MULTIPOINT FOCAL BOUNDARY VALUE PROBLEMS ON INFINITE INTERVALS¹

S. UMAMAHESWARAM and M. VENKATA RAMA² University of Hyderabad School of Mathematics and Computer Information Sciences Central University P.O. Hyderabad-500 134, INDIA

ABSTRACT

For the differential equation $y^{(n)} = f(x, y)$, we state a set of necessary and sufficient conditions for the existence of a solution (i) on a semi-infinite interval for a k-point right focal boundary value problem and (ii) on $(-\infty,\infty)$ for a (n-1)-point right focal boundary value problem. The conditions are in terms of the existence of a pair of solutions u(x), v(x) satisfying some auxiliary boundary conditions and algebraic inequatilities.

Key words:Focal boundary value problems.AMS (MOS) subject classifications:34B15.

1. INTRODUCTION

Let n be a fixed positive integer greater than 1, k, n(1), ..., n(k) be arbitrary but fixed integers satisfying $1 < k \le n$, $n(1) \ge 2$, $1 \le n(r) \le n-1$, r = 2, ..., k, n(1) + ... + n(k) = n, and $x_1 < ... < x_k$ be arbitrary real numbers. Define s(0) = 0 and s(r) = n(1) + ... + n(r) for r = 1, ..., k.

In this paper we obtain in Theorems 2.3 and 3.1 necessary and sufficient conditions for the existence of a solution (i) on the interval $(-\infty, x_1]$ of the k-point right focal boundary value problem (BVP) (1.1), (1.2) with $(r,i) \neq (1,0)$ and (ii) on the interval $(-\infty,\infty)$ of the BVP (1.1), (1.3) with $i \neq m$, the underlying equations being

$$y^{(n)} = f(x, y)$$
(1.1)
$$y^{(i)}(x_r) = y_{ri}, r = 1, ..., k$$

$$i = s(r-1), ..., s(r) - 1$$
(1.2)

Printed in the U.S.A. © 1992 The Society of Applied Mathematics, Modeling and Simulation

¹Received: October, 1991. Revised: December, 1991.

²This author is supported by a Post-Doctoral Research Associateship of the University Grants Commission, New Delhi, India.

and

$$y^{(i)}(x_1) = y_i, i = 0, ..., n-1.$$
 (1.3)

These conditions are stated in terms of the existence of a pair of solutions u(x), v(x) of (1.1) satisfying some auxiliary boundary conditions (*BCs*) and algebraic inequalities. We assume throughout this paper that the differential equation (1.1) satisfies some of the following hypotheses.

- A. f is continuous on \mathbb{R}^2 .
- UR. Solutions of n-point right focal BVPs, if they exist, are unique; that is, if y(x), z(x) are solutions of the BVP (1.1), (1.2) with $x_1 < \ldots < x_k$ and k = n then $y(x) \equiv z(x)$ on $[x_1, x_k]$.
- U. Solutions of initial value problems (IVPs) are unique.

...

- E. All solutions of (1.1) exist on $(-\infty,\infty)$.
- *E'*. All solutions of (1.1) exist on $(-\infty, c)$, where $-\infty < c \le \infty$ is a constant depending on the solution.

Some existence theorems on infinite intervals for conjugate BVPs have been proved for the cases n = 2 and 3 in [5,6] and for arbitrary n in [7]. However, existence theorems on infinite intervals for focal BVPs do not seem to be included in the literature so far.

2. AN EXISTENCE THEOREM FOR SEMI-INFINITE INTERVALS

We first prove the following lemma which is useful in the proofs of our main theorems.

Lemma 2.1: Assume the hypotheses A, UR, and E' hold. Let ℓ , m be arbitrary but fixed integers with $1 \le \ell \le k$, $s(\ell-1) \le m \le s(\ell)$, and $(\ell,m) \ne (1,0)$. Suppose u(x), v(x) are distinct solutions of the BVP (1.1), (1.2) with $(r,i) \ne (1,0)$, (ℓ,m) and satisfying $u(x_0) = v(x_0)$ for some $x_0 < x_1$ and $w(x) \equiv u(x) - v(x)$. Then

(i)
$$w'(x) \neq 0$$
 for $x_0 \leq x < x_1$, $w(x) \neq 0$ for $x_0 < x \leq x_1$

(ii)
$$w^{(s(r-1))}(x) \neq 0$$
 for $x_{r-1} \leq x < x_r$, $w^{(s(r-1)-1)}(x) \neq 0$ for $x_{r-1} < x \leq x_r$,

$$r=2,\ldots,\ell-1.$$

(iii)
$$w^{(s(\ell-1))}(x) \neq 0 \text{ for } x_{\ell-1} \leq x < x_{\ell}, \ w^{(m)}(x) \neq 0 \text{ for } x_{\ell-1} < x \leq x_{\ell}.$$

Proof: If w'(x') = 0 for some $x', x_0 \le x' \le x_1$ then using the *BCs* (1.2), successive applications of Rolle's theorem to $w', \ldots, w^{(m-1)}$ on appropriate subintervals of $[x', x_{\ell}]$ and the theorem in [3] result in the contradiction $w \equiv 0$. Thus the first inequality in (*i*) holds.

Now
$$w'(x) \neq 0$$
 for $x_0 < x < x_1$ implies $w(x) \neq 0$ for $x_0 < x \le x_1$.

The proofs for (ii) and (iii) are similar.

We also need the following lemma due to Kolmogorov [4] which is stated here for the sake of convenience.

Lemma 2.2: Let M > 0, $[a,b] \subset \mathbb{R}$ and $y(x) \in C^n[a,b]$ be an arbitrary function with the property that $|y(x)| \leq M$ and $|y^{(n)}(x)| \leq M$ on [a,b]. Then there exists a constant K > 0 depending on M and the interval [a,b] such that $|y^{(r)}(x)| \leq K$ on [a,b] for $1 \leq r \leq n-1$.

Theorem 2.3: Assume the hypotheses A, UR, U and E' hold. Let ℓ , m be arbitrary but fixed integers with $1 \leq \ell \leq k$, $s(\ell-1) \leq m \leq s(\ell)-1$ and $(\ell,m) \neq (1,0)$. Then a necessary and sufficient condition that the BVP (1.1), (1.2) with $(r,i) \neq (1,0)$ has a solution y(x) on $(-\infty, x_k]$ is that there exist solutions u(x), v(x) of (1.1) on $(-\infty, x_k]$ satisfying the condition (1.2) with $(r,i) \neq (1,0), (\ell,m)$;

$$u(x) \geq v(x)$$
 on $(-\infty, x_1]$

and

$$(-1)^m u^{(m)}(x_{\ell}) \leq (-1)^m y_{\ell m} \leq (-1)^m v^{(m)}(x_{\ell}).$$

In the sufficiency part the solution y(x) satisfies $u(x) \ge y(x) \ge v(x)$ on $(-\infty, x_1]$.

Proof:

<u>Necessity:</u> This is obvious since we can choose u(x) = v(x) = y(x) where y(x) is the assumed solution of (1.1), (1.2) with $(r, i) \neq (1, 0)$.

Sufficiency: If $(-1)^m y_{\ell m} = (-1)^m u^{(m)}(x_{\ell})$ (or $(-1)^m v^{(m)}(x_{\ell})$) we can choose y(x) = u(x) (or v(x)) and there is nothing to prove. Suppose

$$(-1)^{m} u^{(m)}(x_{\ell}) < (-1)^{m} y_{\ell m} < (-1)^{m} v^{(m)}(x_{\ell}).$$

$$(2.1)$$

If u(x') = v(x') for some $x' < x_1$, then since $u(x) \ge v(x)$ on $(-\infty, x_1]$ we must have u'(x') = v'(x') and this contradicts Lemma 2.1 (i). Hence u(x) > v(x) on $(-\infty, x_1)$. For j = 1, 2, ..., let $v_j(x)$ be the solution of the *BVP* (1.1), (1.2) with $(r, i) \ne (1, 0)$ and $y(x_1 - j) = v(x_1 - j)$ which exists by theorem 3 of [2].

Now we claim that $v'_j(x_1 - j) > v'(x_1 - j)$. Clearly $v'_j(x_1 - j) \neq v'(x_1 - j)$ by Lemma 2.1 (i). Also, due to the same reason, if $v'_j(x_1 - j) < v'(x_1 - j)$ then $v'_j(x) < v'(x)$ for all x, $x_1 - j < x < x_1$. Let $g(x) \equiv v_j(x) - v(x)$ so that g'(x) < 0 on $[x_1 - j, x_1)$, $g^{(i)}(x_1) = 0$, $i = 1, \ldots, s(1) - 1$ and by Lemma 2.1 (ii), $g^{(s(1))}(x_1) \neq 0$. Hence for $x_1 - j \leq x < x_1$ we have by Taylor's theorem

$$-1 = Sgn g'(x)$$

= $Sgn(g'(x) - g'(x_1))$
= $Sgn\left\{\frac{(x - x_1)^{s(1) - 1}}{(s(1) - 1)!}g^{(s(1))}(x_1)\right\}$

This implies $Sgn \ g({}^{(s(1))}(x_1) = (-1)^{s(1)}$ and by Lemma 2.1 (ii), $Sgn \ g^{(s(1))}(x) = (-1)^{s(1)}$ for $x_1 < x < x_2$. Further $g^{(i)}(x_2) = 0$ for $i = s(1), \dots, s(2) - 1$ and by Lemma 2.1 (ii) $g^{(s(2))}(x_2) \neq 0$. Hence for $x_1 < x < x_2$, we again by Taylor's theorem

$$(-1)^{s(1)} = Sgn \ g^{(s(1))}(x)$$

= $Sgn(g^{(s(1))}(x) - g^{(s(1))}(x_2))$
= $Sgn\left\{\frac{(x-x_2)^{s(2)-s(1)}}{(s(2)-s(1))!}g^{(s(2))}(x_2)\right\}.$

Thus $Sgn \ g^{(s(2))}(x_2) = (-1)^{s(2)}$ and consequently by Lemma 2.1 (ii) $Sgn \ g^{(s(2))}(x) = (-1)^{s(2)}$ for $x_2 < x < x_3$. Continuing this argument through the intervals $[x_2, x_3], \ldots, [x_{\ell-1}, x_{\ell}]$ we obtain $Sgn \ g^{(s(r))}(x_r) = (-1)^{s(r)}, \ r = 1, \ldots, \ell-1$ and, by Lemma 2.1 (iii), $Sgn \ g^{(s(\ell-1))}(x) = (-1)^{s(\ell-1)}, \ x_{\ell-1} < x < x_{\ell}$ whereas $g^{(i)}(x_{\ell}) = 0, \ i = s(\ell-1), \ldots, m-1$. Again an application of Taylor's theorem yields that for $x_{\ell-1} < x < x_{\ell}$

$$(-1)^{s(\ell-1)} = Sgn \ g^{(s(\ell-1))}(x)$$

= $Sgn(g^{(s(\ell-1))}(x) - g^{(s(\ell-1))}(x_{\ell}))$
= $Sgn\frac{(x - x_{\ell})^{m - s(\ell-1)}}{(m - s(\ell-1))!}g^{(m)}(x_{\ell})$
= $(-1)^{m - s(\ell-1)}Sgn \ g^{(m)}(x_{\ell}).$

Thus $Sgn g^{(m)}(x_{\ell}) = (-1)^m$ or $(-1)^m (v_j - v)^{(m)}(x_{\ell}) > 0$, a contradiction to the inequality (2.1). Hence the claim $v'_j(x_1 - j) > v'(x_1 - j)$ is true. This implies by Lemma 2.1 (i) $v_j(x) > v(x)$ on $[x_1 - j, x_1]$ for all j.

Next we claim that $v_j(x) < u(x)$ for $x_1 - j \le x \le x_1$. If $v_j(x') = u(x')$ holds for some x', $x_1 - j < x' < x_1$ then $v'_j(x') \ge u'(x')$. However $v'_j(x') \ne u'(x')$ by Lemma 2.1 (i). On the other hand, if $v'_j(x') > u'(x')$ holds for some x', $x_1 - j < x' < x_1$, then by Lemma 2.1 (i) we should have $v'_j(x) > u'(x)$ for $x' \le x \le x_1$. However if $h(x) \equiv v_j(x) - u(x)$, $x' \le x \le x_1$ then h'(x) > 0

for $x' \le x < x_1$, $h^{(i)}(x_1) = 0$, i = 1, ..., s(1) - 1 and $h^{(s(1))}(x_1) \ne 0$. Hence for $x' < x < x_1$, we have by Taylor's theorem

$$1 = Sgn h'(x)$$

= $Sgn(h'(x) - h'(x_1))$
= $(-1)^{s(1)-1}Sgn h^{(s(1))}(x_1).$

Thus, $Sgn h^{(s(1))}(x_1) = (-1)^{s(1)-1}$. Continuing the arguments as in the case of $(v_j - v)$ in the earlier part of the proof we obtain, for $x_{\ell-1} < x < x_{\ell}$,

$$Sgn(v_j - u)^{(m)}(x_\ell) = Sgn h^{(m)}(x_\ell)$$

= $(-1)^{m-1}$.

Thus, $(-1)^{m-1}v_j^{(m)}(x_\ell) > (-1)^{m-1}u^{(m)}(x_\ell)$, a contradiction to the inequality (2.1) and hence the claim is true.

Furthermore, since $v_j(x)$ are solutions of equation (1.1), it follows by hypothesis URand the theorem in [3] that for each $j = 1, 2, ..., v(x) < v_j(x) < v_{j+1}(x) < u(x)$ on $[x_1 - j, x_1]$. By Lemma 2.2 and Kamke's convergence theorem [p.14, 1] there exists a subsequence called again $\{v_j(x)\}$ and a solution $v_0(x)$ of (1.1) such that $v_j^{(i)}(x) \rightarrow v_0^{(i)}(x)$, i = 0, ..., j - 1 uniformly on compact subintervals of $(-\infty, x_1]$. Now the solution $y(x) = v_0(x)$ has the desired properties.

3. AN EXISTENCE THEOREM FOR $(-\infty,\infty)$

In this section we assume the additional hypothesis UL,

UL: Solutions of n-point left focal BVPs, if they exist, are unique; that is, if y(x), z(x) are solutions of the BVP (1.1), (1.2) with $x_k < \ldots < x_1$ and k = n then $y(x) \equiv z(x)$ on $[x_k, x_1]$.

Theorem 3.1: Assume the hypotheses A, UR, UL, U and E hold. Let m be a fixed but arbitrary integer with $1 \le m \le n-1$. Then a necessary and sufficient condition for the BVP (1.1), (1.3) with $i \ne 0$ to have a solution y(x) on $(-\infty, \infty)$ is that there exist solutions u(x), v(x) of (1.1) on $(-\infty, \infty)$ satisfying the conditions (1.3) with $i \ne 0$, m,

$$u(x) \geq v(x)$$
 on $(-\infty,\infty)$,

and

$$(-1)^{m} u^{(m)}(x_1) \leq (-1)^{m} y_m \leq (-1)^{m} v^{(m)}(x_1).$$

In the sufficiency part, the solution y(x) satisfies $u(x) \ge y(x) \ge v(x)$ on $(-\infty,\infty)$.

Proof:

<u>Necessity:</u> This is obvious since we can choose u(x) = v(x) = y(x).

Sufficiency: If $(-1)^m y_m = (-1)^m u^{(m)}(x_1)$ (or $(-1)^m v^{(m)}(x_1)$) we can choose y(x) = u(x) (or v(x)) and there is nothing to prove.

Suppose the inequality

$$(-1)^{m} u^{(m)}(x_{1}) < (-1)^{m} y_{m} < (-1)^{m} v^{(m)}(x_{1})$$
(3.1)

holds. Then we have u(x) > v(x) on $(-\infty, x_1)$ as in Theorem 2.1. Furthermore, if u(x') = v(x') for some $x' > x_1$ we can arrive at a contradiction by virtue of the hypothesis UL and a lemma analogous to Lemma 2.1 for left focal BCs. Hence u(x) > v(x) holds for all $x \neq x_1$.

If for each $j \ge 1$, $v_j(x)$ is the solution of the BVP (1.1), (1.3) with $i \ne 0$ and $y(x_1-j) = v(x_1-j)$ then as in Theorem 2.1, we have $v(x) < v_j(x) < v_{j+1}(x) < u(x)$ on $[x_1-j,x_1]$. Similarly, for each $j \ge 1$ we can obtain a solution $u_j(x)$ of (1.1), (1.3) with $i \ne 0$ and $y(x_1-j) = u(x_1-j)$ with the property that $u_{j+1}(x) < u_j(x) \le u(x)$ on $x_1-j \le x \le x_1$. Moreover, by the hypothesis UR and the theorem of [3] it follows that for each $j, v_j(x) < u_j(x)$ on $[x_1-j,x_1)$. Thus we have for each $j\ge 1$, $v(x) < v_j(x) < v_{j+1}(x) < u_{j+1}(x) < u_j(x) < u_j(x)$ on $[x_1-j,x_1)$. Now since $u_j(x), v_j(x)$ are solutions of equation (1.1) it follows by Lemma 2.1 and Kamke's convergence theorem [p. 14, 1] that there exists subsequences of $\{u_j(x)\}, \{v_j(x)\}$ called again $\{u_j(x)\}, \{v_j(x)\}$ such that $u_j(x) \rightarrow u_0(x), v_j(x) \rightarrow v_0(x)$ uniformly on compact subintervals of $(-\infty, x_1)$; consequently $u_0(x), v_0(x)$ are solutions of the BVP (1.1), (1.3) with $i \ne 0$ satisfying $v(x) \le v_0(x) \le u_0(x) \le u(x)$ on $(-\infty, x_1]$. Similarly, using the hypothesis UL, the results analogous to the theorem in [3], theorem 3 of [2], and Lemma 2.1 for left focal BVPs, we can obtain a pair of solutions $w_0(x), z_0(x)$ of (1.1), (1.3) with $i \ne 0$ satisfying $v(x) \le u_0(x) \le u(x)$ on $[x_1,\infty)$.

Now the four quantities $u_0(x_1)$, $v_0(x_1)$, $w_0(x_1)$ and $z_0(x_1)$ can be ordered in one of the following ways,

(i)
$$v_0(x_1) \le u_0(x_1) \le w_0(x_1) \le z_0(x_1)$$

(ii)
$$w_0(x_1) \le z_0(x_1) \le v_0(x_1) \le u_0(x_1)$$

- (iii) $w_0(x_1) \le v_0(x_1) \le u_0(x_1) \le z_0(x_1)$
- $(iv) v_0(x_1) \le w_0(x_1) \le z_0(x_1) \le u_0(x_1).$

In any case let y(x) be the solution of the *IVP* (1.1), (1.3) with $y(x_1) = c_0$, where c_0 is the

average of the middle two quantities in the appropriate ordering stated above. They y(x) is the desired solution.

Remark 1: It follows from theorem 3 of [2] and the theorem in [3] that Theorems 2.3 and 3.1 will be true if we replace (1.1) by

$$y^{(n)} = f(x, y, \dots, y^{(n-1)}), \tag{1.1}'$$

provided the hypothesis A is replaced by the hypothesis A' and the additional hypothesis C (compactness of solutions of (1.1)') holds where A' and C are as follows:

- A': f is continuous on \mathbb{R}^{n+1} .
- C: If $\{y_k(x)\}$ is a sequence of solutions of (1.1) and [c,d] is a compact subinterval of (a,b)such that $\{y_k(x)\}$ is uniformly bounded on [c,d], then there exists a subsequence $\{y_{k_j}(x)\}$ such that $\{y_{k_j}^{(i)}(x)\}$ converges uniformly on [c,d], $0 \le i \le n-1$.

Remark 2: In the case n = 3, the hypothesis C can be omitted in view of the comments on page 990 of [2]; while in the case n = 2, the hypotheses U and C can be omitted in view of theorem 3.1 of [8].

REFERENCES

- [1] P. Hartman, "Ordinary Differential Equations", Wiley, New York (1964).
- J. Henderson, "Existence of solutions of right focal point boundary value problems for ordinary differential equations", J. of Nonlinear Analysis: Theory, Methods and Appl. 5, (1981), pp. 989-1002.
- [3] _____, "Uniqueness of solutions of right focal point boundary value problems for ordinary differential equations, J. of Differential Equations 41, (1981), pp. 218-227.
- [4] A. Kolmogorov, "On inequalities between the upper bounds of the successive derivatives of an arbitrary function on an infinite interval, Amer. Math. Soc. Transl. Ser. 14, (1949), pp. 3-19.
- [5] K. Schrader, "Existence theorems for second order boundary value problems", J. of Differential Equations 5, (1969), pp. 572-584.
- [6] _____, "Second and third order boundary value problems", Proc. of Amer. Math. Soc. 32, (1972), pp. 247-252.
- [7] S. Umamaheswaram, "Boundary value problems for higher order differential equations", J. of Differential Equations 18, (1975), pp. 188-201.
- [8] S. Umamaheswaram and M. Venkata Rama, "Focal subfunctions and second order differential inequalities", Rocky Mountain Journal of Math. (to appear).