $J(x, u)=m$.

To establish the existence of an optimal pair for (P), we will need the following hypotheses on the data:
$\underline{H(A):} A: T \times X \rightarrow X^{*}$ is a map s.t.
(1) $t \rightarrow A(t, v)$ is measurable,

$$
\begin{equation*}
v \rightarrow A(t, v) \text { is monotone (i.e. }\left\langle A(t, v)-A\left(t, v^{\prime}\right), v-v^{\prime}\right\rangle \geq 0 \text { for all } v, v^{\prime} \in X \text {) and } \tag{2}
\end{equation*}
$$

hemicontinuous (i.e., $\lambda \rightarrow\langle A(t, v+\lambda y, z\rangle$ is continuous for all $v, y, z \in X)$.
(3) $\langle A(t, v), v\rangle \geq c\|v\|_{X}^{p}-d|v|_{H}^{2}$ a.e. with $c>0, d \geq 0$,
(4) $\|A(t, v)\|_{X^{*}} \leq a(t)+b\|v\|_{X}^{p-1}$ a.e. with $a(\cdot) \in L^{q}(T), b>0$ or $b \in L_{+}^{\infty}(T)$.
$\underline{H(B)}: B \in \mathcal{L}\left(X, X^{*}\right)$ (i.e. B is continuous, linear), is symmetric (i.e. $\langle B x, z\rangle=\langle x, B z\rangle$ for all $x, z, \in X)$ and $\langle B x, x\rangle \geq c^{\prime}\|x\|_{X}^{2}, c^{\prime}>0$ (i.e. $B(\cdot)$ is coercive).
$\underline{H(f):} f: T \times H \rightarrow \ell(Y, H)$ is a map s.t.
(1) $t \rightarrow f(t, x) u$ is measurable for every $(x, u) \in H \times Y$,
(2) $\quad x \rightarrow f(t, x)^{*} h$ is continuous for every $(t, h) \in T \times H$,
(3) $\quad\|f(t, x)\|_{\mathcal{L}(Y, H)}^{q} \leq a_{1}(t)+b_{1}|x|_{H}^{2}$ for $2 \leq p<\infty$ and $1<q \leq 2$.
$\underline{H(U)}: U: T \rightarrow P_{w k c}(Y)$ is a measurable multifunction so that $t \rightarrow|U(t)|=\sup \left\{\|u\|_{Y}\right.$: $u \in U(t)\} \equiv g(t), g \in L_{+}^{\infty}$,
$H(L): L: T \times H \times H \times Y \rightarrow \bar{R}=R \cup\{+\infty\}$ is an integrand so that
(1) $(t, x, y, u) \rightarrow L(t, x, y, u)$ is Borel measurable,
(2) $(x, y, u) \rightarrow L(t, x, y, u)$ is l.s.c.,
$u \rightarrow L(t, x, y, u)$ is convex,
$\left.\varphi(t)-\widehat{M}\left(|x|_{H}+|y|_{H}+\|u\|_{Y}\right)\right) \leq L(t, x, y, u)$ a.e. with $\varphi(\cdot) \in L^{1}, \widehat{M}>0$.
Finally since our cost-functional is \bar{R}-valued, we will need the following feasibility hypothesis.
$\underline{H_{0}}$: there exists admissible "state-control" pair (x, u) so that $J(x, u)<\infty$. Denote by $\mathrm{U}_{a d}=\{u: u(t) \in U(t)$ a.e. $\}$ the admissible set of controls.

Lemma 1. Under the assumptions $H(A), H(B), H(f)$ and $H(U)$, for each $x_{0} \in X$, $x_{1} \in H$, and $u \in \mathcal{U}_{a d}$ the evolution equation of problem (P) has unique solution x satisfying
(a) $\quad x \in L^{\infty}(X)$
(b) $\quad \dot{x} \in L^{\infty}(H) \cap L^{p}(X)$
(c) $\quad \ddot{x} \in L^{q}\left(X^{*}\right)$
(d) (b) and (c) $\Rightarrow \dot{x} \in W_{p, q}$
(e) $\quad A(\cdot, \dot{x}(\cdot)) \in L^{q}\left(X^{*}\right)$.

The proof follows from standard application of Galerkin technique and the a priori estimates given in lemma 2, see $[2,11]$.

Before studying the problem of existence of optimal controls, we will start by deriving some a priori bounds for the admissible trajectories of (P).

Denote by S the set of solution trajectories of the evolution equation of problem (P) corresponding to the admissible set of controls as defined above.

Lemma 2. (A priori estimates). Under the assumptions $H(A 3), H(f), H(B)$ and $H(U)$, the set $Z \equiv\{\dot{x}, x \in S\}$ is a bounded subset of $W_{p, q}(T)$.

Proof. Let x be any solutions trajectory of the evolution equation in problem (P), corresponding to an admissible control $u(\cdot) \in L^{\infty}(Y)$. By lemma 1 , the following scalar multiplication is well defined,

$$
\langle\ddot{x}(t), \dot{x}(t)\rangle+\langle A(t, \dot{x}(t)), \dot{x}(t)\rangle+\langle B x(t), \dot{x}(t)\rangle=(f(t, x(t)) u(t), \dot{x}(t) \text { a.e. }
$$

Since $\dot{x} \in W_{p, q}(T)$ it follows from proposition 23.23 (iv), p. 422 of Zeidler [11], that

$$
\langle\ddot{x}(t) \dot{x}(t)\rangle=\frac{1}{2} \frac{d}{d t}|\dot{x}(t)|_{H}^{2} \text { a.e. }
$$

Furthermore, because of hypothesis $H(A 3)$, we have

$$
c\|\dot{x}(t)\|{ }_{X}^{p}-d|\dot{x}(t)|_{H}^{2} \leq\langle A(t, \dot{x}(t)), \dot{x}(t)\rangle \text { a.e. }
$$

Also using the product rule and exploiting the symmetry of the operator $B \in \mathcal{L}\left(X, X^{*}\right)$ (see hypothesis $H(B)$), we obtain

$$
\frac{d}{d t}\langle B x(t), x(t)\rangle=\langle B \dot{x}(t), x(t)\rangle+\langle B x(t), \dot{x}(t)\rangle=2\langle B \dot{x}(t), x(t)\rangle \text { a.e. }
$$

So finally we can write that

$$
\frac{1}{2} \frac{d}{d t}|\dot{x}(t)|_{H}^{2}+c\|\dot{x}(t)\|_{X}^{p}+\frac{1}{2} \frac{d}{d t}\langle B x(t), x(t)\rangle \leq d|\dot{x}(t)|_{H}^{2}+(f(t, x(t)) u(t), \dot{x}(t)) \text { a.e. }
$$

Integrating the above inequality, we have

$$
\begin{gather*}
\frac{1}{2}|\dot{x}(t)|_{H}^{2}-\frac{1}{2}\left|x_{1}\right|_{H}^{2}+c \int_{0}^{t}\|\dot{x}(s)\|_{X}^{p} d s+\frac{1}{2}\langle B x(t), x(t)\rangle-\frac{1}{2}\left\langle B x_{0}, x_{0}\right\rangle \\
\leq d \int_{0}^{t}|\dot{x}(s)|_{H}^{2} d s+\int_{0}^{t}(f(s, x(s)) u(s), \dot{x}(s)) d s \\
\Rightarrow|\dot{x}(t)|_{H}^{2}+2 c \int_{0}^{t}\|\dot{x}(s)\|_{X}^{p} d s+c^{\prime}\|x(t)\|_{X}^{2} \tag{1}\\
\leq\left|x_{1}\right|_{H}^{2}+\|B\|_{\ell\left(X, X^{*}\right)}\left\|x_{0}\right\|_{X}^{2}+2 d \int_{0}^{t}|\dot{x}(s)|_{H}^{2} d s+2 \int_{0}^{t}(f(s, x(s)) u(s), \dot{x}(s)) d s
\end{gather*}
$$

Note that by applying Cauchy's inequality,

$$
\text { a.b. } \leq \frac{\epsilon^{p}}{p}|a|^{p}+\frac{\epsilon^{-q}}{q}|b|^{q}, \epsilon>0, a, b \in R,
$$

to the last integral on the right-hand side and using $H(f), H(U)$ we obtain,

$$
\begin{gathered}
\int_{0}^{t}(f(s, x(s)) u(s), \dot{x}(s)) d s \leq \int_{0}^{t}|f(s, x(s)) u(s)|_{H} \cdot|\dot{x}(s)|_{H^{\prime}} d s \\
\leq\left(\int_{0}^{t}|\dot{x}(s)|{ }_{H}^{p} d s\right)^{\frac{1}{p}}\left(\int_{0}^{t}|f(s, x(s)) u(s)|_{H}^{q} d s\right)^{1 / q} \\
\leq \beta \frac{\epsilon^{p}}{p} \int_{0}^{t}\|\dot{x}(s)\|_{X^{p}}^{p} d s+\frac{\epsilon^{-q}}{q}\|g\|_{\infty}^{q}\left\|a_{1}\right\|_{L^{1}}+b_{1} \frac{\epsilon^{-q}}{q}\|g\|_{\infty}^{q} \int_{0}^{t}|x(s)|_{H}^{p} d s+\frac{\epsilon^{-q}}{q} \int_{0}^{t}|f(s, x(s)) u(s)| q_{H}^{q} d s
\end{gathered}
$$

where $\beta>0$ is the embedding constant $X \iota_{\hookrightarrow} H$.
Hence

$$
\begin{gathered}
|\dot{x}(t)|_{H}^{2}+2\left(c-\beta \frac{\epsilon^{p}}{p}\right) \int_{0}^{t}\|\dot{x}(s)\|_{X}^{p} d s+c^{\prime}\|x(t)\|_{X}^{2} \\
\leq M+2 d \int_{0}^{t}|\dot{x}(s)|_{H}^{2} d s+2 \frac{\epsilon^{-1}}{q}\|g\|_{\infty}^{q}\left\|a_{1}\right\|_{L^{1}}+2 b_{1} \frac{\epsilon^{-q}}{q}\|g\|_{\infty}^{q} \int_{0}^{t}|x(s)|_{H}^{2} d s
\end{gathered}
$$

with $M=\left|x_{1}\right|_{H}^{2}+\|B\|_{\mathcal{L}\left(X, X^{*}\right)}\left\|x_{0}\right\|_{X}^{2}$ and consequently, for sufficiently small $\epsilon>0$, so that $\left(c>\beta \frac{\epsilon^{p}}{p}\right)$, we obtain

$$
\begin{align*}
& |\dot{x}(t)|_{H}^{2}+c_{1} \int_{0}^{t}\|\dot{x}(s)\|_{X}^{p} d s+c^{\prime}\|x(t)\|_{X}^{2} \leq c_{2} \\
& +2 d \int_{0}^{t}|\dot{x}(s)|_{H}^{2} d s+c_{2}+c_{3} \int_{0}^{t}|x(s)|_{H}^{2} d s \text { a.e. } \tag{2}
\end{align*}
$$

where c_{1}, c_{2}, c_{3} are suitable positive constants. Observe that since $\dot{x} \in W_{p, q}(T)$, from theorem 22, p. 19 of Barbu [5], we have $x(s)=x_{0}+\int_{0}^{s} \dot{x}(\tau) d \tau$ in X (hence in H too),

$$
\Rightarrow|x(s)|_{H}^{2} \leq 2\left|x_{0}\right|_{H}^{2}+2\left(\int_{0}^{s}|\dot{x}(\tau)|_{H}^{d \tau}\right)^{2} \leq 2\left|x_{0}\right|_{H}^{2}+2 r \int_{0}^{s}|\dot{x}(\tau)|_{H}^{2} d \tau
$$

Substituting this estimate in the inequality (2), we obtain

$$
|\dot{x}(t)|_{H}^{2}+c_{1} \int_{0}^{t}\|\dot{x}(s)\|_{X}^{p} d s+c^{\prime}\|x(t)\|_{X}^{2} \leq c_{4}+c_{5} \int_{0}^{t}|\dot{x}(\tau)|_{H}^{2} d \tau
$$

where c_{4} and c_{5} are positive constants depending on c_{2}, c_{3}, d and $\left|x_{0}\right|_{H}$.
Hence by Gronwall's inequality, there exists a constant $M_{2}>0$ so that for every
admissible trajectory $x(\cdot) \in C(T, X)$ and all $t \in T$, we have

$$
\begin{equation*}
|\dot{x}(t)|_{H} \leq M_{2} \tag{3}
\end{equation*}
$$

But recall that $x(t)=x_{0}+\int_{0}^{t} \dot{x}(s) d s$ in H, for all $t \in T$. So for every trajectory $x(\cdot)$ of (P) and every $t \in T$, we have

$$
\begin{equation*}
|x(t)|_{H} \leq\left|x_{0}\right|_{H}+\int_{0}^{t}|\dot{x}(s)|_{H} d s \leq\left|x_{0}\right|_{H}+M_{2} r=M_{3} \tag{4}
\end{equation*}
$$

Using estimates (3) and (4) in inequality (2), we obtain:

$$
|\dot{x}(t)|_{H}^{2}+c_{1} \int_{0}^{t}\|\dot{x}(s)\|_{X}^{p} d s+c^{\prime}\|x(t)\|_{X}^{2} \leq M_{4}
$$

where M_{4} is a positive constant depending on c_{5}, M_{1} and M_{2}. Then from the last inequality, it follows that

$$
\begin{equation*}
\dot{x} \in L^{\infty}(H) \cap L^{p}(X), x \in L^{\infty}(X) \tag{5}
\end{equation*}
$$

Finally let $z \in L^{p}(X)$, and by $((\cdot, \cdot))_{0}$ denote the duality brackets for the pair $\left(L^{p}(X), L^{q}\left(X^{*}\right)\right)$ (i.e., if $v \in L^{q}\left(X^{*}\right), z \in L^{p}(X)$, then $((v, z))_{0}=\int_{0}^{r}\langle v(t), z(t)\rangle d t$. Also, let $\widehat{A}: L^{p}(X) \rightarrow L^{q}\left(X^{*}\right)$ be the Nemitsky operator corresponding to $A(t, x)$; i.e. $\widehat{A}(y)(t)=A(t, y(t))$ a.e. and similarly for every $u \in S_{U}^{\infty},(\widehat{f}(x) u)(t)=f(t, x(t)) u(t)$. Clearly by assumption $H(f 3)$ $\widehat{f}(x) u(\cdot) \in L^{q}(H)$. With those notation we can rewrite the evolution equation of problem (P) as an abstract equation in $L^{q}\left(X^{*}\right)$:

$$
\ddot{x}+\widehat{A}(\dot{x})+B x=\widehat{f}(x) u
$$

Scalar multiplying this by $z \in L^{p}(X)$ we have

$$
\begin{gathered}
((\ddot{x}, z))_{0} \leq\left|((\hat{A}(\dot{x}), z))_{0}\right|+\left|((B x, z))_{0}\right|+((\hat{f}(x) u, z))_{0} \\
\leq\left[\|\widehat{A}(\dot{x})\|_{L^{q}\left(X^{*}\right)}+\|B x\|_{L^{q}\left(X^{*}\right)}+\|\widehat{f}(x) u\|_{L^{q}\left(X^{*}\right)}\right]\|z\|_{L^{p}(X)} \\
\left.\leq\left[\|a\|_{L^{q}}+b M_{5}+\|B\|_{\mathcal{L}\left(X, X^{*}\right)} M_{6}+\beta^{\prime}\|g\|_{\infty}\left\|\tilde{a}_{1}\right\|_{L^{q}}+\widetilde{b}_{1} M_{2}\right)\right]\|z\|_{L^{p}(X)}
\end{gathered}
$$

where β^{\prime} is the embedding constant $H \varsigma^{\prime} X^{*}$, and the existence of M_{5}, M_{6} follows from (5) and (6).

Since $z(\cdot) \in L^{p}(X)$ was arbitrary, we deduce that there exists $M_{7}>0$ so that for all arbitrary trajectories $x(\cdot)$ of (P), we have

$$
\begin{equation*}
\|\ddot{x}\|_{L^{q}\left(X^{*}\right)} \leq M_{7} . \tag{6}
\end{equation*}
$$

Thus, the assertion of lemma 1 follows from (5) and (6).
Theorem 3.1: If hypotheses $H(A), H(B), H(U), H(L), H_{0}$ hold and $x_{0} \in X$, $x_{1} \in H$, then problem (P) admits an optimal pair.

Proof: \quad From lemma 2 it follows that Z is bounded subset of the reflexive Banach space $W_{p, q}(T)$. So Z is relatively weakly compact subset of $W_{p, q}(T)$. Now let $\left\{\left(x_{n}, u_{n}\right)\right\}_{n \geq 1}$ be a minimizing sequence of admissible "state-control" pairs for the problem (P; ; i.e. $\lim _{n \rightarrow \infty} J\left(x_{n}, u_{n}\right)=\operatorname{Inf}\{J(x, u)$, for admissible "state-control" pair $(x, u)\} \equiv m$. Since $\left\{x_{n}\right\}_{n} \geq \subseteq S$, by passing to a subsequence if necessary, we may assume that $\dot{x}_{n} \xrightarrow{w} y$ in $W_{p, q}(T)$. Hence one can easily see that $x \in C(T, X)$ and that $y=\dot{x}$ in the distribution sense. But recall that $W_{p, q}(T)$ embeds compactly into $L^{p}(H)$. So $\dot{x}_{n} \xrightarrow{s} y$ in $L^{p}(H)$ and clearly $x_{n}(t) \xrightarrow{s} x(t)$ in H uniformly on T. Furthermore, from hypothesis $H(U)$ and proposition 3.1 of [7] we have $S_{U}^{\infty} \equiv\left\{u \in L^{\infty}(Y): u(t) \in U(t) a . e.\right\}$ is w_{*}-compact in $L^{\infty}(Y)$. So we may assume that $u_{n}{ }_{n} \rightarrow u$ in $L^{\infty}(Y)$. Then invoking theorem 2.1 of Balder [4], we conclude that $J(x, u)$ is strong- w_{*} l.s.c. i.e., $J(x, u) \leq \underline{\lim } J\left(x_{n}, u_{n}\right)=m$, whenever $x_{n} \xrightarrow{s} x$ in $L^{1}(H)$ and $u_{n} \xrightarrow{w_{*}} u$ in $L^{\infty}(Y)$.

It suffices to show that (x, u) is an admissible "state-control" pair for (P). To this end, we have

$$
\begin{equation*}
\left(\left(\ddot{x}_{n}, \dot{x}_{n}-\dot{x}\right)\right)_{0}+\left(\left(\widehat{A}\left(\dot{x}_{n}\right), \dot{x}_{n}-\dot{x}\right)\right)+\left(\left(B x_{n}, \dot{x}_{n}-\dot{x}\right)\right)_{0}=\left(\left(\widehat{f}\left(x_{n}\right) u_{n}, \dot{x}_{n}-\dot{x}\right)\right)_{0} . \tag{7}
\end{equation*}
$$

From the integration by parts formula for functions in $W_{p, q}(T)$ (see Zeidler [11], proposition 23.23 (iv), pp. 422-423), we have:

$$
\begin{equation*}
\left(\left(\ddot{x}_{n}, \dot{x}_{n}-\dot{x}\right)\right)_{0}=\frac{1}{2}\left|\dot{x}_{n}(r)-\dot{x}(r)\right|_{H}^{2}-\frac{1}{2}\left|\dot{x}_{n}(0)-x_{1}\right|_{H}^{2}+\left(\left(\ddot{x}, \dot{x}_{n}-\dot{x}\right)\right)_{0} \tag{8}
\end{equation*}
$$

since $\dot{x}_{n}(0)=x_{1}$, the second term vanishes and $\left|\dot{x}_{n}(r)-\dot{x}(r)\right|_{H} \rightarrow 0$ as $n \rightarrow \infty,\left(\dot{x}_{n} \in C(T, H)\right)$ and also since $\dot{x}_{n} \xrightarrow{w} y=\dot{x}$ in $L^{p}(X)$ we have $\left(\left(\ddot{x}, \dot{x}_{n}-\dot{x}\right)\right)_{0} \rightarrow 0$ as $n \rightarrow \infty$. Then by passing to the limit as $n \rightarrow \infty$ in (8) we have

$$
\begin{equation*}
\left(\left(\ddot{x}_{n}, \dot{x}_{n}-\dot{x}\right)\right)_{0} \rightarrow 0 \text { as } n \rightarrow \infty . \tag{9}
\end{equation*}
$$

Note that for every $h \in L^{p}(H)$, we have

$$
\int_{0}^{r}\left(f\left(t, x_{n}(t)\right) u_{n}(t), h(t)\right) d t=\int_{0}^{r}\left(u_{n}(t),\left(f\left(t, x_{n}(t)\right)^{*} h(t)\right) d t .\right.
$$

But since $x_{n}(t) \xrightarrow{s} x(t)$ in $H,\left(f\left(t, x_{n}(t)\right)\right)^{*} h(t) \xrightarrow{s}(f(t, x(t)))^{*} h(t)$ in Y^{*} for almost all $t \in T$ (see
hypothesis $H(f 2)$). Also by $H(f 3)$ we have

$$
\begin{gathered}
\left\|\left(f\left(t, x_{n}(t)\right)\right)^{*} h(t)\right\|_{Y^{*}} \leq\left\|\left(f\left(t, x_{n}\right)\right)^{*}\right\|_{\mathcal{L}\left(H, Y^{*}\right)} \cdot|h(t)|_{H} \\
\leq \tilde{a}(t)+\left(\tilde{b} M_{3}^{2 / q}\right)|h(t)|_{H} .
\end{gathered}
$$

So there exists $\eta(\cdot) \in L^{1}\left(Y^{*}\right)$ so that $\left\|\left(f\left(t, x_{n}(t)\right)\right)^{*} h(t)\right\|_{Y^{*}} \leq\|\eta(t)\|_{Y^{*}}$ a.e. and therefore it follows from dominated convergence theorem that $\left(\widehat{f}\left(x_{n}\right)\right)^{*} h \xrightarrow{s}(\widehat{f}(x))^{*} h$ in $L^{1}\left(Y^{*}\right)$.

Hence

$$
\begin{gathered}
\int_{0}^{r}\left(u_{n}(t),\left(f\left(t, x_{n}(t)\right)^{*} h(t)\right) d t \rightarrow \int_{0}^{r}\left(u(t),\left(f(t, x(t))^{*} h(t)\right) d t\right.\right. \\
\Rightarrow \int_{0}^{r}\left(f\left(t, x_{n}(t)\right) u_{n}(t), h(t)\right) d t \rightarrow \int_{0}(f(t, x(t)) u(t), h(t)) d t \\
\Rightarrow \widehat{f}\left(x_{n}\right) u_{n} \xrightarrow{w} \widehat{f}(x) u \text { in } L^{q}(H) .
\end{gathered}
$$

On the other hand, since $\dot{x}_{n} \xrightarrow{w} \dot{x}$ in $W_{p, p}(T)$ and since the embedding $W_{p, q}(T) \hookrightarrow_{\checkmark} L^{p}(H)$ is compact, we have that $\left\|\dot{x}_{n}-\dot{x}\right\|_{L^{p}(H)} \rightarrow 0$ and hence

$$
\begin{equation*}
\left(\left(\widehat{f}\left(x_{n}\right) u_{n}, \dot{x}_{n}-\dot{x}\right)\right)_{L^{q}(H), L^{p}(H)} \rightarrow 0 \tag{10}
\end{equation*}
$$

Exploiting the symmetry of the operator B, we have

$$
\frac{d}{d t}\left\langle B\left(x_{n}(t)-x(t)\right), x_{n}(t)-x(t)\right\rangle=2\left\langle B\left(x_{n}(t)-x(t)\right), \dot{x}_{n}(t)-\dot{x}(t)\right\rangle a . e .
$$

Integrating the above equality, we get

$$
\begin{gathered}
\left\langle B\left(x_{n}(r)-x(r)\right), x_{n}(r)-x(r)\right\rangle=2\left(\left(B\left(x_{n}-x\right), \dot{x}_{n}-\dot{x}\right)\right)_{0} \\
\Rightarrow c^{\prime}\left\|x_{n}(r)-x(r)\right\|_{X}^{2}+2\left(\left(B x, \dot{x}_{n}-\dot{x}\right)\right)_{0} \leq 2\left(\left(B x_{n}, \dot{x}_{n}-\dot{x}\right)\right)_{0} .
\end{gathered}
$$

Note that since $\dot{x}_{n} \xrightarrow{w} \dot{x}$ in $L^{p}(X)$, we have $x_{n}(r) \xrightarrow{w} x(r)$ in X. Obviously

$$
0 \geq \underline{\lim }\left\|x_{n}(r)-x(r)\right\|_{X}^{2}
$$

and clearly $\left(\left(B x, \dot{x}_{n}-\dot{x}\right)\right)_{0} \rightarrow 0$. Thus we have

$$
\begin{gather*}
c^{\prime} \underline{\lim }\left\|x_{n}(r)-x(r)\right\|_{X}^{2}+2 \lim \left(\left(B x, \dot{x}_{n}-\dot{x}\right)\right)_{0} \leq 2 \underline{\lim \left(\left(B x_{n}, \dot{x}_{n}-\dot{x}\right)\right)_{0}} \\
\Rightarrow 0 \leq \underline{\lim }\left(\left(B x_{n}, \dot{x}_{n}-\dot{x}\right)\right)_{0} . \tag{11}
\end{gather*}
$$

Now passing to the limit as $n \rightarrow \infty$ in (7) and using (9), (10) and (11) above we get that

$$
\overline{\lim }\left(\left(\widehat{A}\left(\dot{x}_{n}\right), \dot{x}_{n}-\dot{x}\right)\right)_{0} \leq 0 .
$$

Also note that because of hypothesis $H(A 4),\left\{\widehat{A}\left(\dot{x}_{n}\right)\right\}_{n \geq 1} \subseteq L^{q}\left(X^{*}\right)$ is bounded and so by passing to a subsequence we may assume that $\widehat{A}\left(\dot{x}_{n}\right) \xrightarrow{w} v$ in $L^{q}\left(X^{*}\right)$. But $\widehat{A}(\cdot)$ is hemicontinuous, monotone (since $A(t, \cdot)$ is), hence it has property (\underline{M}) (see Zeidler [11], pp. 583-584 and Ahmed [2, 3]). thus $\widehat{A}(\dot{x})=v$; i.e., $\widehat{A}\left(\dot{x}_{n}\right) \xrightarrow{w} \widehat{A}(\dot{x})$ in $L^{q}\left(X^{*}\right)$. Then for any $z \in L^{p}(X)$, we have:

$$
\begin{gathered}
\left(\left(\ddot{x}_{n}, z\right)\right)_{0}+\left(\left(\widehat{A}\left(\dot{x}_{n}\right), z\right)\right)_{0}+\left(\left(B x_{n}, z\right)\right)_{0}=\left(\left(\widehat{f}\left(x_{n}\right) u_{n}, z\right)\right)_{0} \\
\rightarrow((\ddot{x}, z))_{0}+((\widehat{A}(\dot{x}), z))_{0}+((B x, z))_{0}=((\widehat{f}(x) u, z))_{0} \text { as } n \rightarrow \infty \\
\Rightarrow \ddot{x}(t)+A(t, \dot{x}(t))+B x(t)=f(t, x(t)) u(t) \text { a.e. } x(0)=x_{0} \in X, \dot{x}(0)=x_{1} \in H, u \in S_{U}^{\infty}
\end{gathered}
$$

$\Rightarrow(x, u)$ is an admissible "state-control pair for (P). So

$$
J(x, u)=m
$$

$\Rightarrow(x, u)$ is the desired optimal pair.
Q.E.D.

4. AN EXAMPLE

In this section we work out in detail an example of a nonlinear, hyperbolic optimal control problem.

So let $T=[0, r]$ and Ω a bounded domain in R^{n}, with smooth boundary $\Gamma=\partial \Omega$. We consider the following Lagrange control problem:

$$
\left\{\begin{array}{c}
J(\phi, u)=\int_{0}^{r} \int_{Z} L(t, z, \phi(t, z), u(t, z)) d z d t \rightarrow i n f=m^{\prime} \\
\text { subject to }\{\phi, u\} \text { satisfying the following constraints: } \\
\frac{\partial^{2} \phi}{\partial t^{2}}-\Delta \phi=\sum_{i j=1}^{N} D_{i}\left(k_{i j}\left(t,\left|D \phi_{t}\right|^{p-2}\right)\right) D_{j} \phi_{t}=f(t, z, \phi(t, z)) u(t, z) a . e . \text { on } T \times \Omega \\
\left.\phi\right|_{T \times \Gamma}=0, \phi(0, z)=\phi_{0}\left(z_{0}\right), \phi_{t}(0, z)=\phi_{1}(z) \text { and }\|U(t, \cdot)\|_{L^{\infty}(\Omega)} \leq \eta(t) a . e .
\end{array}\right\}
$$

Here $D_{i}=\frac{\partial}{\partial z_{i}} \quad i=1,2, \ldots, N, D \phi=\left(D_{1} \phi, \ldots, D_{N \phi}\right)=$ gradient of $\phi, D \phi D \psi=\sum_{i, j=1}^{N} D_{i} \phi D_{j} \psi$ and $|D \psi|^{2}=\sum_{i=1}^{N}\left|D_{i} \psi\right|^{2}$. We will need the following hypotheses on the data of (P^{\prime}).
$\underline{H(k):} k$ is a matrix from $T \times R_{+} \rightarrow \mathcal{L}^{+}\left(R^{n}\right)$ so that:
(1) $t \rightarrow k(t, \mu)$ is measurable,
(2) $\mu \rightarrow k(t, \mu)$ is continuous,
(3) $|k(t, \xi)|_{\mathcal{L}\left(R^{n}\right)} \leq \alpha+\beta|\xi|$ for all $(t, \xi) \in T \times R^{n}$ with $\beta>0$ and $\alpha \geq 0$,
(4) $\left\langle k\left(t,|\xi|^{p-2}\right) \xi-k\left(t,|\eta|^{p-2}\right) \eta, \xi-\eta\right\rangle_{R^{n}} \geq 0$ for all $(t, \xi, \eta) \in T \times R^{n} \times R^{n}$,
(5) $\quad\left\langle k\left(t,|\xi|^{p-2}\right) \xi, \xi\right\rangle_{R^{n}} \geq \beta|\xi|_{R^{n}}^{p}$ for all $(t, \xi) \in T \times R^{n}$ and $\beta>0$.
$\underline{H(f)_{1}:} \quad f: T \times \Omega \times R \rightarrow R$ is a function satisfying
(1) $(t, z) \rightarrow f(t, z, x)$ is measurable,
(2) $x \rightarrow f(t, z, x)$ is continuous,
(3) $|f(t, z, x)| \leq a_{1}(t, z)+b_{1}(z)|x|$ a.e. with $a_{1}(\cdot, \cdot) \in L^{2}(T \times \Omega), b_{1}(\cdot) \in L^{\infty}(\Omega)$.
$\underline{H(\eta):} \eta(\cdot) \in L_{+}^{1}$.
$\underline{H_{0}}: \quad \phi_{0} \in W_{0}^{1, p}(\Omega), \phi_{1} \in L^{2}(\Omega)$ and $m^{\prime}<\infty$.
$\underline{H(\widehat{L}):} \widehat{L}: T \times \Omega \times R \times R \times R \rightarrow \bar{R}=R \cup\{+\infty\}$ is an integrand s.t.
(1) $(t, z, x, y, u) \rightarrow \widehat{L}(t, z, x, y, u)$ is measurable,
(2) $(x, y, u) \rightarrow \widehat{L}(t, z, x, y, u)$ is l.s.c.,
(3) $u \rightarrow \widehat{L}(t, z, x, y, u)$ is convex,
(4) $\varphi(t, z)-\widehat{M}(x)\left(|x|_{R}+|y|_{R}+|u|_{R}\right) \leq L(t, z, x, y, u) \quad$ a.e. \quad with $\quad \varphi(\cdot, \cdot) \in$ $L^{1}(T \times \Omega)$, and $\widehat{M}(\cdot) \in L_{+}^{\infty}(\Omega)$.

Consider the following Dirichlet forms:

$$
a_{1}(t, \phi, \psi)=\int_{\Omega} \sum_{i, j=1}^{N} k_{i, j}\left(t,|D \phi|^{p-2}\right) D_{i} \phi D_{j} \psi d z=\int_{\Omega}\left\langle k\left(t,|D \phi|^{p-2}\right) D \phi, D \psi\right\rangle_{R^{n}} d z
$$

and

$$
a_{2}(\phi, \psi)=\int_{\Omega} \sum_{i, j=1}^{N} D_{i} \phi D_{j} \psi d z=\int_{\Omega} D \phi D \psi d z
$$

for all $\phi, \psi \in W_{0}^{1, p}(\Omega)$. Using hypothesis $H(k 3)$, we get

$$
\left|a_{1}(t, \phi, \psi)\right| \leq\left(\zeta\|\phi\|_{W_{0}^{1, p}(\Omega)}+\beta\|\phi\|_{W_{0}^{1}, p_{(\Omega)}}^{p-1}\right)\|\psi\|_{W_{0}^{1, p}(Z)}
$$

where ζ is a positive constant dependent on the embedding constant $W_{0}^{1, p}(\Omega) \zeta_{\infty} W_{0}^{1,2}(\Omega)$ and α as defined in $H(k 3)$.

So there exists an operator $A: T \times X \rightarrow X^{*}$ s.t.

$$
\langle A(t, \phi), \psi\rangle=a_{1}(t, \phi, \psi) .
$$

Note that by Fubini's theorem, $t \rightarrow a_{1}(t, \phi, \psi)$ is measurable for all $\phi, \psi \in W_{0}^{1, p}(\Omega)$. Hence,
$t \rightarrow A(t, \phi)$ is weakly measurable from T into $W^{-1, q}(\Omega)$. But recall that $W^{-1, q}(\Omega)$ is a separable Hilbert space. Thus the Pettis' measurability theorem tells us that $t \rightarrow A(t, \phi)$ is measurable. Also let $\phi_{n} \xrightarrow{s} \phi$ in $W_{0}^{1, p}(\Omega)$. Then $D \phi_{n} \xrightarrow{s} D \phi$ in $L^{p}\left(\Omega, R^{N}\right)$ and since by hypothesis $H(k 2), k(t, \cdot)$ is continuous, we have $k\left(t,\left|D \phi_{n}(z)\right|^{p-2}\right) \rightarrow k\left(t,|D \phi(z)|^{p-2}\right)$ a.e. $\Rightarrow \int_{\Omega}\left\langle k\left(t,\left|D \phi_{n}\right|^{p-2}\right) D \phi_{n}, D \psi\right\rangle_{R^{n}} d z \rightarrow \int_{\Omega}\left\langle k\left(t,|D \phi|^{p-2}\right) D \phi, D \psi\right\rangle_{R^{n}} d z \Rightarrow A\left(t, \phi_{n}\right) \xrightarrow{w} A(t, \phi) \quad$ in $W^{-1, p}(\Omega) \Rightarrow A(t, \cdot)$ is demicontinuous, hence hemicontinuous (see Zeidler [11]). Also for every $\phi, \psi \in W_{0}^{1, p}(\Omega)$, we have

$$
\langle A(t, \phi)-A(t, \psi), \phi-\psi\rangle=\int_{\Omega}\left\langle k\left(t,|D \phi|^{p-2}\right) D \phi-k\left(t,|D \psi|^{p-2}\right) D \psi,(D \phi-D \psi)\right\rangle_{R^{n}} d z .
$$

Therefore, the monotonicity of $A(t, \cdot)$ follows from hypothesis $H(k 4)$. Furthermore, from hypothesis $H(k 5)$ we obtain

$$
\langle A(t, \phi), \phi\rangle \geq \beta\|\phi\|_{W_{0}^{1, p}(\Omega)}^{p}, \text { with } \beta>0 .
$$

Thus we have satisfied hypothesis $H(A)$.
Next note that through the Cauchy-Schwartz inequality, we get

$$
\left\lvert\, a_{2}(\phi, \psi) \leq \mu(\Omega)^{\frac{p-2}{p}}\|\phi\|_{W_{0}^{1, p}(\Omega)}\|\psi\|_{W_{0}^{1, p}(\Omega)} .\right.
$$

Thus there exists $B \in \mathcal{L}\left(X, X^{*}\right)$ s.t.

$$
a_{2}(\phi, \psi)=\langle B \phi, \psi\rangle
$$

for all $\phi, \psi \in W_{0}^{1, p}(\Omega)$. Clearly B is symmetric and using Poincare's inequality, we obtain

$$
\langle B \phi, \phi\rangle \geq c^{\prime}\|\phi\|_{W_{0}^{1, p}(\Omega)}^{2}, c^{\prime}>0
$$

Thus we have satisfied hypothesis $H(B)$.
Let $\widehat{f}: T \times L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ be defined by

$$
\widehat{f}(t, \phi)(z)=f(t, z, \phi(z)) .
$$

In this case, $H=L^{2}(\Omega)$. Thus $\widehat{f}(t, \phi)$ is the Nemitsky operator corresponding to f and so by Krasnosel'skii's theorem, it satisfies hypothesis $H(f)$.

For the control space we put $Y=L^{\infty}(\Omega)$ and $U(t)=\left\{u \in L^{\infty}(\Omega):\|u\|_{\infty} \leq \eta(t)\right\}$. Note that $\operatorname{Gr} U=\left\{(t, u) \in T \times L^{\infty}(\Omega): u(t) \in U(t)\right.$ a.e. $\}$. Observe that the function $(t, u) \rightarrow$ $\left(\eta(t)-\|u\|_{\infty}\right)$ is measurable in t, continuous in u, thus jointly measurable. Hence $G r U \in B(T) \times B\left(L^{\infty}(\Omega)\right)$ with $B(T)$ (resp. $B\left(L^{\infty}(\Omega)\right)$)), being the Borel σ-field of T (resp. of
$\left.L^{\infty}(\Omega)\right)$. Then by theorem 4.2 of Wagner [10] U($)$ is measurable, while from hypothesis $H(U)$, we deduce that $t \rightarrow|U(t)| \in L_{+}^{\infty}$. So we have satisfied hypothesis $H(U)$.

Also let $\hat{\phi}_{0}=\phi_{0}(\cdot) \in W_{0}^{1, p}(\Omega)$ and $\hat{\phi}_{1}=\phi_{1}(\cdot) \in L^{2}(\Omega)$ (see hypothesis H_{0}). Finally let $\widehat{L}: T \times L^{2}(\Omega) \times L^{2}(\Omega) \times L^{\infty}(\Omega) \rightarrow \vec{R}$ be defined by

$$
L(t, \phi, \psi, u)=\int_{\Omega} \widehat{L}(t, z, \phi(z), \psi(z), u(z)) d z, \phi, \psi \in L^{2}(\Omega), u \in L^{\infty}(\Omega) .
$$

Invoking theorem 1 of Pappas [9], we can find Caratheodory integrands $\widehat{L}_{k}: T \times \Omega \times R \times R \times$ $\boldsymbol{R} \rightarrow \boldsymbol{R}, k \geq 1$ (i.e. $(t, z) \rightarrow \widehat{L}_{k}(t, z, \phi, \psi, u)$ is measurable, $(\phi, \psi, u) \rightarrow \widehat{L}_{k}(t, \phi, z, \psi, u)$ is continuous), so that $\widehat{L}_{k} \dagger \widehat{L}$ and $\left.\varphi(t, z)-M(z)|\phi|_{R}+|\psi|_{R}+|u|_{R}\right) \leq \widehat{L}_{k}(t, z, \phi, \psi, u) \leq k$ a.e. $k \geq 1$. Set $L_{k}(t, \phi, \psi, u)=\int_{\Omega} \widehat{L}(t, z, \phi(z), \psi(z), u(z)) d z . \quad$ It is easy to check that $t \rightarrow L(t, \phi, \psi, u)$ is measurable, while $(\phi, \psi, u) \rightarrow L_{k}(t, \phi, \psi, u)$ is continuous, thus $L_{k}(\cdot, \cdot, \cdot, \cdot)$ is jointly measurable. Furthermore, from the monotone convergence theorem, we get $L_{k} \uparrow L$, hence $L(\cdot, \cdot, \cdot, \cdot)$ is measurable. Also from Balder [4], we know that $(\phi, \psi, z) \rightarrow L(t, \phi, \psi, z)$ is l.s.c., while $L(t, \phi, \psi, \cdot)$ is clearly convex and $\hat{\varphi}(t)-\widehat{M}\left(\|\phi\|_{L^{2}(\Omega)}+\|\psi\|_{L^{2}(\Omega)}+\|u\|_{\infty}\right) \leq$ $L(t, \phi, \psi, u)$, with $\hat{\varphi}(t)=\|\left(\varphi(t, \cdot) \|_{L^{2}(\Omega)}\right.$ and $\hat{M}=\|M(\cdot)\|_{\infty}$. So we have satisfied hypothesis $H(L)$. In this case, $X=W_{0}^{1, p}(\Omega), H=L^{2}(\Omega)$ and $X^{*}=W^{-1, q}(\Omega)$. We know that $\left(X, H, X^{*}\right)$ is an evolution triple, with all embeddings being compact (Sobolev embedding theorem). Defining $x(t)=\phi(t, \cdot)$, it is easy to check that the example problem $\left(P^{\prime}\right)$ is a special case of the abstract problem (P).

Theorem 3.1: If hypotheses $H(k), H(f)_{1}, H(\eta), H_{0}, H(L)$ hold, then $\left(P^{\prime}\right)$ admits an optimal pair $[x, u] \in C\left(T, W_{0}^{1, p}(\Omega)\right) \times L^{\infty}(T \times \Omega)$ so that

$$
\frac{\partial x}{\partial t} \in L^{\infty}\left(T, W_{0}^{1, p}(\Omega)\right) \cap C\left(T, L^{2}(\Omega)\right) \text { and } \frac{\partial^{2} x}{\partial t^{2}} \in L^{q}\left(T, W^{-1, q}(\Omega)\right)
$$

REFERENCES

[1] Ahmed, N.U., Teo, K.L, Optimal Control of Distributed Parameter Systems, North Holland, New York, New York 1981.
[2] Ahmed, N.U., Optimization and Identification of Systems Governed by Evolution Equations on Banach Space, Pitman R.N.M.S., 184, 1988.
[3] Ahmed, N.U., Optimal control ov a class of strongly nonlinear parabolic systems, J. of Math. Anal. and Appl. 61, 1, (1977), 188-207.
[4] Balder, E., Necessary and sufficient conditions for L^{1}-strong-weak lower semicontinuity of integral functionals, Nonl. Anal.-TMA 11, (1987), 1399-1404.
[5] Barbu, V., Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff Intern. Publishing, Leiden, The Netherlands 1976.
[6] Nagy, E., A theorem of compact embedding for functions with values in an infinite dimensional Hilbert space, Annales Univ. Sci. Budapest, Sectio Math 23, (1980), 243245.
[7] Papageorgiou, N.S., On the theory of Banach space-valued integrable multifunctions Part 1: Integration and conditional expectation, J. Multiv. Anal. 17, (1985), 185-206.
[8] Papageorgiou, N.S., Optimal control of nonlinear second order evolution equations, Glasnik Mathematicki 28, (1993), in press.
[9] Pappas, G., An approximation result for normal integrands and applications to relaxed controls theory, J. Math. Anal. Appl. 93, (1983), 132-141.
[10] Wagner, D., Survey of measurable selection theorems, SIAM J. Control and Optim. 15, (1977), 859-903.
[11] Zeidler, Z., Nonlinear Functional Analysis and its Applications II, Springer, New York 1990.

[^0]: ${ }^{1}$ Received: December 1992. Revised: April 1992.

