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ABSTRACT

We prove the existence of solutions of a functional differential
inclusion. By using the variation of parameters formula we convert the
functional differential inclusion into an integral inclusion and prove the
existence of a fixed point of the set-valued mapping with the help of the
Kakutani-Bohnenblust-Karlin fixed point theorem.
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1. INTRODUCTION

Fixed point theorems are widely used as a tool to prove the existence of solutions of

differential inclusions. Schauder’s fixed point theorem is used to prove the existence of

solutions of differential inclusions [2] and functional differential inclusions with nonconvex

right-hand side [8] in Banach spaces. Ky Fan’s fixed point theorem is used in [7,10]. In [5],
Marino used a fixed point theorem due to Martelli [6] for establishing the existence of solutions

of a nonlinear differential inclusion in Banach spaces. Angell [1] obtained an existence theorem

for integral inclusions of Urysohn type by using Kakutani-Bohnenblust-Karlin fixed point

theorem. Papageorgiou [9] proved the same for the nonconvex case by using Schauder’s fixed

point theorem.

In this paper we prove the existence of solutions of functional differential inclusions via

integral inclusions. First we convert the functional differential inclusion into an integral

inclusion by using the variation of parameters formula. Then we use the Bohnenblust-Karlin

extension of Kakutani’s fixed point theorem [3] to prove the existence of solutions of the

integral inclusion which is the solution of differential inclusion.
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2. BASIC IIYPOTIIESES

Consider the differential inclusion

h(t) E L(t,zt) + F(t, zt), a.e. on [O,b

x(t) = (t) on [- r,O]
(1)

where :t’[-r, Ol--..Rn is continuous such that

In order to ensure the existence of solutions of the differential inclusion (1), we shall

make the following assumptions:

(i) L:[0,b] x L[- r,b]--Rn is continuous and linear,

(ii) the set-valued map f:[0, b] x L[ r,b]---.2R" is convex such that for any

(7, ) e [0, 1 L[ , 1,

(iii)

= N clU{F,); il -g II < ,}
6>0

that is, F is upper semicontinuous in the sense of Kuratowski with respect to the

variable . Note that, as the intersection of closed sets each F(7,) is closed,

there exists a measurable set-valued function P: [0, b]---.E1, a constant M > 0, and

for each >0, a function , e L’([O,b];Rn), t(t)>0, such that for given

x e Lcc([-r,b];Rn) and selection v(t) q. F(t, xt) there exists a selection

rl(t) P(t), with

b

<_ v(t) < ,,(t) + co(t).M and

0

Let f:[0, b] x L[ r, b] be continuous and C = C([ r, b]; Rn).
parameters formula for the initial value problem

The variation of

(t) = L(t, zt) + f(t, zt) [0,b]

z(t)- (t) on [-r,0]

is given by [4]

z = T(t, tr)(tr) + / T(t,s)Xof(s, zs)ds
o"

where the operator T(t, tr): C--.C is given by

T(t,a) zt(tr, ), tr _< _< b such that

T(a,a) = I, T(t, tr)T(tr, s)= T(t,s)



Existence of Sohaions of Functional Differential Inchtsions 317

is a solution of the homogeneous equation

5:(t) = L(t, zt)

and X0 is defined by

Xo(O) ={ O, -r<_O<O

I, 0=0

where I is the identity matrix.

Further we assume that

(iv) T is a bounded linear operator, with bound N and continuous as follows:

For t’, t" E [0, b] and a/i > 0, there exists an > 0 such that

IZ(t’,s)--Z(t",s)l <e of It’--t"l <.

inclusion

Now we can write the equivalent form of the differential inclusion (1) as the integral

z(t) e T(t,0)(0)+ ] T(t,s)XoF(s, zs)ds, 0 <_ <_ b

0

= (t), , s _< 0.

So in order to prove the existence of solutions of the differential inclusion (1), we have to prove

the existence theorem for the integral inclusion (2). We prove this existence theorem by using

Bohnenblust-Karlin extension of Kakutani’s fixed point theorem.

that

Theorem I: (Bohnenblust-Karlin) [3]

Let E be a nonempty, closed convex subset of a Banach space . If F:E---,2 is such

(a) F(a) is nonempty and conve: for each o" E,

(b) the graph of F, ((F)C EE is closed,

(c) U{ r(a); a fi E} is contained in a sequentially compact set C ,
then the set-valued map F has a fi:ed point, that is, there exists a o"o E such that o"0 F(ao).
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3. EXISTENCE

Since our interest is to study the existence of the solutions of the differential inclusion

(1), we will need to give a precise definition of the term solution.

Definition (I): A solution of the differential inclusion (1) is a function :, defined

on [- r,b] with :o(O) (@), r _< 0 < 0, and : [O,b] E C([O,b];Rn), and such that there

exists v L1([O,b];Rn) satisfying the inclusion v(t) F(t,z,) almost everywhere on [0, b] and

for which

x(t) = T(t,0)(0)+ ] T(t,s)Xov(s)ds, 0 <_ <_ b.

0

Now we may recast the initial-value problem as a problem for a fixed point of a set-

valued mapping as follows; we introduce two set-valued mappings whose domain

S C L([- r,b]; Rn) is defined by

s { e ([- ,1; n"/: t_ ,01 =
,,

i0,l e

Clearly S is a closed convex set in L([-r,b];Rn). We define the set-valued maps

O:S--,LI([O,b]; Rn) and q" S---,2s, respectively, by

and

b(z) = {v e Ll([O,b];Rn):v(t) e F(t, zt) a.e. on [0, b]}

*(z) = {z S:z(t) = T(t, 0)(0)+/T(t,z)Xov(s)ds, v (z), z [-,01 = }
0

(3)

(4)

Remark I" Suppose that z0 E S is a fixed point of the mapping defined by the

relation (4), that is, suppose z0 fi 9(z0). Then z0 q S is a solution of the integral inclusion

(2).

Theorem 2: [1]: Under lhe hypothesis (it), for each z S, O(z) is not empty and the

set O(S) defined by the relalion (4) is an equi-absolulely integrable set and is weakly compact

in L’([0, bl;

Now we prove the relative compactness of the set q(S) and the convexity of @(:).

Theorem g: Under hypotheses (iii) and (iv), for each z S, *(z) is not empty and the

set (S) defined by the relation (4) is a relatively sequentially compact subset of L([O,b];Rn).
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Proof: First we prove that @(z) is not empty, for all : S. If we are given

z E S, then from Theorem 2, if(z) is not empty. We choose v E (z) and define

y(t) = T(t,O)(O)+ /T(t,s)xoV(s)ds, 0 <_ <_ b.

0

Now for any t’, t" [0 b],Let e > 0 be given and suppose that 81 < i’MN"

y(t’)- y(t") < T(t’,0)- T(t",O) (0)

+ / T(r,s)- T(t",s) Xol Iv(s) lds
0

+ f IZ(t",s) Xol Iv(s) lds
t’

< T(t’,O)- T(t",O) I(0)

+ / IT(t’,s)-T(t",s)l@s(s)+8O(s))ds
0

+ / IT(t",s) q,s(s) + 8l(s))ds (iii))

< Z(t’,0)- Z(t",0) I(0)

t’ b

+ f IT(t’,s)-T(t",)l,,()ds+2aN/o(s)ds
o o

b

+ N f sl (s)ds + 61N f rl(s)ds
t’ 0

< T(t’,0)- T(t",0) I(0)

+ f T(t’,s)- T(t",s) l$s,(s)ds + 3,51MN
0 t"

+ N / ,,(s)ds.
t’
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Hence (t’)- (t") _<

Now from the hypothesis (iv), there exists a 62 > 0 such

T(/’,0)- T(t",0) < /4 (0) if [t’- t"[ < 62, that is, I < e/4 if [/’-t"[ < 62.

that

Also since T is bounded and q8 E Ll([O,b];Rn), then by using Lebesgue dominated

convergence theorem, for a sufficiently small 3 > O, 12 < if < 63.

Moreover, since q6. is integrable, we may conclude that there is a 54 > 0 such that if

[t’-t"[ <64, then

*s(s)ds < 4 and therefore

t’

Therefore Y(t’) y(t") < - + . + "4 + " = "
Hence the elements of q(S) restricted to the interval [O,b] form an equicontinuous

family.

Now choose < min{(2,3,4}. Then the piecewise continuous function z defined by

J (t), -, _< < 0

v(t), O<t<b

lies in S. Hence @(z) is not empty.

To prove the theorem, it remains to show that (S) is equibounded.

For a given o E [O,b]
o

ly(to) _< T(to, O) I(0) / / T(to, s) Xol Iv(s) lds.
0

Taking e = in the hypothesis (iii), we have

y(to) <_ N (0) + N(M + K) < oo

b
since f Pl(t)dt = K < oo [1, pp. 138].

0

Therefore (5’) is equibounded. Then by the Arzela-Ascoli theorem, any sequence {zk}
in @(S) restricted to [0,b] have a uniformly convergent subsequence. Hence the set @(S) is

relatively sequentially compact.

Theorem 4: For each z S, the set @(x) defined by the relation (4) is convez.
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Proof: Let Yl,Y2 E @(z). Then there exists vl(t ), v2(t e F(t,xt) such that

yi(t) T(t,0)(0) + / T(t,s)Xovi(s)ds, = 1,2.

0
And so for 0 < A < I, we have

,y(t) + (1 Aly2(t = f T(t,s)Xo[$V(S + (I )v2(sl]ds.
0

Since r(t, zt) is convex Av(t)+(1-$)v2(t)a..r(t, zt) a.e. in [0,b].

Aye(t) + (1 A)Y2(t (z).

Therefore

Hence q(r) is convex.

Next we will prove that the graph of q,{]() is closed. For that we use the following

closure theorem.

Theorem 5:[1] Let I = [O,b], consider the set-valued mappin9 F: I x Loo---,2En and

assume that F satisfies the hypothesis (ii) with respect to . Let v, vk, : and zk be functions

measurable on I, z, :t ounded, and let v, vk L(I;R"). Then if vk(t F(t, ztt) a.e. in I

and vk---,v weakly in L’(I;Rn) while ztcz uniformly on I, then v(t) F(t, xt) a.e. in I.

Theorem 6: Under the hypotheses (ii), (iii) and (iv) the map q’S--2S has a closed

graph, that is,

{(z,V) e S x S: V e P(x)} is closed.

Proof: Let {zk, yt} be a sequence of functions, y *(zk), which converges to a

limit point (z,y) of (*). Thus zk--z and yk--y uniformly on [0,b]. We have to prove that

e

By definition of , there exists a sequence {v}, with v: q O(zk) such that

y(t) = T(t,0)(0)+/T(t,s)Xodsld.
0

Without loss of generality, we may assume that vtc--v weakly in LI([O,b];Rn) and

from Theorem 5, v(s) F(s, zs).

To prove y E P(z) we wish to show that y satisfies the equation

y(t) = T(t,O) (0) + / T(t,s)Xov(s)ds
0
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which, for convenience, we will write symbolically as

(5)

Recognizing that (Yk, Vk) satisfying the above relation, we may write

Iv--ol <_ IV--vkl +

It is enough to show that the relation (5) holds pointwise.

Let us fix o E [0,b]. Since

(t0) u(to) <,/2.

uniformly converges to y, we have that

Also since T is bounded in (Ll([O,b];Rn) and {vk} weakly converges in Ll([O,b];Rn),

Ivy(t0)- v(t0) < ’-2"

Therefore given > 0,

0

Hence y E @(z) and therefore (z,y) t](q)), that is the graph of @ is closed. And the proof is

complete.

So far we have verified that all of the hypotheses of Theorem are satisfied. We may

thus consider the following existence theorem.

Theorem 7’: Under the hypotheses (ii)-(iv) the set-valued map :S.---,2S has a fixed
point in S; consequently, the integral inclusion (2) has a solution in S.

Since the existence of solution to the integral inclusion (2) is equivalent to the

existence of solutioa to the differeatial inclusion (1), we state our main theorem.

Theorem &Under the hypotheses (i)-(iii), the differential inclusion (1) has a

solution.
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