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ABSTRACT

Differential equations of the form y’= f(t,y,y’), where f is not
necessarily linear in its arguments, represent certain physical phenomena
and solutions have been known for quite some time. The well known
Clairut’s and Chrystal’s equations fall into this category. Earlier
existence of solutions of first order initial value problems and stability of
solutions of first order ordinary differential system of the above type were
established. In this paper we study boundedness and asymptotic stability
in the large of solutions of an ordinary differential system of the above
type under certain natural hypotheses on f.
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1. INTRODUCTION

Differential equations of the form y’= f(t,y,y’) where f is not necessarily linear in its

arguments represent certain physical phenomena and are known for quite some time. The well

known Clairut’s and Chrystal’s equations fall into this category [1]. A few authors, notably E.L.

Ince [2], H.T. Davis [1] et. al. have given some methods of finding solutions of equations of the

above type. Apart from these, to the authors knowledge, there does not seem to exist any

systematic study of these equations.

In our earlier papers [4,5,6], we studied the initial value problems and stability (in the

sense of Lyapunov) of solutions of equations of the above type. In the present paper we study
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the boundedness and asymptotic stability in the large of solutions of this new class of problems.

There is yet another type of stability called "Practical Stability" associated with the

systems of the form y’= g(t,y) and a recent book by Professor V. Lakshmikantham et. al. [3]
gives a very good account of practical stability. But since practical stability is neither weaker

nor stronger than Lyapunov stability, in the present paper we confine ourselves to Lyapunov

stability and in a subsequent paper we shall study the practical stability of y’ = f(t, y, y’).

Before proceeding to the main theorems, we present a few preliminary results under

certain natural assumptions. Let I = [0,oo) and let Rn denote the n-dimensional real space

equipped with the box norm given by zl = E ]a:il. LetG=IxRnxRn.
i=1

Consider the initial value problem (IVP)

v’ f(t,v,v’) (, = t), (1)

V(to) = Vo (9.)

where f is an n-vector and (to, Yo) (5 I x Rn.

Assumption: Let f satisfy the following conditions:

(I) f(t,V,z) is continuous with respect to (t,y,z)E G,

(II) for every (t0,Y0) E I x Rn and for every pair of constants a > O,b > O, there ezists

a constant c > 0 such that if

and

D= {(t,v,z)eGI It-t01 _<, Iv-v01 _<b, izl _<c},

te= f(t,V,z) <_ c for all (t,y,z) e D,

(III) there ezist constants k1 > 0,0 _< k2 < 1, which may depend upon D, such that

f(t, Vx,zi)-- f(t, Y2, z2) < kI Vl V2I + k2lzx z21

for all (t, Yl, zl), (t, Y2, z2) D.

The following local ezistence and uniqueness result is an immediate consequence of
Result 2 [6].

Result 1: If f satisfies conditions (I)-(III), then IVP (1), (2) has a unique

solution y(t, to, Yo) existing on the interval [to r, to + r] f’l I, where

r = min (1- k2 b
kl "d, a
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Here, y(t, to, Yo) denotes the (continuous) dependence of the solution y(t) on (to, Yo).

Below, we present a continuation result.

Result 2 (Continuation of the solution of IVP (1), (2)): Suppose that

f(t,y,z) satisfies conditions (I)-(III). Also, suppose that the solution (t, to,o), for as long

as it exists, is strictly bounded by for some > 0. Then (t, t0,0) is continuable up to

any t.

Proof: Let cr > 0 be any number. We shall show that the solution y(t, to, Yo)
exists on [t0,a]. To this end, by condition (iI), we choose a constant c > 0 such that on

D:{(t,y,z)GI It-t01 _<--to, lY-Y01 _< 2Z, I1

we have Y(t,u,) _< c.

Then by Result 1, the solution y(t, to, Yo) exists on [to r,to + r], where

1--k 2/ )r = min Ii c, to"

Now, if possible, let to + r _< 7 < be such that the solution 9(t, o, o) can be continued only

upto 7. Then we have I )- 9ol < 2, and consider the set

Dl={(t,y,z) qGI It I<a, ly y(7)l <2 lyo-y(7)l Izl <c}

where a1 > 0 is such that ’ +al _< a. Clearly D C D. Then, by Result 1, the solution

y(t, to, Yo) can be continued up to + r1, where

)r = min
kl

, c ,al

This is certainly a contradiction and hence the proof is complete.

Whenever the solution y(t, to, Yo) is continuable up to any t, > 0, we say that

y(t, to, Yo) exists for all future times and write y(t, o, Yo) exists for t E t0.

Remark 1: In addition to assumption 1, if f has continuous first order partial

derivatives with respect to (t,y,z) G and that k,k2 in condition (III) denote the upper
of and ofbounds for jj (j = 1,2,...,n), respectively, then it can be easily verified that

y(t, to, Yo) is continuously differentiable with respect to t and that

Ofi 1( Of

where E is the (n x n)identity matrix, and (), xojJ
are the Jacobian matrices.
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Definition 1- We call a real valued function V(t,y,z) defined on G a Lyapunov

function if V(t,y,z) is continuously differentiable with respect to (t,y,z) E G.

Definition 2: The derivative of V(t,y,z) with respect to system (1) is defined by

V’(t,y,z) = --+ 0,, .’ + E-( (+
dV V*.Along a solution of system (1), we always have =

Throughout the work, a(r),b(r) and c(r) denote positive definite functions such that

a(r)cx as r---.oo. For the definition of positive definiteness see [6], p. 217.

Result 3: Suppose that f(t,y,z) satisfies the conditions of Remark 1. Also,

suppose that there exists a Lyapunov function V(t,y,z) defined on G satisfying the conditions

and

v’(t,v,z)<_o

for all (t,y,z) . G such that z = f(t,y,z). Then all solutions of system (1) are continuable up

to any t.

The proof follows along the lines of the proof of Theorem 3.4 [7] and hence is omitted.

In the rest of the work, we assume that the conditions of Result 3 are true. Hence all

solutions of (1) are continuable up to any t.

2. BOUNDEDNESS OF SOLUTIONS OF SYSTEM (I)

Definition 3: Solutions of system (1) are:

(B1) equi-bounded if, for each a>O, toI

(B2)
(83)

(84)

there exists a positive constant

= (to, a) such that Yo <_ a implies Y(t, to, Y0) < , > to;
uniformly bounded if the/3 in (81) is independent of to;
ultimately bounded if there exist a B > 0 and a T > 0 such that for every

solution y(t, t0,Y0) of (1), lY(t, t0,Yo) <B for all t>_to+T, where B is

independent of the particular solution while T may depend upon each solution;

equi-ultimately bounded if there exists a B > 0 and if, for each a > 0, o I,

there exists a T = T(to, a) > 0 such that Y01 < a implies y(t, to, Yo) < B,

t> to+T;
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(Bs) uniform-ultimately bounded if the T in (B4) is independent of 0.

We note that the uniform (-ultimately) boundedness of solutions of system (1) implies

the equi (-ultimately) boundedness of solutions of (1). Below, we shall show that the converse

is also true if f is either periodic in or autonomous.

Theorem 1: Let f(t,y,z) be such that f(t+w,y,z)=f(t,y,z) for all

(t,y,z) (5 G, where w > 0 is a constant. If the solutions of (1) are equi (-ultimately) bounded,

then they are uniform (-ultimately) bounded.

The proof follows, using result 3 [6], along the lines of proof of Theorems 9.2 and 9.3

[7] and hence is omitted.

Theorem 2 (Equi-boundednes of the solutions):
solutions of system (1) are equi-bounded.

Under the hypotheses of Result 3,

Proof: Let o (5 I and a > 0 be given. For Vo with yol-< a, consider the

solution y(t, to, Yo). Using condition (II), we choose a constant c > 0 such that on the set

D={(t,y,z)GlO<_t<to, lYl <a, Izl _<c},

we have If(t,y,z) < c.

Let

and define a map F:MM by

M = (z(sRnl Izl

F(z) = f(t0, Yo, z).

Clearly, F maps M into itself and, by (III), is a contraction on M. Hence F has a unique

fixed point z in M. Consequently,

’(t0, to, o)

and
y’(t0, to, y0) < .

That is, for to (5 1 and for all Yo with Yol -< a, we have

’(t0, to, 0) _< c,

where c depends on to and a.

Now, define

s = {(y,,=)e R"xR"I lyl _<,, I=1 _<}.
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Clearly, S is compact and V(to, y,z is continuous on S.

k- k(to, c) > 0 such that

Hence there exists a constant

V(to, Y,z <_ k

for all (y,z)a.. S. Consequently, for all Y0 with y01 _< a, we have

V(to, y(to),y’(to)) < ..
Finally, by choosing a constant = fl(to, a > a sufficiently large such that k < a()

and proceeding along the lines of proof of Result 2, it can be shown that

y(t, to, o) < Z

for all >_ 0. This completes the proof.

Theorem 3: Let V(t,y,z) be a Lyapunov function defined on G.

(A) (Uniform boundedness of solutions): If

a(lyl)_< V(t,y,z) <_ b( y

and

v’(t,v,z)<_o

(B)

for all (t,v,z) G satisfying z= f(t,y,z), then solutions of (1) are uniformly

bounded.

(Equi.ultimately boundedness of solutions)" If

(I y I) < v(t, y, )

and

v’(t, y, ) <_ v(t, , z)

(c)

for all (t,y,z) G satisfying z = f(t,y,z), where c is a positive constant, then

solutions of (1) are equi.ultimately bounded.

(Uniform-ultimately boundedness of solutions}: If

a(I y I) _< V(t,y,z) < b(I y I)

and

v’ct, y,z)<_ -(lyl)
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for all (t, y, z) E G satisfying z = f(t, y, z), then’ solutions of (1) are

ultimately bounded.

Proof: Proof of part (A) is similar to the proof of Result 3 and hence is omitted.

To prove part (B), take any positive constant/. Let o E I and a be a constant such

that 0 < c < . For Yo Rn, consider the solution y(t, to, Yo)" It can be shown, as in the proof

of Theorem 2, that there exists a constant k = k(to, > 0 such that

V(to, y(to),y’(to) <_ k

for all Yo with y01

Now, choose a constant M = M(to, such that

M(to, a > maz(k,a())

and let

T = T(to, a) = lln(M/a(l)).
Clearly T > 0 and we get that

y( t, to, yo) <

for al t >_ to + T. Otherwise, by integrating the inequality

along y(t, to, Yo) between to and tl, where tl is such that

u(tx, to, Uo) = ,
we arrive at a contradiction that a(/3) < a(fl).

To prove part (C), we note that, by Theorem 3(A), solutions of (1) are uniformly

bounded. Take two real numbers a,/ such that 0 < a </. There exist constants B1, B: with

a < B < B2, < B2 such that for any o q I and Yo with [Yol < a (), we have

y(t, to, Yo) < B (B2)

for all t > t0. Now, define

kx = in.f{a(r) la <_ r <_ Bz},

lez > maz(sup{b(r) O < r <_ [3}, a(a)),

and
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k3 = inf(c(r) la <_ r < B2}.

Let

T =(k2-kx)/k3.

Clearly T > 0 and is independent of 0. It can be proved as in part (B), that there exists a

1 E [to, o + T] such that

 (tx, to, _<

Consequently,

Y(t, to, Yo)[ -< B1
for all t>to+T.
complete.

For 0 </ < a, T can be assigned any positive value and the proof is

The following corollary follows immediately from Theorem 3 (C).

Corollary 1: If we replace in Theorem 3(C), the condition

--c(lyl)

by

<_

for all (t,y,z) G satisfying z = f(t,y,z), where c is a positive constant, then solutions of (1)
are uniform-ultimately bounded.

3. ASYMPTOTIC STABILITY IN THE LARGE OF SOLUTIONS OF SYSTEM (1)

In addition to the assumptions made earlier, in this section we also assume that

f(t,O,O) = O, t I. Thus y =_ 0 is a solution of system (1). It is quite easy to verify that the

study of stability of solutions of y’ = f(t,y,y’) with f(t,O,O) 0 is equivalent to the study of

stability of the zero solution of an equivalent system and thus f(t,O,O) = O,t I is not a severe

restriction on f (see [6]). Also, for the definitions of stability and uniform stability refer to [6].

Definition 4: The solution y(t) = 0 of system (1) is

($1) asymptotically stable in the large, if it is stable and every solution of (1) tends to

zero as
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equi-asymptotically stable in the large, if it is stable, and for each a > 0, e > 0

to E I, there exists a T = T(to, e,a > 0 such that Yol < a implies

Y(t, o, Yo) < e, >_ o -I- T;

uniform-asymptotically stable in the large, if it is uniformly stable, and for each

c > 0, e > 0, there exists a T = T(e,a) > 0 such that o E I and yol _< c,

implies ly(t, to, e) <e, t>to+T, and the solutions of (1) are uniformly

bounded;

exponential-asymptotically stable in the large, if there exists a c > 0 and for each

a > 0, there exists a constant k = k(a) > 0 such that Y01 < a implies

y(t, o, yo) _< :e (= =o) yo l, t >_ o.

We note that the uniform-asymptotic stability in the large implies the asymptotic

stability in the large. The next theorem shows that the converse is also true if f is either

periodic in t or autonomous.

Theorem 4: Let f(t,y,z) be such that f(t+w,y,z)=f(t,y,z), for all

(t,y,z) G, where w is a positive constant. If the zero solution of (1) is asymptotically stable

in the large, then it is uniform.asymptotically stable in the large.

The proof of this theorem follows, using Result 3 [6] and Theorem 1, along the lines of

the proof of Theorem 7.4 [7] and hence is omitted.

Theorem 5:

(A) (Asymptotically stable in the large of the zero solution):

v(t, o, o) = o, t e z,
a(lyl)<_v(t,y,),

(i)

(ii)
and

(iii)

(B)

Let V(t,y,z) be a Lyapunov function defined on G.

Suppose that

v’(t,y,z)<_ -(lyl),

for all (t,y,z) G such that z = f(t,y,z). Then the zero solution of (1) is

asymptotically stable in the large.

(Equi.asymptotically stable in the large of the zero solution): If condition (iii) of
part (A) is replaced by

v’(t, u, ) <_ v(t, u, ),
where e is a positive constant, then the zero solution of (1) is equi.asymptotically

stable in the large.
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(C) (Uniform-asymptotically stable in the large of the zero solution): Suppose that

condition (iii) of part (A) is true and

.(I I) < v(t,y,z) <_ b(I I)

fo tt (t. u. z) s.ch tat = f(t. u. ).
uniform-asymptotically stable in the large.

Then the zero solution of (1) is

Proof.- Part (A): Stability of the zero solution of (1) follows from Theorem 2 [6],
and for o E I, Yo Rn, the solution y(t,$o, Yo)--,O as t---<x can be established along similar

lines of proof of Theorem 8.5 [7].

Part (B)- Again, stability of the zero solution follows from Theorem 2 [6]. Also, by

Theorem 2, solutions of (1) are equi-bounded.

Now, let o I and a be a positive constant. Then there exists a constant

/3 = 3(t0,a > 0 such that [Y0I < a implies [y(t, to, Yo) </3, > o. Also, as in the proof of

Theorem 2, there exists a constant k = k(t0, a) > 0 such that

V(to.Uo.U’(to))<_

for allY0with ]Yol -< a. Letebesuchthat0<e</3. Let

k1 :. illf{a(r)[e r

and choose a constant N = N(t0, e,a) such that

N > ma:r(kl, k).

Let

T = T(to, e,a = lln(N/kl).
Then

to. Uo) <,

for all t >_ to + T. Otherwise, integrating the inequality in condition (iii) along y(t, to, Yo) from

to to tl, where tl is such that

y(h. to. yo) > ,.
we get a contradiction that k < k1.
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Part (C): Uniform stability of the zero solution of (1) follows from Theorem 3 [6].
Also, by Theorem 3(A), solutions of (1) are uniformly bounded.

Now, let o E I and a be a positive constant. Then there exists a constant

/3(a) > 0 such that uol <_ implies u(t, to, y0) < , >_ 0. Let e be such that

0 <e </3. Let

k = inf{a(r) le < r <

lez = inf{c(r) < r" <_ },

and

M > maz(sup(b(r) lO <_ r < }, k).

Let

T=T(e,o)=(M-k)/k2.

Clearly T > 0, and we get that

u(t, o, y0) <

for all t >_ o + T. Otherwise, proceeding as in part (B), we get a contradiction that kl < k.
This completes the proof.

The following corollary is an immediate consequence of Theorem 5 (C).

Coronary 2: /f the condition V’(t,y,z) < -c( u i Theorem 5 (C) is

replaced by V*(t,y,z) <_ -cV(t,y,z), where c is a positive constant, then the zero solution of
(1) is uniform asymptotically stable in the large.

Finally, we end this section by presenting a theorem on the exponential-asymptotical

stability of the zero solution.

Theorem 6: Suppose that V(t,y,z) is a ,yapunov function defined on G and

satisfies the following conditions:

(i) For each a > O, there ezists a constant k = k(a) > 0 such that

and

(ii) v’(t,u,z) <_ -v(t,u,z),
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where c is a positive constant, for" all (t,y,z) EG such that z-- f(t,y,z).

solution of (1) is exponential-asymptotically stable in the laroe.

Then the zero

4. EXAMPLES

Example 1: Let g(y) be a continuously differentiable function defined on R such

that yg(y) > 0 for y :f: 0, and that g(v) < M, g’(v) _< for all V E R.

Consider the following second order nonlinear ordinary differential equation:

u" + w2u + ee,i’’ ""g(u’) = O, (3)

where w is a positive constant and e is such that 0 < eeM < 1.

Equation (3) is equivalent to the system

Y’-F(t,Y,Y’) (4)

where y-.(Yl) F_(FFF1
Let Z = Z

and Yl =u.

Clearly, F(t,Y,Z) is a continuously differentiable real valued function defined on

G = I x R2 x R2 and that

for all (t, Y, Z) fi G.

OF w2 OF < l + eek, OF OFI-’Yl[ <-- [OY2 1 = 0, 122 _< eeM

Now let (t0, Y0) I x R2 and a > 0, b > 0 be arbitrary. Choose a constant c such that

(I + w2)(b + rol + Mee. < c.

Define

D= {(t,Y,Z)eG! It--tol _<a, IY-Yol _<b, Izl _<}.

Then we can easily verify that F satisfies the conditions of Result 3. Also, it is easy to check

that the Lyapunov function

V(t,Y,Z) = 2 +
satisfies the hypotheses of Theorem 3 (A) with

() = (/v/):, b() = Z(/x/):
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where c = min(1,w2) and = maz(1,w2). Therefore, by Theorem 3 (A), solutions of (4) and

hence solutions of (3) are uniformly bounded.

Example 2: Let

sin y,

1,

-1, y<

Clearly, g is continuously differentiable on R, g(O) = O, yg(y) > 0 for y :fi 0 and a(y) _< t.

Consider the differential equation

where 0 < c < 1/2. We can easily verify that

y(t, =

satisfies the conditions of Result 3 on D = I R x R, and that f(t, 0, 0) = 0 for all E I.

it is easy to check that the Lyapunov function

Also,

V(t,y,z) = y2

satisfies the hypotheses on Theorem 5 (C) with

a(r) = b(r) = r2, and c(r) = 2a(cos 1)2rg(r).

Hence by Theorem 5 (C), the zero solution of (5) is uniform-asymptotically stable.
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