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ABSTCT

In this note, we prove the Kazdan’s inequalities without using
what is called the Heisenberg uncertainty principle. Instead we prove it
using Garofalo-Lin inequality among other things.
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1. INTRODUCqON

In [4], J. Kazdan has shown strong unique continuation theorem (Theorem 1.8 of [41)
whose proof is mainly based on his main lemma (Lemma 2.4 of [4]). Several analytic as well

as geometric inequalities were used to prove the main lemma. Among them are the following

inequalities:

There exist constants C1, C2, C3, C4, C5 and r0 such that for all r E (0, r0)

() S Cff()(H(,) + D(r)) (j = 1,2) (1)j

1 /r’"’ " V u 12dS <_ rB(r) + C3H(r + D(r) (2)
OB,.

I3(r) < C4f(r)(H(r + D(r)+ v/rH(r)B(r)) (3)

I4(r) < Cf(r)(H(r) + D(r)+ rB(r)). (4)
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Here f(r),I(r),I2, I3(r),H(r),D(r),B(r) are defined as follows: let f be a smooth increasing

ro
function with f(0)- 0 satisfying f/(r-r < c and let u satisfy for n > 3 the differential

o
inequality with a and b constants:

af(r) blur)Imu()l <---lu()l +-- u()l

Ix(r r.,1, /uudV
Br

2 f puAudV() ._
B

(7)

1 / uAudSI3(r) rn-3
OB

(8)

= 1 /H(r) r,_i lulZdS (9)
OB,.

D(r) n!-"a VuldV
Br

(10)

B()-ra,, ,
OB,.

(ii)

In his proof of inequalities (1)(2), Kazdan relies on what is called the Heisenberg

uncertainty principle (see [2], [31, & [4]):

f v< / =dS// VldV, n>3_ (12)

Br OBr Br

dV < w2dS + V w l2dW, n > 3

OBr Br
(13)

where C and C are dimensional constants. Inequality (13) is an easy consequence of (12).

Indeed a straightforward computation shows that C’ = c_x, ,= A(.- +) for any A > O.
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Since there is nothing to comment on the proofs of inequalities (:3) and (4), we prove

inequalities (1)5 and (2) without using the Heisenberg uncertainty principle (12)-(1:3). Instead

we use the following lemma which is the Garofalo-Lin inequality (see 4.11 of [2]) applied to the

operator L where

Lu = &u + b(x). V u + V(z)u = 0. (14)

Here b(x) and V are majorized by with constants a and b:

b() < bf()_
W()l < ,,r2, (15)

1,2 satisfy equation (14). Then there exists a small constantLemmn: Let u E W oc

ro (0, 1) depending on n,b, V and u such that for a//r (0, r0)

Proof-. First observe that

(6)

u((.).u)( I z)dV
Br

Ib()l Vul(2- Il=)dW
Br

u2(r2 2)dv)l/2( I(- )dV)1/
Br Br

(Schwarz inequality)

< II b I1 Lr20(fu2dV)’/(flVu 12dV)1/2
Br Br

< c II b II L0( f v u zdV)
Br

(Poincare inequality)

where C is a dimensional constant. Consequently we obtain

u(().-I -II IIrJl uc ZdV.

Br Br
(7)

Choose r0 so small that

B Br

(18)
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Inequalities (17)-(18) then reveal that

Su(b(z). V u)(r2- x 2)dV )_ f u dV.

Br Br

Secondly we have

Choose r0 such that

)dV V u2dV.
Br Br

o (’*-- 2)/II v Ii L-
Inequalities (20)-(21) then show that

[ >_ 2)[ u2dV.

B B
Finally integration by parts and equation (14) give us the following identity:

r
/ (I V u + ub(z). V u + Vu)(r z [a)dV = r] uadS n ] uadV.
Br OBr Br

(19)

(20)

(21)

(22)

(23)

Equation (23) combined with inequalities (19) and (22)shows that

r / u2dS > f Vul2(,"- 112)dV V udV ( 2) fdVSrOBr Br Br

+ n / dV

Br

>_-/u2dV-(n-2)/u2dV+niudV
Br Br Br

B

for all r (0,%) where ro is chosen to be the minimum of the right hand sides of inequalities

(18) and (21). This completes the proof.

We give the proof of (I)lonly as the proofs of (1)2 and (2) are essentially the same.

Proof of (l)l: IIl(r)l 5rf luJ IAuldV
B

2 lul lul+ Vul)dV
r2

B
(by (,.5))
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< af(r) u2dS + u2dV) I( v u lZdV)1
rn- rn-

OB B B
(Lemma and Schwarz)

r"
u2dS + ( uaV+ V u v)

OB B B
<_ af(r)H(r)+f(r)H(r)+f(r)D(r) (Lemma, (9)& (10))_

Clf(r)(H(r + D(r))

where C a + hi2. This complete the proof of (I)i.

A simple computation shows inequalities (I)2, (2), (3) and (4) are satisfied with

C2=a+2b, C3=(n-2)+(n+2)7+C2f(r), C4-a+(3b/2)V3 C5=(3/2)C4, where 3’

satisfies 0(r)< (n + 2)3’.
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