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ABSTRACT

In this paper we study the optimal control of systems governed
by second order nonlinear evolution equations. We establish the
existence of optimal solutions for Lagrange problem.
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I. INTRODUCTION

In this paper we establish the existence of optimal controls for a class of systems

governed by second order nonlinear evolution equations. Our results extend some earlier work

of Papageorgiou [8]. We introduce more general conditions, admitting strong nonlinearities.

In fact, Papageorgiou’s result follows from our general results.

2. BASIC ASSUMPTIONS

Let T = [0, r] and Y a separable, reflexive Banach space. Let H be a separable Hilbert

space and X a dense subspace of H, carrying the structure of a separable, reflexive, Banach

space, which embeds in H continuously. Identifying H with its dual (pivot space), we have

Xq.Hc,.X*, with all embeddings being continuous and dense. We will also assume that all the

embeddings are compact. By [1. 1[ X (resp. [. [H, [[" 1[ X*) we will denote the norm of X
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(resp. of H,X*). Also by (-,.), we will denote the duality brackets for the pair (X,X*) and

by (-,.), the inner product of H. The two are compatible in the sense that (.,.)x x H--"
(.,.). Let Wp, q(T) = {z E LP(X): E Lq(X*)}. The derivative in this definition is

understood in the sense of vector-valued distributions. This is a separable, reflexive Banach

space with the norm 1[ z 1[ Wp, q(T) ([1 z [I 2LP(X q" 11 II 2 )1/2Lq(x. Recall that Wp, q(T)
embeds into C(T,H) continuously (see Ahmed and Weo [1]). So very equivalence class in

Wp, q(T) has a unique representative in C(T,H). Furthermore, since we have assumed that X

embeds into H compactly, we have that Wp, q(T) embeds into LP(H), compactly too. Finally,

Nagy [6] proved that if X is a Hilbert space, then the injection Wp, q(T)QC(T,H) is compact.

For further details on evolution triples and the Banach space Wp, q(T), we refer to Zeidler [11],
chapter 23.

3. EXISTENCE OF OPTIMAL CONTPOLS

Let T = [0, r], (X,H,X*) an evolution triple, with Xc.H compactly (hence HX*
compactly) and Y a separable, reflexive Banach space, modeling the control space. We

consider the following Lagrange type optimal control problem:
r

J(z,u) = / L(t,z(t),c(t),u(t))dtinf m

0

ubject to the following state and control constraints:

Y:(t) + A(t, 5:(t)) + Bz(t) f(t,z(t))u(t),z(O) zo X,h(O) = z H, u(t) U(t)a.e.

(P)
By an admissible "state-control" pair for (P), we understand a pair of a state trajectory

z(.) C(T,X) and of a control function u(.)E L(Y) so that k(.) Wp, q(T) and both

functions z(. ),u(-) satisfy the constraints of problem (P). Recall that Wp, q(T) embeds into

C(T,H) continuously, and so the initial condition k(0)= z1 H makes sense. An admissible

"state-control" pair {z, u}, is said to be "optimal", if J(z, u) = m.

To establish the existence of an optimal pair for (P), we will need the following

hypotheses on the data:

H(A): A: T x X---,X* is a map s.t.

(1) t---,A(t, v) is measurable,

(2) vA(t, v) is monotone (i.e. (A(t, v) A(t, v’), v v’) >_ 0 for all v, v’ X) and
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hemicontinuous (i.e., A(A(t, v + Ay, z) is continuous for all v, y, z E X).
(3) (A(t, v),,) >_ c il" It d Iv I a.e. with c > 0, d 0,

(4) II A(t, v)II x" a(t) + b II v II - ,e. with a(. Lq(T), b > 0 or b L (T).
H(B): B L(X,X*) (i.e. B is continuous, linear), is symmetric (i.e. (Bz, z)= (z, Bz) for all

z, z, e X) and (Bz, z) c’ I! z II , c’ > 0 (i.e. B(. is coercive).

H(f): f: T x HL(Y, H) is a map s.t.

(1) tf(t,z)u is meurable for every (z, u) q g x Y,

(2) zf(t,z)*h is continuous for every (t,h) T x H,

(3) II f(t,z)II (r,H) (t) + bx I I fo 2 < and 1 < q 2.

H(U)" U:TPwe(Y is a meurable multifunction so that t IV(t) = up II u Ii y:

H(L): L: T x H x H xY = R U { +} is an integrand so that

(1) (t,x,y,u)L(t,x,y,u) is Borel meurable,

(2) (z,y,u)L(t,z,y,u) is l.s.c.,

(3) u--L(t, z, y, u) is convex,

(4) ()-( n+ n + II r)) (,,u,) .. with (.) ’, > o.

Finally since our cost-functional is R-valued, we will need the following feasibility

hypothesis.

Ho" there exists admissible "state-control" pair (z,u) so that J(z,u)< c. Denote by

dad = {u: u(t) U(t) a.e.} the admissible set of controls.

Lemma 1. Under the assumptions H(A), H(B), H(f) and H(U), for each zo X,

z1 H, and u q’l’ad the evolution equation of problem (P) has unique solution z satisfying

The proof follows from standard application of Galerkin technique and the a priori

estimates given in lemma 2, see [2, 11].

Before studying the problem of existence of optimal controls, we will start by deriving

some a priori bounds for the admissible trajectories of (P).

Denote by S the set of solution trajectories of the evolution equation of problem (P)
corresponding to the admissible set of controls as defined above.
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Lemma 2. (A priori estimates). Under the assumptions H(A3), H(f), H(B)
and H(U), the set Z = {]e,x E S} is a bounded subset of Wp, q(T).

Proof. Let z be any solutions trajectory of the evolution equation in problem (P),
corresponding to an admissible control u(. ) L(Y). By lemma 1, the following scalar

multiplication is well defined,

((t), (t)) + (A(t,(t)),(t)) + (Bz(t),(t)) = (f(t,z(t))u(t),(t) a.e.

Since : e Wp, q(T) it follows from proposition 23.23 (iv), p. 422 of Zeidler [11], that

Furthermore, because of hypothesis H(A3), we have

c ]l 2(t)]1 (-dJk(t) 12H < (A(t,:(t)),(t)) a.e.

Also using the product rule and exploiting the symmetry of the operator B (X,X*) (see
hypothesis H(B)), we obtain

-<Bz(t),x(t)) (B(t),x(t)) + (Bz(t),(t)) = 2<BS(t),x(t)) a.e.

So finally we can write that

!d
2 dt I2(t) lH +c II (t)II + t(Bx(t),x(t)) <- dl[c(t) 12H + (f(t,x(t))u(t),&(t)) a.e.

Integrating the above inequality, we have

t

0

t t

0 0

t

:(t) + 2c f II :()[l ds + c’ II :(t)II x
0

(i)

t

_< I I + II II ,(x, x*)II .o II + f () d+ 2 /(f(, ()),(), ())d.
0 0

Note that by applying Cauchy’s inequality,

ep La.b. <_--p-[ a V + b g,e > O,a, b e R,

to the last integral on the right-hand side and using H(f), H(U) we obtain,
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t t

0 0

t t

<_ (s) ds):( /(s,z(s))u(s) 4ds)/q

0 0

t t

<_-: (s) lds+- S(s,z(s))u(s)lds

t 0 0 t

0 0

where/3 > 0 is the embedding constant X//.

Hence

(t) + 2( a-)f II (,)It d, / , II (t)II X
t 0

0 0

with M = z !} + II B II Z(x,x*)II .o !1 } and consequently, for sufficiently small e > 0, so

(c > ), wethat obtain

(t) + c f II (s)II ds + c’ II z(t)II s c
0

0 0

where Cl, C2,C3 are suitable positive constants. Observe that since k E Wp, q(T), from theorem

22, p. 19 of Sarbu [5], we have z(s) xo + f (r)dr in X (hence in H too),
o

8 8

0 0

Substituting this estimate in the inequality (2), we obtain

t t

0 0

where c4 and c5 are positive constants depending on c2, c3, d and Zo[ H"

Hence by Gronwall’s inequality, there exists a constant M2 > 0 so that for every
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admissible trajectory x(-) 6 C(T, X) and all t 6 T, we have

(t) H -< M2
But recall that z(t)= ;co + f(s)ds in H, for all t T.

0
and every t 6 T, we have

(3)

So for every trajectory z(.) of (P)

t

I(t) H -< Iol n + / I&(s) Hds <-- Iol H +Mar = M3
0

(4)

Using estimates (3)and (4)in inequality (2), we obtain:

t

(t) z + c f II (s)II cds + c’ II (t)II c -< M4
0

where M4 is a positive constant depending on c5, M1 and M2. Then from the last inequality,

it follows that

5: C L(H) f’l LP(X),x C

Finally let z LP(X), and by ((., "))o denote the duality brackets for the pair

(LP(X),Lq(X*)) (i.e., if v6 Lq(X*),z LP(X), then ((v,z))o= f(v(t),z(t))dt. Also, let
o

A:Lv(X)---,Lq(X*) be the Nemitsky operator corresponding to A(t,z); i.e. A(y)(t)- A(t,y(t))

a.e. and similarly for every u Serf, (f(z)u)(t)= f(t,z(t))u(t). Clearly by assumption

f(z)u(. Lq(H). With those notation we can rewrite the evolution equation of problem (P)
as an abstract equation in Lq(x’):

+ A([c) + Bz f(z)u.

Scalar multiplying this by z LP(X) we have

((,Z))o _< ((A(&),Z))o + ((Bx, z))01 + ((f(z)u,z))o

_< [113-() II Lq(x*) / II II Lq(X*) -I" II Y() II Lq(X*)] IIz II LP(x)
< II a !1Lq / bM5 + II B II L(X,x*)M6 + ’ II g II oo II x !1Lq / bIM2) II z II LPx)

where fl’ is the embedding constant H X’, and the existence of Ms, M6 follows from (5) and

().

Since z(.)6 LP(X) was arbitrary, we deduce that there exists Mr > 0 so that for all

arbitrary trajectories (. of (P), we have
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II II q<x=) <_ Mr"
Thus, the assertion of lemma 1 follows from (5) and (6).

Theorem 3.1: If hypotheses H(A), H(B), H(U), H(L), Ho hold and zo e X,

xI E H, then problem (P) admits an optimal pair.

Proof." From lemma 2 it follows that Z is bounded subset of the reflexive Banach

space Wp, q(T). So Z is relatively weakly compact subset of Wp, q(T). Now let {(Xn, Un)}n > 1

be a minimizing sequence of admissible "state-control" pairs for the problem (P); i.e.

looJ(z,, u,) = Inf{d(z, u), for admissible "state.control" pair (z, u)} _= m. Since

{zn}n > C_ S, by passing to a subsequence if necessary, we may assume that nLy in Wp, q(T).
Hence one can easily see that z C(T,X) and that y = in the distribution sense. But recall

that Wp, q(T) embeds compactly into LP(H). So :,,y in LP(H) and clearly z,(t)z(t)in H
uniformly on T. Furthermore, from hypothesis H(U) and proposition 3.1 of [7] we have

s ( L(Y).,(t) U(t)a.e.} is w.-compact in L(Y). So we may assume that unu
in L(Y). Then invoking theorem 2.1 of Balder [4], we conclude that d(z, u) is strong-w, l.s.c.

i.e., J(x, u)

_
li_..mJ(xn, un) = m, whenever XnX in LI(H) and UnU in L(Y).

It suffices to show that (z,u) is an admissible "state-control" pair for (P).
end, we have

To this

((e., e.- e))o + ((2(e.), e.- )) + ((B..,.- e))o ((7(..)., e.- e))o- (7)

From the integration by parts formula for functions in Wp, q(T) (see Zeidler [11], proposition

23.23 (iv), pp. 422-423), we have:

((n,&n--))0"1/21n(r)-;(r)l-/-21- [&n(0)-xl I-/q-((;,n--;))0 (8)

since n(0) = x, the second term vanishes and 15:n(r)- (r) HO as n--<x, (n C(T,H))
and also since Xn--*y in LP(X) we have ((,a-))o0 as nc. Then by passing to the

limit as n---,cx in (8) we have

((.,.-))o--.0 as n. (9)

Note that for every h LP(H), we have

r r

(f(t, zn(t))Un(t),h(t))dt = /(un(t)’(f(t’Zn(t))*h(t))dt"
0 0

But since Zn(t)s-Lz(t)in H, (f(t, zn(t)))*h(t)(f(t,z(t)))*h(t in Y" for almost all t T (see
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hypothesis H(f2)). Also by H(f3) we have

II (f(t, .(t)))’h(t)II y. <_ II (f(t, .))" II (H,r*)
<_ "d (t) / (’ M/a) h(t) H

Ih(t) lH

So there exists 0(" e LI(y*) so that !1 (y(t, x,()))*h(t)il y- <_ !1 o(t)II y. a.e. and therefore it

follows from dominated convergence theorem that ((Zn))*hS-L((z))*h in LI(y*).

Hence

(un(t), (f(t, Xn(t))*h(t))dt--* j (u(t), (f(t, x(t))*h(t))dt
0 r Or
::, f (f(t, zn(t))un(t),h(t))dt---* J (f(t,z(t))u(t),h(t))dt

0 0

=VT(xn)u.7(x)u in Lq(H).

On the other hand, since &nW-& in Wp, p(T) and since the embedding Wp, q(T). LP(H) is

compact, we have that l[ &n- & 1[ LP(H)’’*0 and hence

((f(Xn)Un, S:n ))Lq(H),LP(H)--O.
Exploiting the symmetry of the operator B, we have

t(B(xn(t)- x(t)),Xn(t x(t)) = 2(B(xn(t x(t)),Zn(t c(t))a.e.

(lO)

Integrating the above equality, we get

(B(xn(r) x(r)),xn(r x(r)> = 2((B(zn x),:n c))o

:c’ II xn(r)- x(r)II ( + 2((Bz,&n- ))o <- 2((Bxn’n- ))o"

Note that since nk in LP(X), we have Zn(r)x(r) in X. Obviously

and clearly ((Bx, kn- ))00. Thus we have

c’li_..m II xn(r) x(r)II + 21im(.(Bx,&n ))o <- 21i----m((Bxn’&n ))o

=,0 < lim((Bzn,n ))0" (11)

that

Now passing to the limit as ncxz in (7) and using (9), (10) and (11) above we get

lim((A(n),kn- ]))0 <-- O.
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Also note that because of hypothesis H(A4), (A($,)}, > 1 --Lq(X*) is bounded and so by

passing to a subsequence we may assume that A(xn)---*v in Lq(x*). But A(.) is

hemicontinuous, rnonotone (since A(t,.)is), hence it has property (__M) (see Zeidler [11], pp.

583-584 and Ahmed [2, 3]). thus A(:)= v; i.e., A(xn)-.-*A(x in Lq(X*). Then for any

z LP(X), we have:

((n, z))0 + ((A(&n), z))0 + ((Bxn, z))o ((f(xn)un, z))o

--((, z))0 + ((A(:), z))0 + ((Bz, z))o = ((f(x)u,z))o as n---,oo

=,(t) + A(t,(t)) + Bz(t) = f(t,z(t))u(t) a.e. z(O) = xo e X,k(O) = z e H, u S
:=(z, u) is an admissible "state-control pair for (P). So

J(z,u)-m

=,(z, u) is the desired optimal pair.

Q.E.D.

4. AN EXAMPLE

In this section we work out in detail an example of a nonlinear, hyperbolic optimal

control problem.

So let T = [0, r] and fl a bounded domain in Rn, with smooth boundary F = Off. We

consider the following Lagrange control problem:

J(,u)- / / L(t,z,f(t,z),u(t,z))dzdt--inf = m’

0 Z

subject to {, u} satisfying the following constraints:

N(92 A = E Di(kiJ(t’ DCtlP-2))DjCt = f(t,z,(t,z))u(t,z)a.e, on Tf2--- ij l

lTr = 0,(0, z) = o(Zo),t(O,z) = Cx(z) and II u(t,. )11LOO( ) _< 7(t)a.e.

(P’)

N
Here D i-1,2,..., N, De = (DIe,..., DNez) = gradient of , DCD- DiCDj

i, J 1
N

and IO1 2 = IDle] 2. We will need the following hypotheses on the data of (P’).
i=1
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H(k): k is a matrix from T x R + --. + (R") so that:

(1) t--,k(t, #) is measurable,

(2) #--k(t,#) is continuous,

(3) k(t, )1 L(Rn) < a +/31 for all (t, ) 6 T x Rn with/3 > 0 and a >_ 0,

(4) (k(t, llP-2)5-b(t, lolP-2)rt,-rt)Rn>_O for all (t,,o)ZxRnxRn,
(5) (k(t, Il p- 2),)a,, >_ , for all (t,) e T x Rn and f > 0.

H(f)l: f: T x f x R--.R is a function satisfying

(1) (t,z)--.,f(t,z,z) is measurable,

(2) zf(t,z,z) is continuous,

(3) f(t,z,z) <_ al(t,z) / b(z)I a.e. with al(- ) E L2(T x f2),bl( L(f2).

o(.)

O W’ P(F2), 1 L2(f2) andHo_Z."
H(L): ,: T x 12 x R x R xR = R t.J { + cx} is an integrand s.t.

()

(2)
(3)

(4)

(t, z, x, y, u)---,L(t, z, x, y, u) is measurable,

(,,)-L(,z,,,) i t.s..,

uL(t, z, x, y, u) is convex,

(t,z)- M(x)( x n / Yln + I In) L(t,,,y,)

L(Tx), and (.) L().
a.e. with (.,.

Consider the following Dirichlet forms:

and

al(t, ,) f ki, j(t, DIP-2)DicDjCdz- (k(t, [DIP-)D,D)Rdz
i,j=t fl

a2(,b) -- / . DicDjCdz=/DCDCdz
for all , e W’P(fl). Using hypothesis H(k3), we get

p-1a(t,,) < (C II II w, p() + Z II II w, ())II II w,P(z)
where is a positive constant dependent on the embedding constant W’P(f)c.,.Wo’2(2) and c

as defined in H(k3).

So there exists an operator A: T x XX" s.t.

(A(t, ),) = al(t , ).

Note that by Fubini’s theorem, t---,al(t, ,) is measurable for all , e W’P(fl). Hence,
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t---,A(t,) is weakly measurable from T into w-l’q(fl). But recall that w-l’q(f2) is a

separable Hilbert space. Thus the Pettis’ measurability theorem tells us that t--,A(t,) is

measurable. Also let ns in W’P(f2). Then Dn&D in LP(f,RN) and since by

hypothesis H(k2), k(t,.) is continuous, we have k(t, Den(z)[ P-2)---,k(t, D(z)] P-2)a.e.

= f (k(, DCn P-2)DCn, D)Rndz f (k(t, D -2)D,D)andz=A(t,n)A(t, in

W-’P(f)=A(t,. is demicontinuous, hence hemicontinuous (see Zeidler [11]). Also for every, e w,(), wh

f (k(t, De p 2)0 k(t, De p 2)D, (De(A(t, ) A(t, ), D)landz.

Therefore, the monotonicity of A(t,. follows from hypothesis H(k4). Furthermore, from

hypothesis H(kh) we obtain

(A(t, ) ) > fl [I II" with fl > 0.w,,(,’
Thus we have satisfied hypothesis H(A).

Next note that through the Cauchy-Schwartz inequality, we get

p-2

a2(, ) _</z(f2) P

Thus there exists B E (X,X*) s.t.

II II Wo p()-

a2(, ) = (Be, )

for all , E W’ P(fl). Clearly B is symmetric and using Poincare’s inequality, we obtain

(Be ) > c’ II II 2 c’ > 0.w, p(’
Thus we have satisfied hypothesis H(B).

Let 7: T x L2(f2)---,L2(f) be defined by

y(t, )()- y(t,z,()).

In this case, H = L2(f2). Thus (t,) is the Nemitsky operator corresponding to f and so by

Krasnosel’skii’s theorem, it satisfies hypothesis H(f).

For the control space we put Y = L(f2) and U(t)= {u e L(f): I111o_< 0(t)}.
Note that GrU = {(t, u) T x L(f): u(t) e U(t)a.e.}. Observe that the function (t, u)

(r/(t)-]lu[]o) is measurable in t, continuous in u, thus jointly measurable. Hence

GrU B(T)x S(L(f2)) with B(T) (resp. B(L(f)))), being the Borel r-field of T (resp. of
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L(ft)). Then by theorem 4.2 of Wagner [101 U(.)is measurable, while from hypothesis

H(U), we deduce that t--, U(t) L. So we have satisfied hypothesis H(U).

Also let "o o(" W’P(12) and = 1(" L2(fl) (see hypothesis Ho). Finally

let ,: T x L2(fl) x L2(fl) x L(12)- be defined by

f (t,z,(z),(z),u(z))dz,, e L2(f),u e L(fl).L(t,,,u)

Invoking theorem 1 of Pappas [9], we can find Caratheodory integrands Lk: T x f x R x R x

RR, k >_ 1 (i.e. (t, z)---,k(t z, ,, u) is measurable, (, , u)’k(t, , z, , u) is continuous),

so that kand (t,z)-M(z) Ila + IIR + ulR)-<k(t, z, ,, u) <- k a.e. k>_l. Set

Lk(t, ,, u) f (t, z, (z), (z), u(z))dz. It is easy to check that tL(t, , , u) is
f

measurable, while (, , u)Lk(t,,, u) is continuous, thus Lk(.,., .,.) is jointly

measurable. Furthermore, from the monotone convergence theorem, we get LkTL, hence

L(.,.,-,. is measurable. Also from Balder [4], we know that (, , z)L(t, , , z) is l.s.c.,

while L(t,,,.) is clearly convex and (t)-/r( l[ [[ L2(f) + 11 b 11 L2(12) + [I U 11 oo) <:

L(t, , , u), with if(t) [[ (T(t, ")1[ L2(fl and /1 [1M(.)[[ oo" So we have satisfied

hypothesis H(L). In this case, Z- W’P(fl), g- L2(fl)and X*-w-l’q(fl). We know

that (X,H,X*) is an evolution triple, with all embeddings being compact (Sobolev embedding

theorem). Defining z(t)= (t,.), it is easy to check that the example problem (P’)is a

special case of the abstract problem (P).

Theorem 3.1: I_[ hypotheses H(k), H(f)l, H(l), Ho, H(L) hold, the.__.V.n(P’) admits

an optimal pair [z, u] 6 C(T, W’ P(a)) x L(T x a) so that

Oz 02z
O..-[ e L(T, W’P(fl))nC(T, L2(fl)) and-e Lq(T,W ’q(fl)).

[e]

[3]

[4]
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