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ABSTRACT

In this paper, we discuss the qualitative behavior of a map h
along solutions of an autonomous system whose initial values are
measured by a second map h0. By doing this, we may deal with, in a
unified way, several concepts and associated problems, which are usually
considered separately. Five theorems on asymptotic stability are given
and two examples are worked out.

Key words: Stability in terms of two measures, autonomous
systems, invariance principle, Lyapunov function.

AMS (MOS) subject classifications: 34D20, 93D05.

1. INTRODUCTION

It is well known that LaSalle’s invariance principle [3] is one of the most useful results

in applications since it allows using the total energy as a Lyapunov function to obtain

asymptotic stability in mechanical problems with dissipation. The key idea of the invariance

principle is to use Lyapunov’s method to locate an attractive set and then to refine the result

by using invariance properties of its subsets. Recently, Hatvani [1] successfully extended the

invariance principle to the study of partial stability which improves LaSalle’s result

significantly.

Due to the needs of applications, there are several different concepts of stability

studied in the literature, such as orbital stability, partial stability, conditional stability, just to

name a few. To unify these varieties of stability notions and to offer a general framework for

investigation, the stability concepts in terms of two different measures have been proven very

useful. See Lakshmikantham and Liu [2] for a detailed discussion of this point.

We shall discuss, in this paper, stability properties in terms of two measures for

autonomous differential systems and extend the invariance principle to the study of (ho, h)-
stability.
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2. PRELIMINAPdES

Let us list the following definitions and classes of functions for convenience.

K = [r C[R +,R + ];#(u) is strictly increasing and #(0) = 0].
r = [h C[R",R + ;inf h(z) = 0].

x.Rn

Consider the differential system

where x e Rn, f e C[l:ln, Rn]. For p > 0, we define s(h,p) = [z E Rn;h(z) < p]. Let

x(t) = x(t, Xo) denote any solution of (2.1) with z(0)= xo. We shall assume that if x(t)is a

solution of (2.1) so that h(z(t))< p for e [0,c), then z(t) can be continued to the closed

interval [0,c,]. For y S(h,p), we denote by 7(Y) the positive trajectory of (2.1) passing

through y i.e. 7(Y) = {z(t,y);t > 0}, and by fa(Zo) all the positive trajectories of (2.1) passing

through Zo with ho(zo) < #, i.e. f,r(Zo) = [: Rn;z = z(t, z0), > 0, and ho(zo) < r].

Definition 2.1: Let ho, h F. Then we say that h0 is finer than h if there exists

constant p > 0 and a function K such that

ho(: < p implies h(:) < (ho(z)).

Definition 2.2: Let V C[Rn, R + ].
solutions of (2.1) is defined by

Then the generalized derivative of V along

D V(:c) lim sup16[V(z + Sf(z)) V(z)].
6--.0 +

We define the set E by

E={zes(h,p), D +v(z)=0).

Definition 2.3: Let ho, h r and V C[Rn, R + ]. Then V is said to be

(i) h-positive definite if for some p > 0 and b K, h(z) < p implies V(z) >_ b(h(z));
(ii) ho-decrescent if for some p > 0 and a K, ho(z < p implies V(z) <_ a(ho(z)).

Definition 2.4: Let ho, h r. The system (2.1) is said to be

(i) (ho, h)-stable if given e > 0 there exists di = (e) > 0 such that ho(zo) < g implies

h(z(t)) < , > O, where z(t) = z(t, Zo) is any solution of (2.1);

(ii) (ho, h)-attractive if there exists a tr > 0 such that ho(zo) < r implies h(z(t))O as

(iii) (ho, h)-asymptotically stable if (i) and (ii) hold;
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(iv) (h0, h)-unstable if (i) fails to hold.

Definition 2.4 describes the qualitative behavior of a map h E F along solutions z(t) of

system (2.1) whose initial values are measured by a second map ho E F. By using this

definition, we can deal with, in a unified way, several concepts and associated problems, which

are usually considered separately. It is easy to see that Definition 2.4 reduces to

(1) the well-known stability of the trivial solution of (2.1) if h()= ho( = II II,
where I1" II denote the Euclidian norm in R’;

(2) orbital stability if h(x)= ho(x = d(x, 7), where 7 is a given periodic orbit of

(2.1), and d is the distance function;

(3) partial stability of the trivial solution of (2.1) if h(x)= II x ]l , _< s < n, and

h0( ) II II;
(4) the stability of an invariant set A C Rn if h(z) = ho(z = A);

(5) the stability of conditionally invariant set B with respect to A, where

A (2 B (2 R", if h(z)= d(z,B)and ho(z = d(z,A).

3. MAIN RESULTS

We state and prove our main results in this section. Let us begin by proving a result

on (h0,h)-asymptotic stability under weaker assumptions.

Theorem 3.1: Assume that

(i) h0, h F and ho is uniformly finer than h;

(it) V qC[Rn, R+],V(z) is locally Lipschitzian in z, h.positive definite, ho-
decrescent and

(iii)

(to)

D + V(x) <_ 0 on S(h, p),

the set s(h, p) f’l fa(Zo) is precompact;

for any c > O, the set E fV-l(c) contains no complete positive trajectory of
(2.1), where V (x) = {x . s(h, p); V(x) = c}.

Then the system (2.1) is (ho, h)-asymptotically stable.

Proof: Assumptions (i)-(ii) imply that the system (2.1) is (ho, h)-stable. Thus for

p > 0, there exists a 60 = 6o(p) > 0 such that

ho(x) < 0 implies h(x(t, xo) < p, >_ O. (3.1)
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Choose 6 = min{go, a }. Then by assumption (iii) and (3.1) we see that ho(zo) < 6 implies that

z(t, zo) is bounded and h(z(t, zo) < p, O. Since V(x(t, zo) is nonincreing and bounded

from below it follows that lira V(x(t, zo) =c > 0. Suppose, for the sake of contradiction,

that c > 0. Since z(t, zo) is bounded, it follows that (Zo) is nonempty and invariant. Then

for y(Zo),z(t,y)(Zo),t[O,). Thus V(z(t,y))c and D+V(z(t,y))O for

fi [0,). Hence 7(Y)C E V-(c), which contradicts umption (iv). So, we must have

c = 0. Since V(z) is h-positive definite, this shows lira h(z(t Zo) = 0. Thus the system (2.1)

is (ho, h)-ymptotically stable and the proof is complete.

mk= tr ho( = ,() = II !1, then condition (iii) is a consequence of conditions

(i) and (ii)and Theorem 3.1 reduces to Lalle’s result [3]. n ce h0( -IIll and

h(z) = z is, a 5 s < n, then Theorem 3.1 includes Oziraner’s result [4] on partial stability.

If we remove the condition (iii) in Theorem 3.1, i.e. without demanding the

boundedness of solutions of (2.1), then we have the following result.

Threm 3.2: Assume that

(i) /’,/",/’o r, ana /,()+ ’() O(ho()), w 6 a,a 6(ho()) s

(ii) as,vtio, (ii) , (iv) of reom .
Then there exists a constant 6 >0 such that ho(zo)< 6o implies that either

Prf: By condition (i), h(z)5 d(ho(z)), which means that ho is uniformly finer

than h. This, together with condition (iii) of Theorem 3.1 implies that the system (2.1) is

(ho, h)-stable. Thus for = p > 0, there exists a 60 = 6o(P) > 0 such that

ho(zo) < 60 implies h(z(t, zo) < p, >_ O. (3.2)

Let z(t, xo) be a solution of (2.1) such that h’(z(t, zo))--.c as tc. Then there exists a

sequence n E R +, t,--c as n--co such that {h*(z(t,,:o))} and {h(z(tn, zo))} are bounded

which implies, by condition (i), that {z(tn, xo)} is bounded. Thus g(Zo) is nonempty. Since

V(z(t, Zo))c > 0 as tc, then there exists a y fi 2(o) such that V(y)= c. But the set

fl(Zo) is invariant, consequently, the set E 3 V-1(c) contains a complete positive trajectory.

This, together with assumption (iv) of Theorem 3.1, implies c = 0. Thus the proof is complete.

Employing Theorem 3.2, one can get (ho, h)-asymptotic stability as follows.
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Theorem 3.3: Let the assumptions of Theorem :t.2 hold. Suppose further that

(A) V(x)--O as D + V(x)--O and h’(x)--.

Then the system (2.1) is (ho, h)-asymptotically stable.

Proof: (h0, h)-stability of (2.1) is immediate. Thus there exists ti0 = di0(p)> 0

such that ho(xo) < 60 implies h(x(t, zo) < p, >_ O. Let z(t, Zo) be a solution of (2.1) with

ho(xo) < io. Then by Theorem 3.2, V(x(t, Zo))---.0 as t--.cx or h*(x(t, Xo))---,c as t---.cx. Since

V(z) is nonnegative and D + V(z(t, Zo) < 0, > 0, it follows that tim supD + V(z(t, zo) = 0

which implies that there exists a sequence t,, E R + such that D + V(x(tn, zo))-.O as n-.-,cx.

Suppose that lint V(:(t z0) =c 0. Then h*(x(tn, z0))--<x as n---.cx, which implies, by

assumption (A), V(z(tn, Xo))---O as n--,cz. This is impossible. Titus we must have

V(z(t, Zo))--.O as t-.-.c. Since V(z) is h-positive definite, this in turn implies that

h(z(t, zo))---.O as t---.c and hence the system (2.1) is (h0, h)-asymptotically stable, completing

the proof.

Example 3.1: Consider the nonlinear system

= +. = .l:3 X33.
2 2 h(z)=z+z:, h’(z)=z and ho(x h(z)+h’(z).Choo. v(.) = + + =

is h-positive definite, ho-decrescent and continuously differentiable.

along solutions of (3.3) is

(3.3)

Then

The derivative of

2 4D + V(z) 2[z(1 + z) + z22 + z2z31 _< 0.

It is easy to see that D + V(x)---,O iff z---,O, z2---,0 and 2 4 h"z2z3--0. If (z)--c, then we must

have 2 2x2z3--0, which implies

V(z)----,O as D + V(z)-.O and

Thus condition (A) of Theorem 3.3 is satisfied. It is easy to verify that all other conditions of

Theorem 3.3 are met. Thus the system (3.3) is (h0,h)-asymptotically stable.

Theorem 3.4: Assume that conditions (i) and (it) of Theorem 3.1 hold. Suppose

further that

(iii’) for any c > O, any complete positive trajectory of (2.1) contained in V-i(c) E
is also contained in the set N = {z e Rn, h(z)= 0};

(iv’) h(x)--O as II II- if bounded.
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Then the system (2.1) is (ho, h)-asymptotically slab&.

Proof: Evidently, system (2.1) is (ho, h)-stable.

such that

Thus there exists 6o = 6o(P) > 0

ho(zo) < 60 implies h(x(t, Zo) < p, > 0. (3.4)

Let z(t, Zo) be a solution of (2.1) satisfying (3.4) and define re(t) = V(z(t, Xo) ), e R +. Then

re(t) is nonincreasing and bounded from below, so lira re(t) = c exist. Let us assume c > 0 for

otherwise c = 0 and the theorem is proved. Since h(z(t, Zo) is bounded for any t> 0, it

follows from condition (iv’) that we only need consider the case when II (t,0)I1--
t--.oo, if il (t,0)II---’ then W(Xo) # and W(Zo) C V- l(c)t3 E. Let y E W(Zo).
Then 7(Y)C w(zo) since W(Zo) is invariant. By condition (iii*), 7(Y)C N which implies

W(Zo) C N and h(y)= 0 for any y W(Zo). If there exists a sequence {z(tk, Zo)} such that

II (t,0)II then by conditions. (iv’) lin_.h(z(t,,Zo) = 0. Thus we conclude

that lira h(z(t Zo) = 0 for any solution z(t, zo) of (2.1) satisfying (3.4) and hence the system

(2.1) is (h0, h)-asymptotically stable.

The following result is a direct consequence of Theorem 3.4 and its proof is omitted.

Theorem 3.5: Let conditions (i) and (ii) of Theorem 3.1 and condition (iii*) of
Tkeorem 3.4 hold. Suppose further that

tim V(z) = co.

0 < h(x) < p

Then the system (2.1) is (ho, h)-asymptotically stable.

Example 3.2: Consider the nonlinear system

(3.5)

Z

Z2 Z4,

Z 9 2
Z3 --1 ’+ x zl z42 zl "XlX3)’

,1, Z2X Z3Z4 3Z2X4)"=
+ 4 ;4

(3.6)

4
2 2 2 2 2 2 z2 h(z)-z+z24 and ho(z) E zi.Let V(z) = 1/2(z,z4 + z2z4 + z,z3 + z + 2z24)+ 2, = Then

i=1
V() is h-positive definite, ho-decrescent and continuously differentiable. The derivative of

V(z) along solutions of (3.6) is

D + V(z) 2 2 2 22ZlZ3 _0.3z2x4 <



On (hh)-Stability ofAutonomous Systems 337

E = {x 6 R4;XlX3 = 0 and x2x4 = 0}. The largest invariant set contained in E is the (x,x2)-
plane where h(x) vanishes. Since lira V(x)= cx, it follows that condition (3.5) is satisfied.

Thus by Theorem 3.5 the system (3.6) is (ho, h)-asymptotically stable.
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