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ABSTRACT

In this paper we present a result on admissible relaxation for a
class of systems governed by an uncertain evolution equation on Banach
space. We show that the set of original trajectories is dense in the set of
relaxed trajectories and that under certain assumptions the relaxed
system is equivalent to the original system.
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1. BASIC NOTATIONS AND INTRODUCTION

Let H be a separable Hilbert space and V a subspace of H having the structure of a

reflexive Banach space with the embedding V C-., H being dense and compact. Identifying H

with its dual we have VC-- HC-- V* where V* is the topological dual of V. Let (x,y) denote

the pairing of an element z E V and an element y E V*. If x,y H, then (x,y): x,y) where

( is the scalar product in H. The norm in any Banach space X will be denoted by [I

[Ix- Let I=[0,T], 0<T<cx, and p,q>_l such that (1/p)+(1/q)=l and 2_<p<cx.

Denote Lp(V) Lp(I, V), Lq(V*) Lq(I, V*). For p,q satisfying the preceding conditions it

follows from the reflexivity of V that both Lp(V) and Lq(V*) are reflexive Banach spaces. The
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pairing between Lp(V)and Lq(V’)is denoted by

<< u,v , = ((u,v)) is the scalar product in the Hilbert space

Clearly, for u,v L2(H),
L2(H). Define the set

Wp, q = {y E Lp(V): Dy =_ (d/dt)y e Lq(V’)} where the derivative is understood in the sense of

distributions. Furnished with the topology induced by the norm, il x II ,q -= II z II L(V) +
II Dx II Lq(V*)’ Wp, q is a Banach space. Further it is well known that the embedding Wp, q

C..C (I,H) is continuous (see [1], Theorem 1.2.15) and that the injection Wp, q

compact (see [11], p. 450; [12], Theorem 5.1, p. 58).
Lr,(H is

In many engineering problems, a system may have only partial description in the sense

that it may be governed by a differential equation containing many parameters or coefficients

whose probability law is not accurately known except perhaps it’s support. Thus an uncertain

system may be described by the following evolution equation"

(d/dt)x(t) + A(t,z(t)) = g(t, xCt),w)p(w) + BCt, u(t))

(0) = e + (r), u e

where the perturbing operator g contains the unknown parameters which take values from the

set F, but neither the values of the parameter nor the underlying probability law # is know.

Let .20 + (F) denote the space of probability measures on the Borel subsets of F where F is any

compact metric space. Clearly the underlying probability measure must be an element of this

space. The set q.Lad represents the class of admissible (original) controls to be defined shortly.

For a given u q.l.ad and # .2. + (F), let z(#, u) denote the solution of the evolution equation

(1) and

J(/, u) =_ ] L(t, Mx(#, u), u)dt
I

the corresponding cost functional. Since the measure # is unknown to the analyst, he takes a

pessimistic view and tries to minimize the maximum possible cost. For the fixed control u,

define

Jo(u)=sup(j(Z,u)=fL(t,Mz(z,u),u)dt,#+(F)).I
In other words, J0 represents the maximum risk associated with the control u. In [6], we

considered the following optimal control problem for this system: find u q.tad such that

So(uO) mf{Jo(u), u e qJ’ad}"
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We shall call this optimal control problem the (original) problem (P0)" Later we introduce the

relaxed control problem (Pr)"

For convenience of presentation we shall often write the differential equation (1) as a

functional equation,

Dz. + A(z) = (:r, #) + B(u), (3)

with the equality understood in the sense of equivalence in Lq(V’).
’(, ) = f g(., , c)(dc) denote the function

Here, we have used

f
[ g(t, , a),(da) from I to V" for , e + (r) and Et H.

The system (1) represents a large class of uncertain evolution equations with the uncertainty

originating from the lack of knowledge of the probability law p. Hence the designer wishes to

find a control policy to minimize the maximum risk.

As stated above, in [6] we proved an existence theorem for optimal original controls.

In this paper we present a result on admissible relaxation. In control theory it is well known

that in the absence of convexity, optimal controls may not exist even for finite dimensional

systems. However, under certain assumptions, the convexified problem may have an optimal

relaxed control. The question then arises as to if the relaxed optimal solution can be

approximated to any degree of accuracy by a solution of the original problem, if this can be

done then for all practical purposes the relaxation is admissible. In other words, e-optimal

controls can be found from the original (physically realizable) controls. We go beyond that

and show that under reasonable hypotheses the relaxed system is equivalent to the original one.

For finite dimensional systems similar questions have been considered by Clarke [7].

(A)

2. BASIC ASSUMPTIONS

We prove our results under the following basic assumptions:

A: I x V---.V" is a map so that

(3)

t--.A(t,z) is measurable,

z--.A(t,z) is monotone and hemicontinuous, that is, (A(t,z)-A(t,y),z-y) >_ O,

A(t,z + try)A(t,z) in V" as r--.O for all z,y V,

there exist positive constants c, c2, c3 such that
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(G):

(u):

(B):

(L):

(M):

and

(A(t,x),x) + ca II z II _> c il z II e for z e v.

g: I x V x F--,H satisfying

(1)
()

(3)

(4)

tg(t, x,) is a measurable function,

z--,g(t, z, w) is both continuous and weakly continuous,

there exist positive numbers a,/,7 such that for all

(g(t, x, ), z) < 7, and II a(t, x, )II _< , II = II f,- x +
(t, x, ) I x V x r,
w---g(t,x,) is continuous from F to//w - (H, rw) uniformly on I x V.

(t,x) E I x V

for all

U:I-,cc(Y) = (the family of nonempty closed convex subsets of Y) is a measurable

multifunction satisfying U(t)Cd for almost all E I where tl. is a fixed weakly

compact convex subset of a separable reflexive Banach space Y. For the admissible

controls we choose the set

(d.ad --= u e Leo(Y): u(t) E U(t) a.e.}.
B:I x qJ.---H is measurable in t and sequentially continuous in u with respect to the

weak topologies in 4 and H satisfying f I] B(t, or)II dt < oo for r e 4 and 1 < q _< 2.
I

Let E be a separable Banach space and L: I E Y--, RU (cx} be a mapping

satisfying

(1): (t, e, y)---L(t, e, y) is Borel measurable and bounded on bounded subsets of

IExY,

(2): yL(t,e,y) is continuous for all (t,e) I x E,

(3): e-,L(t,e,y) is continuous for all (t,y) E I x

(4): o(t)- ,( II e II E + II Y II y) <_ L(t, e, y) a.e. with o e L, , >_ 0.

M:Lp(V)--,Lp(E) is an operator so that, for every sequence {Xn} C_ Wp, q weakly

convergent to x E Wp, q, the sequence {Mxn} has a subsequence that converges strongly

to Mx in Lv(E).
Remark: Note that the perturbing operator g is not assumed to be monotone.

3. MAIN RFULTS

Lemma A: Suppose the assumptions (A), (G), (B), (U), (L) and (M) hold. Then .for"
each fixed u E ciJ,ad, there exists a measure/0 E + (F) such that
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Jo(U) ,p{(, u):, e + (7)} = j(,o, ),

and z= x(pO, u) is a weak solution of the evolution equation (1) correspondin9 to the pair

{,u}.

Proof: For fixed u . ad, define Jo(u) =_ sup{J(t, u), I e + (F)}. By

assumption (L1), Jo(u) is finite. Then there exists a sequence /nE + (F) and a solution

zn z(ln, u) of the system (1) such that J(ln, u)---,Jo(u as n--,oo. Since Ml, + (r) is compact

in the w*-topology (see [9]) there exists a subsequence of the sequence {/n}, relabeled as {/n},
and a /e .At, + (F) such that /n w_.*/0. By virtue of corollary 2 of [6] there exists an

zo Wp, q such that znzO in Wp, a and znx in Lp(H). First we prove that x is a

solution of equation (1) corresponding to the pair {/,u} and then we show that

Jo(U) = J(bt, u). Clearly

Dzn + A(zn) = (zn,/n) + B(u)

and hence, scalar multiplying this by zn- z, we obtain

<<: Dzn zn z0>> + << A zn zn z0 > = << " zn pn zn z0 >> + << B u zn z0>>

which can be written as

<< Dzn, zn- z > + << A(zn) "ff(zn l z" z >>

= << .(zn, tn) .(xn,/0), zn_ zo >> + << B(u), zn z ,. (4)

From the convergence results given above, it is easy to verify that

<< Dxn, xn- x >> = (1/2)II "(T)- z(T)II H + << Ox," x > --0 a --oo (5)

and

<< B(u),zn- z> = ((B(u),xn- z))--,0 as n---,oo. (6)

Clearly, by assumption (G3), we have

Since {zn} is contained in a bounded subset of Wp, g

that

and xn: in Lp(H), it follows from this

<< .(zn,/n) ff(zn,/0), Zn zO >> -’-*0 as n--oo. (7)
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Then it follows from (4)-(7) that

< A(x")- y(x", x>-0 n--oo.

Thus by Proposition 2 of [5], we conclude that

A(x") "(z", p)A(z) "(z, po) in Lq(V’). (8)

For any E Lp(V) we write

<< nzn, >> + << A(zn) ’(zn, p), >>

= << ’(xn,/n) -’(xn,/), , + << B(u), >>. (9)

Recall that

DxnDx in Lq(V)*).

By virtue of assumption (G4) and the fact that pn T_*p0 in + (F), we have

(lO)

(11)

Since e Lr,(V)is arbitrary, it follows from (8)-(11) that

Dx + A(x) = (x, I) + B(u) in Lq(V*).

Further it follows from the embedding Wr,,q C(I,H) and the fact that xn(0) = x0 for all n,

that x(0)= xo. Hence we conclude that x= x(/,u), that is, x is a weak solution of

equation (1) corresponding to/0 and u. By virtue of assumptions (L1, L2, L4) and (M), one

can easily prove that j(pn, u)...,j(lo, u) as n-..,oo. Thus Jo(u)= J(l, u) and this proves the

Lemma.

Now we consider the relaxed problem (Pr), associated to the original problem (P0),
where the class of admissible controls tl.ad is replaced by measure valued controls

U.r {rl:IM + (U.): r/t(U(t))= 1 for all I}. Note that, with respect to the weak topology,

q.L is a compact polish space. We assume that %tr is furnished with the Young topology.

Recall that r/n-r/in the Young topology if for every f Lx(I, c(q.l.)) = LI(C(d.))

/ f(t,r)rlt(dr)dt.
I x d. I x d.

By Dunford-Pettis theorem, we may consider Loo(I,M(qJ.))=_ Loo(M(q.t)) to be the dual of

Ll(C(qJ.)). Thus q.t
r C_ Loo(M + (q.t)) C Loo(M(q.t)). Note that by identifying each u q. q.tad

with the corresponding Dirac measure u(. we may embed q.Lad in 04r. For an excellent

discussion of relaxed controls, see Warga [11, p. 263-].
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The relaxed problem (Pr) can then be described as follows: for each r/E q-I.
r define

J()=sup(f(t’Mz(t’g’O)’ot)dt’g’/*+(E)}’I (12)

where ,(t,z,v)= f L(t,z,r)v(dr) for (t,,z,v) EIxExM+(d.); and z_=z(.,p,r/)is the

solution of the relaxed evolution equation,

Dx + A(t,x) = "(t,:,#) + B(t, rl),t e I,

(o) = + (r), e

corresponding to the parameter/ and the control measure r/.

Here we have used the notations

F ctt

The problem is to find a control measure r/ d.r such that

J0(r/0) = inf{Jo(?),? e dr}. (12’)

Clearly the control r/ minimizes the maximum risk. This is the relaxed problem for the

uncertain system (13).

The following relaxation theorem is the main result of this paper. Let Xo denote the

trajectories of the original control problem Po and Xr denote the trajectories of the relaxed

problem Pr"
Theorem B: Suppose the assumptions of [,emma A, including uniqueness of

solutions of the evolution equations (1) (or equivalently (3)) and (13), hold. Then

(1): The set Xo is dense in

(2)" If the pair {z,u} Wp, qxd.aa is optimal for the original problem (Po), then it

is also optimal for the relaxed problem (Pr)"

Proof: (1): First we show that Xo is dense in Xr. Let y E Xr be the solution of

equation (13) corresponding to the relaxed control r/dr and a fixed but arbitrary

/E + (F). By virtue of Corollary 3 of Balder [8], there exists a sequence of ordinary

controls {un} qJ’ad so that the corresponding Dirac measures un(. )’’7 in

I,oo(M + (q.t)) C Loo(M(q.t)) -- (Ll(C(Ctl.)))*. For the fixed/0, consider the original system (1)

corresponding to the sequence of ordinary controls {un} and let {yn} Xo denote the
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corresponding solutions. By virtue of Lemma 1 of [6], we have ynx* in Wv, q and hence, by

compactness of the embeddingWp, q Lp(H), yn-Lx* in Lp(H). Since un converges to r/ in

the Young topology, we have, for every E Lv(H),

<< >> = (B(t, : (B(t,r),(t))r/t(d(r)dt
I Ix

= << B(r/), ,. (14)

Using this fact and following the same procedure as in Lemma A, one can easily verify that

is a solution of equation (13) corresponding to #o and the relaxed control r/and that by virtue

of uniqueness, x* = y. This shows that, under our basic assumptions, any relaxed trajectory is

the limit of a suitable sequence of original trajectories, there by proving that X0 is dense in

(2): We prove this by establishing a contradiction.

Then there exists an r/0 E ql.r and a 8 > 0 such that

Suppose the assertion is false.

< Jo(u) (th)

Since Uad is dense in Kr in the Young topology, there exists a sequence of ordinary controls

(un} that converges in the Young topology to r/. By virtue of Lemma A there exists a

sequence (#n} i .A + (F) corresponding to the sequence {un} such that

(16)

Let xn= z(I.tn, un) be the unique solution of the equation (1) corresponding to the pair

of [6]) and +(F) is

Since the solutions lie in a bounded subset of Wv, q (see Lemma 1

compact, there exists a subsequence, relabeled as such, and

{x*, #*, r/ } Wp, q x
+ (F) x Ctl.r such that

xx inW

#n w . +--,# into (r),

un w*r/o in L(M + (q)).

(tT)

Let x(#*, r/) denote the unique solution of the relaxed evolution equation (13) corresponding to

the pair {#*, r/}. Using (14) and repeating the arguments of Lemma A, one can easily justify

that x*= z(#*,r/). Then by using the continuity assumption as given in (L2), and the

assumptions (L3) and (M) it follows from Young’s topology that we have

limJo(Un) = j(#.,r/o). Hence, for the given (see equation (15)), there exists an integer no
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such that

Jo(un) _< J(/’, r/) + (6/2) for n > no.
Since, by definition, Jo(r/) = sup{J(p, rl),l

_
+ (F)} it is clear that

j(,., < y0( 0).

It follows from (15), (18) and (19) that

Jo(UnO) <_ Jo(u) (8/2).

This contradicts the optimality of u and hence the assertion of the theorem holds.

completes the proof.

(18)

(20)

This

Remark C’: A sufficient condition for uniqueness of solutions of the evolution equations

(2) and (13) is that the operator A be monotone and g locally Lipschitz in x on H.

Itemark D: In this paper the duality Loo(M(d.))= (L1(C(4)))" has been referred to

as Dunford-Pettis theorem. An anonymous reviewer of this paper pointed out the

inappropriateness of this attribution and cited the authors Ionescu-Tulcea (see [13]) who gave

the original proof of this duality.
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