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ABSTRACT

Integrodifferential equations of the forms

z’(t) + p(t) / K(t s)x(s)ds 0 and z’(t)+ q(t) / K(t- s)x(s)ds 0

0 ---o

are considered, where K E C([0, oo),[0, oo)), p E C([0, ), [0, oo)) and
q C(( oo, oo), [0, oo)). Necessary conditions and also sufficient
conditions for the existence of positive solutions are established.
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1. INTRODUCTION AND STATEMENT OF RESULTS

Our aim in this paper is to obtain necessary conditions and also sufficient conditions

for the existence of positive solutions of certain integrodifferential equations. The literature is

scarce concerning the oscillation and nonoscillation of solutions of integrodifferential equations.

Only very recently Gopalsamy [3-8], Ladas, the present author and Sficas [9], the present

author [10, 11], and the present author and Sficas [12] studied the oscillatory behavior of

solutions of integrodifferential equations or of systems of integrodifferential equations. For

questions related to the theory of integrodifferential equations, see Burton [1]. Also, it is to be

noted that integrodifferential equations can be regarded as differential equations with

unbounded delays. See Corduneanu and Lakshmikantham [2] for a survey on equations with

unbounded delays.

Consider the integrodifferential equations

.x’(t) + p(t) / K(t- s)x(s)ds = 0 (El)
0

and
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z’(t) + q(t) : K(t s)z(s)ds = 0 (E)

where K is a nonnegative continuous function on the interval [0,), p is a nonnegative

continuous function on [0,cx)) and q is a nonnegative continuous function on the real line R.

Consider also the integrodifferential inequalities

and

f
y’(t) + p(t) ] K(t- s)y(s)ds < 0 (I1)

0

y’(t) + q(t) / K(t- s)y(s)ds <_ O. (I)

If T _> O, by a solution on [T,c) or(El) [resp. of(i1) we mean a continuous function

t+r0

limin : p(s)ds > O. (i)

t f [in]
sup : K(s)e t- sift >- u ds > 0 for all A > O.
t>O

0

(C1)

Theft ther’e is 0 $ollttior or [T, cx3) of (I1)[arzd ir particular of (El) which isLet T>O.

Moreover, assume that

Theorem 1:

zero on It0, cx) and

x [resp. U] on [0,0o), which is continuously differentiable on IT, oo) and satisfies (El)[resp.

(I1)] for every t> T. If TE R, then a solution on [T, oo) of (E2) [resp. of (I2)] is a

continuous function x [resp. y] on the real line R, which is continuously differentiable on

IT, o0) and satisfies (E2) [resp. (12) for all >_ T. Also, a continuously differentiable function

y on R, which satisfies (I2) for every E R, is called a solution on R of (12).

Necessary conditions are presented for (El) or more generally for (I1), to have

solutions on IT, oo), where T >_ 0, which are positive on [0,oo). Analogously, necessary

conditions are given for (E2) or more generally for (I2), to have solutions on IT, oo), where

T R, which are positive on R. On the other hand, sufficient conditions are obtained for (El)
to have a solution on [T, oo) where T > 0, which is positive on [0, oo) and tends to zero at oo.

Similarly, sufficient conditions are derived for the existence of a solution on IT, oo) of (E2)
where T R, which is positive on R and tends to zero at c.

More precisely, in this paper the following results are proved.

Suppose that there exists a 7"0 > 0 such that K is not identically
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positive on [0,c).

Theorem 2: Suppose that there exists a 7"0 > 0 such that K is not identically

zero on [ro,

Moreover, assume that

t-Fro
limin / q(s)ds > O.

sup / K(s)e sl- > u
ds > 0 for all A > O.

t>o
0

(ii)

Let T E R. Then there is no solution on [T,c) of (I2)[and in particular of (E2) which is

positive on R.

Theorem 3: Let y be a positive solution on [0,c) of (11). Moreover, let T > 0

and suppose that K is not identically zero on [0,T] and p is positive on [T,c). Then there

ezists a solution z on IT, c) of (El) which is positive on [0, c) and such that

z(t) <_ u(t) >_ o,

/t/mx(t)=0 (1)

and

z’(t) + p(t) / K(t- s)z(s)ds < 0 for 0 < t < T.

0

(2)

Corollary 1: Let the following hypothesis be satisfied:

) + suPt>o / K(s)et- s ds < 0 for some ) > O.

0

(H1)

Moreover, let T > 0 and suppose that K is not identically zero on [0,T] and p is positive on

[T,c). Then there exists a solution on [T,c) of (El) which is positive on [0,c) and

satisfies (1), (2) and

:(t) < e o for every t > O.

Theorem 4: Assume that K is not identically zero on [0,c). Let / be a positive

solution on 1 of (12). Moreover, let T R and suppose that q is positive on [T,c). Then

there exists a solution : on [T,) of (E2), which is positive on R. and such that (1) holds and
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t

z’(t) + q(t) / K(t- s)z(s)ds < 0 for < T. (3)

Corollary 2:

hypothesis be satisfied:

Assume that K is not identically zero on [0, cx). Let the following

:
f A f q u du

+ sup / K(s)e t-s ds < 0 for some > 0. (H2)
t.R

0
Moreover, let T E R and suppose that q is positive on [T,c,,z). Then there exists a solution

on [T, oo) of (E2) which is positive on R and satisfies (1), (3) and

-A f q(u)du
z(t) < e 0 for every R.

In the special case where p(t) = 1, > 0 and q(t) 1, t R our results lead to previous

known ones, see Ladas, Philos and Sficas [9] and Philos [11]. In this special case, a

combination of Theorem 1 and Corollary 1 leads to a necessary and sufficient condition for

(E) to have solutions on [T,), where T > 0, which are positive on [0,oo); analogously, by

combining Theorem 2 and Corollary 2, a necessary and sufficient condition can be obtained for

the existence of a solution on [T, oo) of (E2), where T q R, which is positive on R.

The results of the present paper can be extended to the more general case of

integrodifferential equations (and inequalities), which involve the term #nZ(t rn) where
rt=0

#n and rn are nonnegative constants for n = 0, 1,... and sup{rn:n = 0, 1,...} < oo. Such an

extension was recently presented in [11] for the special case where p(t)= 1, t>_ 0 and q(t)= 1,

t q R. Also, our results can be extended to systems of integrodifferential equations (and

inequalities); see [10] for such an extension in a particular case.

2. PROOFS OF THE RFULTS

Theorem 2 is essentially a consequence of Theorem 1.

Theorem 3 and Corollary 2 is obtained from Theorem 4.

Corollary 1 follows from

Proof of Theorem 1- Assume, for the sake of contradiction, that (I1) has a

solution y on [T, oo) which is positive on [0,). From (I)it follows immediately that

y’(t) < 0 for every > T and so y is decreasing on the interval IT,
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Define

A = {, >0:y’(t)+ )p(t)y(t) < 0 for all large t}.

The set h is nonempty. In fact, condition (C1) implies that K is not identically zero on the

interval [0, oo) and hence we can choose a r* > 0 such that

7"*

o =- / K(s)ds > O.

0

Then, by using the decreasing character of y on [T, oo), from (Ix) we obtain for every

t>T+r*
t t

0

0 0

>_ y’(t) + p(t)__ K(s)y(t- s)ds > y’(t) + p(t) K(s)ds (t)
0 0

> y’(t) + p(t) K(s)ds (t) = y’(t) + $op(t)y(t).
0

This means that ’0 E A and consequently, A . It is clear that the set A is a subinterval of

(0, oo) such that inf A = O.

Next, we will show that A is bounded from above. Since K is not identically zero on

the interval [to, oo), there exist rl, r2 with 7"0 < 7"1 < 7"2 such that

7"2
=_ /K(s)ds >A O.

7"1

By the decreasing nature of y on [T, oo), it follows from (I1) that for t > T + 7"2

t t 7-1
> y’(t)+ p(t) / K(t- s)y(s)ds > y’(t)+ p(t) / K(t- s)y(s)ds0

0 T

I’-i’ t i, j-. )> y’(t) + p(t) K(t- s)ds (t- 7") = y’(t)+ p(t) K(s)ds (t-
T rx
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That is,

y’(t) + Ap(t)y(t- 7"1) _< 0 for all

_
T + r2.

Thus, by taking into account the fact that y is decreasing on [T, oo), we obtain for every

t >_ T+r2
+ ro + ro

y(t)

__
y( q- 7"o) + A / p($)y($- 7-1)d$ > A/ p($)y(s- 7-1)d8

>_ A p(s)ds (t -Jr" 7"0 T1).

But, condition (i) guarantees that there exist a positive constant B and a T*>_ T-4-7-2 such

that

Therefore,

t+7-o

p(s)ds B for all 7’*.
t

(4)

y(t) > LoY(t- (7-1- to)) for every t > T*,

where Lo = AB > 0. Since y is decreasing on IT, oo), we always have Lo < 1. Let us consider

a positive integer rn such that m(7-1 -7"o) > 7"0" Then, by (5), we obtain for t > _= T*+

(m- 1) (7-1 7"0)

y(t) > LoY(t- (7-1- 7"0)) > Ly(t- 2(7"1 -7"0)) > > L’y(t- m(7"1 -7"0))"

So, by the decreasing nature of y on [T, oo), it follows that

y(t) > Ly(t- 7"0) for all > T, (6)

where L=Ln, 0<L<I. We now claim that 0=- -- e.nL>O is an upper bound of A.

Otherwise, t9 E A and hence there exists a Ta > T such that

So, if we set

y’(t) + tgp(t)y(t) <_ 0 for every t > TO.

Ctg(t)- y(t)e To t >_ TO,

then we have for t >_ To
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f (o)d

<0,

which means that o is decreasing on [To, ). Thus, for every >_ TO + ro

r0

y(t)e TO 0(t) _< O(t- 7"0) = y(t- 7"O)e TO

and consequently
o f p()d

r0u(t) <_ u(t- o) for all >_ TO + 7"0"

T*Hence, by using (4) we obtain for t >_ TO =_ max{TO + to, + to}
(t to) + 7"o

-of p(o)d

u(t) <_ u( o) -o <_ u( o)e-.
That is,

y(t) <_ Ly(t- 7"0) for every t >_ TO.

This contradicts (6) and the proof of the claim is complete.

Now, we put A*= sup A and we consider an arbitrary number # with 0 < p < A*.

Then r _-- *-p E (0, *) and so r is an element of A. Thus, there exists a Tr T such that

y’(t) + rp(t)y(t) < 0 for all > Tr.

For any t, s with >_ Tr and 0 _< s _< t- Tr, we get

(t-,) =e

That is,

>e t-s

u(t ) > u(t) -, for > Tr and 0 <_ s < t-Tr.

But, (Iz) gives for t > Tr

t t-Tr
?_ y’(t) / p(t) / K(s)y(t s)ds >_ y’(t) + p(t) / K(s)y(t- s)ds.0

0 0

So, by using (7), we obtain

t-Tr rf p(u)du
y’(t) + / K(s)e t-, ds p(t)y(t) < 0 for >_ Tr.

0

(7)

(8)
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Let us suppose that there exists a v >_ Tr such that

t-T
" f p(u)du

inf K(s)e t-s ds = A > A*.
t>v

0

Then, in view of (8), we have

y’(t) + Ap(t)y(t) <_ 0 for every > v

and consequently , E A. This is impossible, since A > A* _-- sup A. Thus, we must have

This gives

that is

t-T
f

inf[ K(s)e t-s ds <,* for all v > Tr.t>v
0

t-T
f

sup inf ] K(s)e t- ds < *,
v>Trt>V 0

Therefore,

t-Tr r f p(u)du
liminf [ K(s)e t-s ds < )*.
t...,oo ,]

0

So, if we define

t f p(. + Tr)du
limtooinf / K(s)e s ds _< *.

0

then we have

P(t) = inf p() for > O,
>t

f P(u)du

limt..,ooinf / K(s)e t- s ds _< *.
0

Obviously, the function P is increasing on the interval [0,c). Set

r f P(u)du
rr(t)= f K(s)e t-s ds for t>O.

0

Then we obtain for every > 0

t rf P(u)du r

F’r(t = / g(s)e -s e(t)- P(t- s)ts + g(t)e fo P(.)d.
0

>0

and hence the function Fr is increasing on [0, cx). So, (9) gives

(9)
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t r f P(u)du

suPt > o / K(s)e s ds < *.

0

Now, consider an arbitrary r > 0. From (10) it follows that

t r f P(u)du T r f P(u)du
a* >_ sup f K(s)e t- , ds > / K(s)e - , ds

t>o
0 0

(10)

and consequently

7" * f P(u)du tt f P(u)du
K(s)e r- s ds < A*e o

0

Therefore, as p---O + we derive

A* f P(u)du
K(s)e r-s ds < A*.

0

The last inequality holds for all 7" > 0. So, we obtain

jf * f P(u)du
sup K(s)e r- s ds < A*

0

which contradicts condition (C1). The proof of Theorem 1 is complete.

Proof of Theorem 2: Assume that there is a solution y on IT, c) of (I2) which is

positive on R. Set T* = max{O, T} > O. Then we obtain for every t > T*

t t

>_ y’(t) + q(t) / K(t- s)y(s)ds >_ y’(t) + q(t) / K(t-0 s)y(s)ds.
--Cx: 0

So, the function Y = y 110, cx) is a solution on [T*, c) of the integrodifferential inequality

r’(t) + q(t) ] K(t- s)r(s)ds <_ 0

0

which is positive on [0, c). But this is impossible, as it follows from Theorem 1. Hence, the
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proof of Theorem 2 is complete.

Proof of Theorem 3: From (11) we obtain for " >_ > 0

and hence

t u u

y(t) > y(’) + f p(u) f K(u- s)y(s)dsdu > /p(u)f K(u- s)y(s)dsdu
0 0

y(t) >_ /p(u)/K(u-s)y(s)dsdu for all t> O. (11)
t 0

Let X be the set of all continuous real-valued functions x on the interval [0,) which

satisfy

0 <_ z(t) <_ y(t) for every >_ O.

Then, by using (11), we can see that the formula

defines an operator S: XX. This operator is increasing in the sense that, if zl,z2 E X and

then Sx < Sz2 (here we use the usual pointwise ordering in X). Next, we set

z0 = Y, and zm = Szm (m 1, 2,...).

Then we immediately see that (zm)m =o, is a decreasing sequence of functions in X.

Furthermore, we define

z = lim z_ pointwise on [0, c).

By applying the Lebesgue dominated convergence theorem, we conclude that z = S’z, i.e.

(t) = (12)

From (12) we obtain
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x’(t) = p(t) / K(t- s)z(s)ds for all >_ T,
0

which means that x is a solution on [T, cx) of (El). Obviously, x _< y on [0, cx). Also, (12)
guarantees that x satisfies (1). Moreover, from (12) we derive for 0 _< t < T

t

x’(t) ---- p(t) / K(t- s)y(s)ds <_ p(t) / K(t- s)x(s)ds
0 0

and so (2) holds. It remains to establish that x is positive on the interval [0,cx). Clearly, we

have for 0 < t < T
T u T u

0 0

because p(T)> O, K is not identically zero on [0,T] and y is positive on [0,T]. Thus, x is

positive on [0,T). Finally, we will show that x is also positive on [T,c). Assume, for the

sake of contradiction, that T > T is the first zero of x to the right of 0. That is,

x(t) > 0 for 0 _< < v, and x(T) = O.

Then (12) gives

r 0 r 0

and therefore

p(u) / K(s)x(u- s)ds = 0 for all u > 7".

0

In particular, we have
7"

p(r)/K(s)x(r- s)ds = O.

0

This is impossible, because p(r)> O, K is not identically zero on [0, T] and x is positive on

[0, r). The proof is complete.

Proof of Corollary 1: Set

x f
y(t) = e o for >_ 0.

Then we obtain for every t > 0
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t

y’(t) + p(t) / K(t- s)y(s)ds = y’(t) + p(t) / K(s)y(t- s)ds
0 0

= p(t)e 0
x ff

A + l K(s)e t- s ds
J

0

<_ p(t) 
f p(u)du
o ff

+ sup [ h’(s)e t- ds
t>O

0

Hence, by hypothesis (Hx) the function y is a positive solution on [0,) of (Ii) and so it

suffices to apply Theorem 3.

Proof of Theorem 4: From (I2) it follows that

(:x:) U

y(t) >_ / q(u) f K(u -s)y(s)dsdu for t E R.
-x

(13)

Consider the set X of all nonnegative continuous functions on R with x(t)< y(t) for every

t E R. Then, in view of (13), the formula

O0 U

T

oo u T u

/q(u)/ K(u- s)z(s)dsdu + f q(u) f K(u- s)y(s)dsdu, if t<T
T --oo --oo

defines an increasing mapping S of X into itself.

(zm)m o,1 of functions in X, where

Define the decreasing sequence

x0 = y and xm = Sxm (m 1, 2,...).

Furthermore, set

x = lim xm pointwise on R.

By the Lebesgue dominated convergence theorem, we obtain x = Sx. That is,

O U

/ q(u) / K(u s)z(s)dsdu, if >_ T
t

c u T u

/q(u)/ K(u- s)x(s)dsdu + f q(u) f K(u- s)y(s)dsdu, if t< T.

T ---x --
(14)



Positive Solutions of Integrodifferential Equations 67

Then

x’(t) = -q(t)/ K(t s)z(s)ds for >_ T

and consequently z is a solution on [T,) of (E2). This solution is such that z(t) <_ y(t) for

E R. Also, because of (14), z satisfies (1). Moreover, from (14) we obtain for t < T

and hence (3) holds. Finally, we will show that x is positive on R.

positive on R and K is not identically zero on [0, c), we have

T
q(T) / K(T- s)y(s)ds > 0

and so
T u

ift<T.

Since q(T) > O, y is

Hence, because of (14), the solution x is positive on (- cx,T). Next, we shall prove that x is

also positive on IT, cx). Let " >_ T be the first zero of x. Then x(v) = 0 and x(t) > 0 for t < 7".

We have, by (14),

and consequently

In particular, we obtain

o = (T) = f q(u) f K(u-s)z(s)dsdu
7" CX:)

u

q(u) / K(u- s)x(s)ds = 0 for all u > 7".

-oo

7"

q(r) / K(v- s)x(s)ds = O,

which contradicts the fact that q(r) > O, K is not identically zero on [0, c) and z is positive on

( c, r). The proof is now complete.

Proof of Corollary 2: Define

) f q(u)du
y(t) = e 0 for e R.

Then, for every t E R, we get

y’(t) + q(t) / K(t- s)y(s)ds = y’(t) + q(t) / K(s)y(t
c 0



68 CH. G. PHILOS

o , + f K(s)et-s
0

< q(t)e
-A f q(u)du

0
oof f, + sup I K(s)et- s ds

tER
0
.!

Now, condition (//2) guarantees that is a positive solution on R of (12). So, it is enough to

apply Theorem 4.
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