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ABSTlCT

Transpiration control can avoid change of the shape of a high-
speed vehicle resulting from ablation of the nose, therefore also can avoid
the change of the performance of Aerodynamics. Hence it is of practical
importance. A set of mathematical equations and their boundary
conditions are founded and justified by an example of non-ablation
calculation in reference [1]. In [2], the ablation model is studied by the
method of finite differences, the applicable margin of the equations is
estimated through numerical calculation, and the dynamic responses of
control parameters are analyzed numerically. In this paper we prove
that the solution to transpiration control problem given in [1] exists
uniquely under the assumption that the given conditions (i.e. given
functions) are continuous.
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I. THE CONSIDERED PROBLEM AND THE EQUIVALENT PROBLEM

FOR AN INTEGRAL EQUATION

In this paper we consider the following problem:

OU 2021t gu 1-z Ou for > O, s(t) < z < l,0-7 = ++(t)t- (t) 0

u(z, t)[ o (z) for 0 < z < with (0) = c,

u(,t) =(t) c

Ouo-1= = -Q(t)

(1=0 ,(t) + (t),

for 0 < < r with s(0) = 0,

for 0 < < r with Ql(t) > O,

Q2(t)>0, for0<t<

where u(x,t) and s(t) are unknown real functions, ,(x), Ql(t) and Q2(t) are given functions

and c, k are given constants.

Using the transformation T = u-c, the condition

can be written in the form

u(x,t) l=(t) "-c

T(x, t)[ x s(t) = 0.

Thus, without losing generality we may assume that the constant c from (1.1) is equal to zero.

Below, we transform problem (1.1) into an equivalent problem which is formulated in

the form of an integral equation.

Lemma 1.1:Suppose s(t) is the Lipschitz continuous function for E [0,a] and p(t) is

the continuous function for [0,r]. Then we have

lim p(v)K(x, t; s(v), r)dv
--.(t) +0

0

where
0

K(x, ; ,, z’) =. 1 (x .--.).2
27rc(t’l z.)1/2

ex "4(’t’-- "r’)ct2.J

The proof of the above lemma is a consequence of standard computations.
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Definition: A function u = u(:, t) is said to be a solution of problem (1.1), where s(t)
is defined for E (0, a) (0 < tr < c), if

(ii)

(iii)

(iv)

Ou/Ot, Ou/Ox and 02u/Oz2 are continuous for s(t) < z < l, 0 < < r;

u and Ou/Ox are continuous for s(t) < x _< l, 0 < < o’;

u is continuous for = 0, 0 _< z _< l;

s(t) is continuously differentiable for 0 < <_ or, and
O<t<tr

problem (1.1) is satisfied.

II-s(t) > 0;

From Lemma 1.1 and from Chapter 5 in [3], we have

Lemma 1.2:Let u(z,t) be a solution of (1.1) and let inf l- s(t) d > 0. Then
O<t<r

there ezists the fundamental solution F(z, t;,r) for equatioff" L- = 0 in

Moreover

--(t) +o
0 0

and

where

t...) ezp 8a2( i

(1.2)

(1.3)

c202u Ou z Ou OuLu = -z2 + ’-z + "-’s -ff 0-"{’ (1.4)

p(t) is the continuous function for [0,o’] and M M(a,d, sup (t) ).
O<t<tr

Next, let us get down to transform problem (1.1) into the equivalent integral equation

problem.

Let us suppose the solution of problem (1.1)exists. By Lemma 1.2, there exists the

fundamental solution F(z, t; , r) for Lu = 0 in f. We shall use the following sets:

B=f20{-l <_<_l, t=r}.

Let V(z, t; , r) be the solution of the following problem

LV=O for (z, t; (, r) fl x f, > r,

VIt=,.=0,
OV OF OV OFo-- 1 o-- 1 -t

(1.5)
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where F(x, t;, r) is the fundamental solution of Lu = 0. From Chapter 5 in [3] we know that

the solution of (1.5) exists. Let

(1.6)

Then (see Chapter 3 in [3]), G ! C2([f x f/] gl {t > r}), and for any f e C[- l, l]

satisfies Lur = 0. Moreover

f
=.(, t) [ f()G(, t; , r)d

Br
(1.7)

and

(OG/&) = = 0 (1.S)

lira f f()G(, t; , r)d f().
t---,r +0

(1.9)

Consider the conjugate operator L* of L given by the formula

ov v ovL’V = -g-Cn + (t) _i)- + (t) S(t) +-g-i" (1.10)

From Chapter 3, Section 7 in [a], the fundamental solution F*(x,t;,v) of L*V = 0 exists in

the domain ft. Now, we shall study the following problem:

L*V*=Oin(x,t;,v)(flxfl, 0<t<v<To

V*l,==o, (1.11)

or*_ v’) rot’_ b(., t)r’)

where b(z, t): = + (t)(l- z)/(/- s(t)).

Again from Chapter 5 in [3], we obtain that the solution V*(z, t; , v) of problem (1.11)
exists. Let G* = F* + V*. Then G* q C2. Moreover for < r we have

and

If f E C[- l, l] then

It is easy to see that

L’G* -0 (1.12)

or" = (’)

lira f f()G*(z, t; , r)d = f(z).
t-*r 0

Br

(1.13)

(1.14)
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Let u(,7") be the solution of problem (1.1) where (z, t) is replaced by (,r). We consider the

Green identity

GL(,r)u-uL(,r)G
(.)

"-
ara _a

_8_( + (),,.,,= (Z + ))G] ,,) =_ 0.

Integrating this identity over the domain De: = {0 < r t-e,s(O) l} and applying

the Ostrogrski formula, we obtain

Ql(r)G(a:,t;l,v)dr (1.17)

Let u(a:,t) 0 for x < s(t) and E (0,u).

(1.17) as e--,0, we have

and

Then, applying (1.9) and passing to the limit in

tim_..o i u(, e)G(:, t; , e)d u(x, t)
(t-)

J (’ ;()’ J o
0

Then using Lemma 1.2, we obtain

O,,((t), t) t O,,((t), a((),) ov
o (t), t; (), ,)a,

0

i.e.

f Q,(,-)v:(,(t),t;,,-)a,-+ f ,(e):(:(),t;e,o)<e
0 0
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0

-2 f Ql(r)Gx(s(t), t;l,r)dr + 2 / ()Gz(s(t), t;,0)d.
0 0

Let W(t)" = u:(s(t), t). Then W satisfies the following integral equation:

W(t)=-2/ W(r)Gx(s(t),t;s(r),r)dr-2 / Ql(r)Gx(s(t),t;l,r)dr
0 0

where

+ 2/ ()Gz(s(t)t;,O)d, for E (0, a),
0

s(t) = / o(W(r) + Q2(r))dr, for e (0,r).

(1.19)

(1.20)

Obviously, if u(x,t) is the solution of (1.1) and if u is continuous with respect to e (0,r),
then W(t)= u:(s(t),t) is the continuous solution of the integral equation (1.19) on [0,o’],
where s(t) is defined by (1.20). Conversely, suppose that W is the continuous solution of the

integral equation on [0,r], where s(t) is defined by (1.20) and inf I- s(t)! = d > 0. Then

we can prove that u(z,t) obtained above is the solution of (1.1). Substituting W(r) into

(1.18), we have

u(x,t)= / W(r)G(x,t;s(r),r)dr- / Ql(r)G(x,t;l,r)dr
0 0

+ / ()G(x, t; , O)d, for s(t) < x < and 0 < < a,

0

(1.21)

where G(x, t; , r) is the Green function (1.6) obtained after determining s(t) by (1.20). For

function u(x, t) determined by (1.21), it is easy to see that

and

Lu(x,t) = O, for0<t<o’,s(t)<x<l,

lira u(x, t) = (x) for 0 < x < I.
--*O

Moreover, (1.21) implies that
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0 0

+ / ()Gx(x,t;,O)d,, for s(t) < z < and 0 < < a’.

0

Passing through to the limit as x--,s(t)+ 0 in the above equation and applying Lemma 1.2, we

obtain that

ux(s(t),t = W(t)/2- / W(r)Gx(s(t),t;s(r),r)dr
0

0 0

= (w(t)+ w(t))/9. = w(t), ro e (o,,,-).

Hence, (1.20) implies that

(t) = uz(s(t), t) + Q2(t), for q (O,r) and s(O) = O.

Below we shall prove that

ux(l,t) = -Q(t) and u(s(t),t) = O.

Lemm 1.3:Assume that there exists a continuous solution W of (1.19), (1.20) on

O < < r and inf
e [o,,,1

condition

It-s(t) -d>0. Then the function u defined by (1.21) satisfies the

u(l,t) -Q(t) for (0,o’).

Proof: In this proof we denote by M various constants dependent only on c, d

and sup norm of(t) on0<t>tr. Since

then

where

G(, t; , ) = r(, t; , ) + v(, t; ,

G(z, t; l, r) = r(, t; t, ) t-/7-0y(, t; 5, ),

(1.24)
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K(, t; , ): = (2,(t ))- p[- ( )/(4(t ))],

I,(x,t;(,r): = Z (LK)j(x,t;,r), (LK)I- LK,

and

(LK)j+,(x,t;5, r)- / / (Lh’)(x,t;y,r)(LK)j(y,r;,r)dydcr, j= 1,2,...
7" -l

q,(x,t;5, r) _< (M/(t- r))exp[-(x-)2/(8(t r)c2)]. (1.26)

By (1.8), Ga:(x,t;,O) lx=
Gx(l, t; s(r), r) 0 for > r.

equation:

=0 for any t>0. Moreover, since infll-s(t) =d>0, so

Thus, (1.22) implies that for any > 0, we have the following

u:(l,t)-:--,tlim- o / (-Qx(r))Gx(x’t;l’r)dr
0

=x--.tlim- o f (Qx(r))Gx(x’ t; l, v)dv, for 0 <e < t.

(1.27)

Additionally, since (OK/Ox) = -((x )(2a2(t 7"))- 1)K, then

OK/a <_ (M/(t- r))exp[- (x )2/(S(t- r)c2)]. (1.28)

Applying (1.26), (1.28), we get

/ f IKz(x’t;y’r)(y’r;5’r)ldydr
7- -l

<_ / / K(x, t; y, (r)(b(y, r; , r)dydcr
7"

< i(t-r)-Tezp[-(x-)2/(8a2(t-r))], for (x,t)e (-l,l)x(r,r).

and

Moreover, for Ql(t)E C[O,r],

t

f-Qa(r)f f Kx(x,t;y,r)(y,r;,,r)dydadr
t-e 7" -1

_1_ !
<_M (t-v) 2dv < Me2

t’e
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ti, f (0K(,t;,)/0)(-())d = -a(t)/2, ro (0,).
xl -0

Therefore, we obtain from (1.27) that

ioeo

f -Ql(r)Fz(:c,t;l,r)dr +Q(t)/2

lira f (-Q(r))F=(,t;l,r)dr--Q(t)/2
x--,l 0

< M2

By (1.27), to prove the conclusion of this lemma we have only to prove that

lira f (-Ql(r))Vz(z,t:l,r)dr=-Ql(t)/2 (e---.O),
x--,l -0

where V(x, t;,r) is the solution of (1.5). We denote by /t the inward normal vector to the

boundary of[-1,1]. Then the boundary condition in (1.5) can be written in the form:

(ov/o,) I. = r.(, t; , ) t-
x= -l z= -l

By results from Chapter 5 of [3], we know that the solution of (1.5) is given by the formula

where

v(, t; , ) = f r(, t; t, )(,; , + f/, t; ,( ,;,),
7"

(1.29)

(b( 5: l, t; (, 7") = 2 / or( ; , ) +1, t; 1.’.)(

2r( + l, t; , r).

,F( + ,!,! t; l,, o’)+( l, (r; , r)l d
J

(1.30)

Moreover, from (1.24) it is easy to see that

lot( = t, t; +l,)/o,l<_ M(t-tr) -’. (1.31)

Thus, in spite of a singularity in the integrand, the integral in equation (1.30) is integrable.

Since (1.30) is an integral equation whose unknown function is (I)( 4-l, t; , r), hence if =!= l,

then there exists a continuous solution (I)( 4- l, t; , r) of (1.30). From (1.24), we also have that

I(ar( +/- , ; , )/o) _< MI : 42’t3(t r)3) e:c- (1 :F )2(4al(t v))- 1]

+ M(t- r)- 7e:p[-(l :F )2. (8a2(t_ r))- 1 (1.32)
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Formula (1.32) shows that F=(- l, t; , r)l_< M as --l- O, and from the inequalities

and

(a + r)/2

(+)/2

r.(t. a; /, s) (.- r) 2as _<M,

< M(r- r) 2

we get an upper bound of the solution of the integral equation (1.30) as

Moreover, we have

L" xp ,.2(t(t-r)2

o"

Fo( :t: l, a; 5: l, s)O( -t- l, s; , r)ds <M(l+(-r) 2),

/ F(x, t; l, o’)f Fg( :I: l, a’; :t: l, s)(( + l, s; , 7")dsda

Thus, we can define the following integrals:

/ r(, t; l, tr) / r.( a= l, 03 l, s)(I)(/, s; l, v)dsdtr
7-

(7"

=--,tlim-o / F(x, t;l, o’) I F#( :l: l, r; l, s)((l, s; , 7-)dsdr,
7"

o"

f r(.. t; 1, o’) / r.( +/- . ; . )0( t. ; 1, 7-)dsdo"
7-

17"

= lira ] r(, t; ,,) / r,( 4- , ,; -,)( -t, s; , ,.)dd,,..
1-0

7" 7"

(1.33)
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So, (1.29) becomes

V(z,t;,r) = -2f F(x,t;t,r)Fx(l,,r;8, r)da-2 f F(z,t;l,a)Fx(-l,o’;(,r)da

O"

Since l"x(- 1, t;, r) is continuous on 0 < r _< < r as --1- O, we have that

im f r(, t;t ,,.)r,( -t,,,.; , ,-)do. = f r(, t; t, o.)r( t,,,; t,
--,1 -0

Thus

We have

= r(, t; l, r) 2 / r(:, t; l, ,)r(t, ; l, r)d(r + V1 + V2 + V3.

,())V(, t; t,
t--

/ O(’,)r(, t; l, "r)dr + 2 / Q1(r) / r(, t; t, o-)r(,,, ; I, r)dadr
t- t- r

f (,(r)r(z,t;l,r)dr= -l.2-,(t)

(1.34)

Moreover, we have
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and

Therefore,

f O,(r) / r(z, t; l,,r)r(/, ; l, r)aar
t-e r

f -C(,’)(V,+ V.+

lira i-Ql(r)Vx(z’t;l’r)dr=-Ql(t)/2 (e--0).
x-*l 0

Consequently, the proof of Lemma 1.3 is complete.

Next, we shall show that u(s(l),t) 0 for E (0,r). Integrating the following Green’s

identity:

( + )) -o(uG) O,

on the region 0 < r _< t- e, s(r) < <_ and letting e---,0, we get

f t; ,(,-), ,-) = o.
0

Obviously, we have

lira
zs(t) +0

u(s(v), v) (7")G(x, t; s(r), r)dr
0

= / u(s(r), r)(7")G(s(t), t; s(r), r)dr,
0

and

li)+O / u(,(r).r)V*(s(r).r;z.t)dr I
0 0

Analogously to Lemma 1.2 we have

ti, / u((-l,-)r((-),-;, t)dr
--.(t)+o

0

0
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Letting x-.s(t)+ 0 in (1.35) we get

0

Similarly to the proof of Lemma 1.3 we can show that

I_< M/(t-r), a((t), t; (1, 11_< M/(t-r).
So, the integrand in (1.36) is integrable. Therefore u(s(t),t) -- O.

Summing up, in this section we have showed that the solvability of problem (1.1) is

equivalent to the solvability of the integral equation (1.19).

2. THE SOLVABILITY OF THE INTEGRAL EQUATION

In this section we shall prove that the solution of (1.19), (1.20) exists uniquely.

Consider the mapping

co(t) = T(W(t)), (2.1)

where

T(W(t)): = 2 / W(r)Gx(s(t),t;s(r),r)dr- 2 / Q,(r)G=(s(t),t;l, 7")dr
0 0

0

s(t) = / (W(r) + Q2(r))dr.
0

(2.3)

The function G(x, t;, r)in (2.2)is given by (1.6). Let

c ,a: = (w(t):w(t) A,A > 0}.
By the continuity of Q2(t), it is easy to see that for any fixed A > 0 and sufficiently small

> 0, I(t)l < /2 hods fo, [0,]. Thu the mapping w(t) = T(W(t)) given by (2.1), (2.2)
and (2.3) is well defined in C

Theorem 2.1: Let e C[0,1], Q e C[0,T] and Q2 e C[0,T]. Then, for
A: = em !’()1 + tb ists o > O, tbt (t) = T(W(t)) afind b (.),

0<x</

(2.2), (2.3) is a mapping from Co A into itself.
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Proof: Since Gx = F= + V: then

2 / ()Ga:(s(t),t;,O)d
0

=2 f (,) f / K(s(t), t;y, tr)(y, tr;,,O)dydtrd,
0 0 -l

0 0

Noting Kx = K, we have

/ ()Kz(s(t), t; , O)d = 2(l)K(s(t), t; l, O) + 2 / 9’()K(s(t), t; , O)d.2

0 0

Thus

T(W(t)) = 2 f W(r)G(s(t),t;s(r),r)dr- 2 / Ql(r)Ga:(s(t),t;l,r)dr
0 0

2(l)K(s(t), t; l, O) + 2 / K(s(t), t; , 0)’()d
0

+2f f f (,)K(s(t),t;y,r)(y,r;,,O)dydad,
0 0 -l

6

+ 2 / ()Vz(s(t),t;,O)d = .E Ti’
0 *=1

(2.4)

where s(t) is defined by (2.3), and w(t) is defined in Co,A for a fixed A and sufficiently small

r0 > 0 (such that s(t)l < t/2). Below we shall estimate T (i = 1,...,6). We denote by

M = M(A’) a constant, where A’ is Lipschitz constant, i.e. Is(t)- s(r) < A’lt- r I. By the

condition

we obtain

r(s(t),t;s(r),r)

t

2(t r)a
r --!
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r(s(t), t;s(-),-) <_ M(t--T) -7.

From (1.29), (1.33), (1.3) and from

Vx(s(t),t;s(r),r is bounded on [0,a0], and

the inequality l- s(T)l_> /2 > o we see that

[Vx(s(t),t;s(T),T)[< M(t- 7").

Thus

T <_ 2A’f [GA(t),t;(-),)r <_ Mt":5 < ,31o"7o.
0

In the same way we have

T2[ < M.
Sincelt-s(t)[> 1/2, we get

K(s(t), t; l, 0) < M#2o

and

K(s(t),t;,O)’()d
0

< maz I’()1-
[o,t]

Thus
1

IT31 + IT41 <_2ma [’(’) +M’o2.
To estimate Ts, we need the following two lemmas from [3]"

(2.8)

Lemma 2.1([3])" Suppose -c<a<3/2 and -c<fl<3/2. Then

where B(.,.) is the beta function.

Lemma 2. ([3])’Assume that the coefficients of the operator L are Lipschitz

continuous in ft. Then the fundamental solution for Lu = 0 exists in f, and it is given by

(1.24), where

b(z,t;,r) = LK(z,t;,T) + / / LK(x,t;y,r)(y,r;,r)dydr,
7" --l

(x, t;, r) is bounded and satisfies inequality (1.26) and the constant M in (1.26) depends only
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on Lipschitz constants and f.

With the aid of Lemma 2.1-2.2 we get down to estimate Ts.

T :=2f / f ()K(s(t),t;y,r)LK(y,,r;,O)dydrd
0 0 -1

(r

+2 f f f o(,)Kx(s(t), t;y,o’) f f LK(y,o’;,z),b(,-;,, O)ddzdydrd,
0 0 -l 0 -l

= T + T,52.

For this purpose, observe that applying Lemma 2.1-2.2 we get

T521 < Mo’20.
Noting LK(x,t;,r) = (fl + D(t)(l-x)/(l- s(t)))Kx(z,t;,r we get

T51--2i f f o()K(s(t),t;y,r)LK(y,r;,O)dydrd
0 0 -l

Zsll-[-Til q-T531

with

0 0

T521:-2I i f (’)K(s(t)’t;y’r)’-(sDgx(Y’r;"O)dydrd’
0 0 -1

T351: = 2 ()K(s(t),t;y,a)( +
0 0 -l

Since K(s(t),t;y,,r)l < Mr, for y- -l-I and

thus we have IT,ll < Mro.

lLK(y,r;5, O) ld,r <_ M,
0

(.)
Apply Lemma 2.1 and using the boundedness of () and t-::,(..a)

Ts211 < Mr07- Moreover from Kxx(y r; , O) = Kx(y, r; , 0) we have

we get
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+ 2 K(s(t), t; y, r)(3 + l"’S- s(r
-10 0

= I1+I2.

Since (0) = 0 then

Ilxl _< 2 o(l)K(s(t), t;y,a)(5 + l’" S(’r’) Kx(y’r;l’O)dydr
0 -I

<_ M ex- (s(t)

< Mr (because I,(t)-tl > t/2).
1

Applying Lemma 2.1 in a similar way we can obtain 1121 < Mr(. Therefore,

1

TsI < Mr02. (2.9)

Next, we shall estimate T6. From (1.34) in Section 1 we get Vx and substituting

Y(s(t),t;,O) in to the expression of T6 we obtain

with

T6 V + V2 + V3 + V4 (2.10)

VI: = -4f ()f
0 0

=-4f f r(s(),;l,)r(-l,;,O)dd,
0 0

r

V3:=4/ o(,) f E(s(t), t; 1,o’)/ [r,(l,,r; 1, z)P(l, z; ,, O)
o o o

+ r.(t, ; l, z)ep( l, z; , O)]dzdrd,
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V4:=4/ ()f Fx(s(t), t;l, tr)/ [F,(-l, tr;l,z)b(l,z; ,0)
0 0 0

+ Fu( l, ; l,z)p( l, z; , O)]dzdd.
Since

[F(s(t),t;l,r)[<M(t-a)<Mro (by Is(t)-l[ >_//2>0),

and

0 0

then Vxl _< Mao and v=l < Mcro. By (1.33) we have

0

1

_< M(1 +r 2)

and r(s(t), t; t, ) + _< Mro. Thus we get

IV3[ + <M’o and IV4l _<Mo"o.

Therefore, we obtain

T6I < Mro. (2.11)

Combining (2.5), (2.6), (2.8), (2.9), (2.11) we have

T(W(t))I <_ 2maz
[o,t]

1

,’(:) + Mo’o,

where constant M depends only on A’, l, a, fl, max. Il,maz Qll and maz QI.
= e [o,t] [o,1 [o,1

Choose o > 0 sufficiently small such that M < 1 for A = 2 maz i#(z) + 1. In this ce
= e [o, t]

we he T(W(t))I A or W Co,A. Therefore Theorem 2.1 is proved.

To solve the problem, we have only to prove that T(W(t)) is a contraction. We

denote II Q,(t)II = m,= IQ,(t) l, II q2(t) II maz IQ2(t) l, II ’()II mz
e [o,l e [o,1 = e [o, tl

I,(:) I.
Theorem .& Suppose o C[O, l], q e C[O, T], q C[O, To] and

2maz I’(z) + 1. Then there ezists a o"1 >0 (o"1 <To) such that the mapping
e [o, tl

T(W(t)) defined by (2.1), (2.2), (2.3) is a contraction on Cal,A"

Pro,f: Let II w(t)II = maz IW(t) l. Then II w(t)II < A.
e [0, trI
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Moreover let L be the operator defined by (1.4) and M be constants dependent only on

A, II Ii, II (1 II, t, ,. Additionally, let

b(x, W(t)) =/3 + [(t)(/-- z)/(l-- s(t))],

where s(t)is given by (2.3).

equations:

For any WjECao, A(j= 1,2) we consider the following

Lju c’202u Ou Ou= -+(,w(t)) = 0 (j- 1,2) (2.13)

and their fundamental solutions

Fj(x,t;,r)= K(x,t;,r)+ / f K(x,t;y,r)bj(y,r;,r)dydr, (j= l,2)
r 0

where K(z, t; , r) is given by (1.25) and (I)j(z, t; , r) satisfying

Cj(x,t;,r)- LjK(x,t,,r)+ f f LjK(x,t;y,r)(j(y,r;,r)dydr (j= l,2).
7" -l

Lemma 2.3: The functions <bj(z,t;,r) (j=l,2) defined by (2.15) satisfy the

estimation

7") 2(X,’ t; , 7")1 _< M II w w II (t r) P ( e)/(s(t ’))]

forO<_7"<_t<_ro<1 and -l<_z,<_l.

Lemma 2.4:If Ix. <_ and !i <_ then

+c

(2.16)

Lemma 2.5:Suppose that -1 < x, < 1, Ix <- 1-d (or I1 <_ l-d) and d > O, then

Kxx(x, t; y, r)b (y, a)Kx(y ; , v)dydr
1" -l

1g M(1 / t::’:/ ezp[- (z )2/(Sa2(t- r))]};

Kz(x, t; y, r)b (y, r)Ku(y, r; , r)dyda
r -l
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[-( );/(s,;(t< M{ + t,:

(, = (,w(l = +((-//(- ().

Le.mma 2.6:Assume that Ix < 1/2 I’1 < 1/2 and W E C A" Then
O’O,

f f K=x(z’t;Y’a)O(Y’r;’r)dudr
"r --1

where &(z, t; , r) is given by (2.15).

Le.mma 2.7:Suppose that -l < y, < 1 < 1/2 and W(t) . C A" Then

,,,!, ,p[_ (u )2/(s,:(o’-,’))]},-< M{I +o’ r

Now let us get down to prove Theorem 2.2.

By (2.2), (1.6), (1.24) and by letting

f f -,
"r --1

we may write T(W(t))in the way as

T(W(T)) T(W(t)) + T2(W(t)) + T3(W(t))

where
t

T(W(t)): 2 f W(’)Kx(s(t),t;s(’),r)d’- 2 / Ql(r)Kx(s(t),t;l,r)dr
0 0

+ 2 / ()Kx(s(t), t; , O)d,
0

t

T2(W(t)): ---- 2 / W(v)Klx(S(t),t;s(r),r)d’-2 / Ql(’)Klx(S(t),t;l,v)dv
0 0

+ 2 f ta()K :(s(t), t; , 0)d
0
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= N + N2 + N3

and

T3(W(t)): = 2 f W(r)Vx(s(t), t;s(r), r)dr 2 / Qt(r)Vx(s(t), t;l, r)dr
0 0

+ 2 f o()Vz(s(t),t;,O)d
0

-’N4+Ns+N6.

By a result in [4] we know that T is a contraction mapping in CaI,A for sufficiently small

o-1>0.

With the aid of the above lemmas, we obtain

Nt(W) N(W:) < Mo-II wa w II for cr < %; W,W2 Cao, A;

N2(W1) N2(W2) < M II wx w2 II ,2 for ,r S *o; w,w2 Cco, A;

1

N3(W1) N3(W2) < Mu2 II wa w2 II for cr < O’o; Wl, W2 6 CO’o, A"

To complete the proof of Theorem 2.2 we need the following lemmas:

Lemma 2.8:Suppose that W1, W2 6 C%,A. Then

Fl:(sl(t), t; 4- l, 7") r2(s(t), t; +/- , r) _< M II wx w2 II
and

Lemma .9:Assume that W, W2 6Cao, A and j(rl,t;,r) is given by (1.30) for

Wj(j = 1,2), i.e.,

+ 2 f rv +/- t,t; -t, cr)o(-t,a;s(r),r)da- 2r(t,t;s(r),r).

I<h( t, t;,(r)., r)-<I,2( +/-l,t;s2(r),r)l S MIIWx-W2II.
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Lemma 2.10:

(1.30) satisfy

Suppose that W1, W2 ECO’o,A" Then bj( :t: l, r; , r) given by

Below we go on with the proof of Theorem 2.2 by considering N4, Ns, N6 and we have

N4(Wl)- N4(W2) <_ M il wt w II z
Ns(W1)- N(Wz) _< Mcr3/2 II w w II,

N6(W)- N6(W) < M II wa w2 II -
Combining the estimates for NI, N2, Na, N4, Nr and N6 we have proved that

T(Wl(t))- T(W2(t))l <- Mr2 II Wl W2 II fo _< o and ro < 1,

where M depends only on A, a, il II, II Q1 II, II Q II- Choose 0 < r1 < r0 such that,
1

Mo’ < 1. Then we get that T is a contraction of C,I, A into C,I, A. Therefore, Theorem 2.2

is proved.

Theorem 2.2 implies that there exists unique fixed point. Thus, we have the following

existence theorem for problem (1.1).

Theorem 2.3 (Existence): Suppose that C(1)[O,l], (0) -- O, Q1 q C[O, To],
Q2 e C[0,T0], constant TO > 1. Then, there exists 0 < 0"1 < 1 such that the solution u(x,t),

s(t) of the problem (1.1) exists on [0,rl].

Theorem 2.4 (Uniqueness): Assume thal C(1)[0,/], (0) = 0, Q1 C[0, To],
Q2 E C[0, To] and constant TO > l. Then, the solution of problem (1.1) is unique on [0,
and the constant r is the same as in Theorem 2.3.

Proof: Let Uo(X,t be another solution of (1.1) on [0, o’1] with s(t) replaced by

So(t and let Wo(t be the solution of corresponding integral equation. Moreover, let

{A =max A, sup IWo(t)
O_t_q1

Choose or2 sufficiently small such that for any W Ca2, where

c a = {w(t):w(t) e c[0,], w(t) < },

mapping T(iV) is a contraction of Caz, a into Ca2,a. On [0,a2] we thus have that W(t)=

uz(s(t),t =_ Wo(t = u%(so( t), t), i.e., in the region Do, 2 = {s(t) _< x < l, 0 < _< r2) the
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solution of (1.1) is unique.

problem 1.1)’"

For D2,1 = {s(t) < z < l, 0"2 < _< rl) we consider the following

a = . +a + (t)(t- )(t- (t))- a
n (*(’2),’2) = o, (x,,,2) = u(,,,,2)

"d(l,t) = -Ql(t)

(,(t),t)--o

(t) = (s(t),t) +Q2(t),

for s(t) _< < l,

for

forrz<_t<_a1,

for0.2t_<a.

(1.1)"

Repeating the same procedure as above, we can prove that there exists a constant 0.3 > 0,

r2 < a3 _< 0.1, such that the solution of problem (1.1)* exists uniquely on [0.2,0.3]" Therefore,

we have proved that for any 0 < a’< rI the solution of problem (1.1) exists uniquely on

[0,a*]. Therefore, Theorem 2.4 is proved.

REFERENCES

[i] Xueshi Yang, "Transpiration cooling control of thermal protection", A cta A utomatica
Sinica, 11.4 (1985), 345-350.

[2] Xueshi Yang and Xiachao Wang, "A numerical analysis of dynamic responses for
transpiration control", Acta Automatica Sinica, 14.3 (1988), 184-190.

A. Friedman, "Partial Differential Equations of Parabolic Type", Prentice-Hall, Inc.
1964.

A. Friedman, "Free boundary problems for parabolic equations, I. Melting of solids", J.
Math and Mech., 8 (1959), 499-518.


