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We consider a nonlinear Volterra integral inclusion in a Banach
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1. INTRODUCrION

In a recent paper [2], we discussed the existence and properties of integral solutions to

the multivalued Volterra equation

t

z(t) + / k(t s)(Az(s) + f(s,z(s)))ds ! g(t), t T = [0,b] (__1)
0

in a Banach space X. In (_1_), A: D(A)C_ X--.2x is an m-accretive operator, F:T

is a closed valued perturbation, k: T--.R and g: TX.

x x-2X,{}

The current note is concerned with the nonlinear Volterra integral inclusion
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z(t) + / k(t s)(Az(s) + eztF(s,z(s)))ds g(t), E T = [0,b (2)
0

where ezfF(s,z(s)) denotes the set of extremal points of F(s,z(s)). Equations of this form

arise in the study of nonlinear distributed parameter control system (in particular, the

derivation of "bang-bang" principles, cf. [3]), as well as in the description of obstacle problems

[1.

We remark that the theory developed in [2] for equation (1__) can no longer be applied

to (2=), since the multifunction (t,:)---.eztF(t,z) is not necessarily closed valued and, in general,

we cannot say anything about its continuity properties. From an abstract viewpoint, the

present study is a direct attempt to extend some of the existence and relaxation theorems of [2]
to equation (2=) (cf. [2, theorems 3.2, 3.4 and 4.1]). At the same time, we generalize in various

directions earlier results for Volterra integral and integro-differential inclusions [1, 3, 11, 16, 18,

20, 22], and multivalued differential equations [14, 17, 21, 24]. (It is worth mentioning that in

the case when k = 1, equations (_1) and (2) are formally equivalent to a nonlinear evolution

inclusion in X).

The plan of the paper is as follows. Section 2 contains some background material on

multifunctions, m-accretive operators, and abstract Volterra equations. Section 3 is concerned

with the existence of integral solutions to equation (2). In Section 4, we show that every

integral solution of (_1_) can be approximated, in the C(T,X) norm, by solutions of (2). An

example of an integro-partial differential equation is also discussed. In the last section, we use

our abstract results to derive "bang-bang" type theorems for nonlinear infinite dimensional

control systems.

2. PKELIMINAKIES

Throughout this paper, T denotes the interval [0,b] (endowed with the Lebesgue

measure) and X stands for a real separable Banach space of norm I1" II. The following

notation will also be used: PI(c}(X) = {S C_ X: B is nonempty, closed, (convex)),

Ptk(c)(X) = {B C_ X:B is nonempty, weakly-compact, (convex)}.

A multifunction F:TPt(X is said to be measurable if for every x E X, the R +-
valued function td(z,r(t))= inf{ II z-z II "z r(t)} is measurable. By S we will denote

the set of LI(T,X) selectors of F, namely S. = {f ( LI(T,X): f(t) F(t)a.e.}. This set may

be empty. For a measurable multifunction F, S-, is nonempty if and only if

tinf{ II z II "z e F(t)} e LI(T,R + ). Furthermore, S, is a decomposable subset of LI(T,X),
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i.e., if fl, f2 6. S and B is a Borel subset of T, then XBfl + XBcf2 6. SIF, where XB denotes

the characteristic function of B.

On P/(X) we can define a generalized metric, known in the literature as the Hausdorff

metric, by

h(B, O) = maz[sup[ b e sd(b, C),supc cd(C, B)]
for all B,C 6. PI(X). The space (PI(X),h) is complete. A multifunction G:X--PI(X is said

to be Hausdorff continuous (h-continuous), if it is continuous from X into the metric space

(PI(X),h).

If Y,Z are Hausdorff topological spaces, a multifunction H:Y-,2Z.{O} is lower

semicontinuous (l.s.c.) if for every closed set C in Z, the set H + (C)= {y 6. Y:tl(y)C_ C} is

closed in Y.

The remainder of this section is devoted to a brief discussion of m-accretive operators

and Volterra equations in Banach spaces. For more details we refer the reader to [5, 7, 11, 24].

Let A be a set-valued operator in X with domain D(A). We say that A is accretive if

[[ Zl x2 [[ --< I[ Xl Z2 "[" A(Yl Y2)[[, for all A > 0 and all Yi 6. Azi, = 1,2. If in addition,

I + AA is surjective for all (equivalently, some) A > 0, where I stands for the identity operator

on X, then A is called m-accretive. If A is m-accretive, then -A generates a contraction

semigroup S(t), t >_ 0 on D(A). We will say that the semigroup generated by A is compact,

if S(t) is a compact operator for each t > 0.

We next consider the Volterra integral equations (1_) and (.), and assume that A is m-

accretive, F: T x X--.2x.{$}, k 6. AC(T,R) such that ] 6. BV(T,R) and k(0)= 1, and

g 6. WI’I(T,X) with g(0)6. D(A). Following [11], we define G:C(T,D(A))---,LI(T,X) and

z0 6. D(A) by

(i) G(z)( ) = h( ) + r,h( )- r(O)z( ) + r(. )z0 z,/*(. ), with z,/-(t) = f z(t s)dr(s)
o

(ii) h(t) = [l(t),

(iii) zo = g(O),

(iv)

By an integral solution of equation (1__) (resp. (2ffi)), we mean a function z 6. C(T,X)
such that there exists f 6. LI(T,X) with f(t)6. F(t,z(t)), a.e. (resp. f(t)6 eztF( t, z( t)), a.e.),
and z is an integral solution (in the sense of Benilan [7]) of the initial-value problem

:(t) + Az(t) G(z)(t)- f(t), z(0).-- Zo, where G and zo are given by (3=).
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3. AN EXISTENCE THEOREM

We begin this section with a simple lemma that will frequently be used in the sequel.

Let Lw(T,X denote the space of equivalence classes of Bochner integrable functions z: T---,X,

with the ("weak") norm II z ]1 w = sup{ I] f z(s)ds II :0 _< t 1 _< 2 <_ b}. The notation
1

stands for convergence in Lw(T,X).

Lemma 3.1: Assume that X* has the Radon.Nikodym

{f.}. > 1 C._ LP(T,X), 1 < p < o be such that sup II f. II
n>l

Then f.--,O, wely in L(T,X).

< oo and fn

property. Let

II 1 0, as n---,.

Proof.- By [12, theorem 1, p. 98], (L’(T,X))’=Lq(T,X*), where

p- 1 + q- 1 = 1. Let ((., .)) denote the duality pairing between LP(T,X) and Lq(T, X*).
Since {f,} is bounded in Lq(T,X), by assumption, and the space of X*-valued simple

functions on T is dense in Lq(T, X*), we only need to show that ((fn, s))O, as n--.oo, for each

h N
s:T-,X* of the form s(t) = X(tk tk)(t)v, with v E X*. We have: ((fn, s)) =

k=l -1’ k=l

tk N tk
f (fn(s),v*k)ds < II f f,(s)ds II I] v*k I1., where ]1" II. denotes the norm in X*. It

tk_ 1 k=l tk_ 1

N
follows that ((fn, s)) <_ [I fn II w II v II .40 (noo), and the proof is complete.

k=l
Q.E.D.

We now turn to the question of existence of integral solutions to equation (). The

following conditions will be assumed throughout.

H(A)" A C_ D(A)C X-*2x is m-accretive and -A generates a compact semigroup on

D(A).

H(F): F: T x D(A)--P=kc(X satisfies

(1) tF(t,z) is measurable, for all z E X,

(2) z--r(t,z) is h-continuous, a.e. t e T,

(3) rCt, z) = II II e fCt, _< + ZCt)II II, t q T,

Vz . D(A), for some a,B Lt’(T,R + ), 1 < p < .
H(k): k 6 AC(T,[),] 6 BV(T,[),k(O) = I,

H(g): g E WI’P(T,X), g(0)6 D(A).

Let S, Se C_ C(T,X) denote the sets of integral solutions to equations (1__) and (),
respectively. As a consequence of [2, theorem 3.2], if conditions H(A), H(F), g(k) and H(g)
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hold, then S is nonempty. The nonemptiness of Se is established next.

Theorem 3.2: Let assumptions H(A), H(F), H(k), and H(g) be satisfied. If also

X* is uniformly conve, then Se .
Proof: We first derive an a priori bound for elements in S (and in particular for

elements of Se, since Se C_ S). Let z E S, and let y C(T, X) be the unique integral solution

[7] of the Cauchy problem

i(t) + Au(t) 0 (t T), (0) = o,

where z0 is given by (3__)(iii) (see Section 2). By properties of integral solutions, we have

t

II =(t)- #(t) II _< / II G(=)()- y(,) II ds, (t T),
0

where f(t) F(t,z(t)) a.e. and G is defined by (3__). Hence, invoking (3__) and H(F)(3), we

obtain

t

II (t)II < II y II oo + / (11 h(,)II + I1 r,h !1 o + r(0) II x(a)I! / r(t) II o II
0

t

+ I! ,e(s)II )d / / (() +/(a) I! (a)II )da,
0

where I1" II oo denotes the norm in L(T,X).

Let 7(s) = r(0) + var(: [O, s]) and ms(r = z(s- r), r [0,s]. It follows that there

exists c > 0 such that

t

II , II o _< + / (,)II o II ds,
0

where (s)=7(s)+(s) LP(T,R+) (cf. H(F)(3), H(g)).

inequality, that

II ,(t)II < M, Vte T, Vz e S,

This implies, by Gronwall’s

for some M > 0. Using again (3) in conjunction with H(F)(3) and H(g), we see that there is

LP(T, R + ) such that

II (=)(t)II + F(t,z(t))l <_ (t), a.e. on T,
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and we may assume without loss of generality that this inequality holds for all

z . C(T,O(A)). (Otherwise, we replace G(z)(.) and r(.,x(.)) by G(PM(Z))(.) and

F(., pM(z(. ))), respectively, where PM is the M-radial retraction, in what follows).

Next set g = (re LP(T,X): II v(t) II <-(t),a.e.} and let O:LI(T,X)C(T,X) be the

map that assigns to each v. LI(T,X) the unique integral solution of (t)+Az(t)v(t),

x(0) = z0" Since K is bounded in L’(T,X), we may invoke [4, theorem 1] to conclude that

W = conVO(g) is compact. Define now R:w2L(T’X}.{O} by R(x) = S(.,x(.)}. Applying

theorem 1.1 of [21], we can find a continuous map : W-.-.Lw(T,X), such that (z)E eztR(z)
S1 Finally, letVz ( W. According to Benamara [6], eztR(z) = eztSIF(. ,x( )) extF( ,x( ))"

u : Oo(G- o): W---W (remark that (G- )(w) C_ K), and recall that by [24, corollary 2.3.1, p.

67] 0 is sequentially continuous from K C_ LP(T,X) with the weak topology into C(T,X) and

G(-) as given by (3=) is linear, continuous from C(T,X) to LP(T,X). This and the continuity

of o from W to Lw(T,X), in conjunction with Lemma 3.1 imply that u is continuous in the

C(T,X) topology. Since W is compact in C(T,X), we can apply Schauder’s fixed point

theorem to obtain z W such that z = u(z). Obviously z is an integral solution to equation

(2__), so that Se :f. }, as claimed.

Q.E.D.

4. DENSITY OF EXTIMAL SOLUTIONS

In this section, we show that Se is dense in S for the C(T,X)-topology. This

supplements the relaxation result obtained by the authors in [2] (see [2, theorem 4.1]). Note

that the multifunction (t,z)extF(t,z) is not necessarily closed valued or lower

semicontinuous, let alone Hausdorff-Lipschitz, so that the assumption on the orientor field in

theorem 4.1 of [2] is generally violated. Consequently, the next theorem is a genuine new

approximation result.

H(F)’:

We need the following stronger hypothesis on the orientor field F(t,z).
F: T x XPkc(X satisfies

(1) tF(t,z) is measurable, Vz e X,

(2) h(F(t,z),F(t,y)) < l(t) [I x- y 11 Vz, y X,a.e. on

IeL(T,R+),
(3) there exist a, / LP(T,R+), 1 < p <oo, such

sup{ [I v I[: v F(/,z)} _< a(t) + fl(t)[[ z [[ a.e. on T.

T, for some

that F(t,z) =
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Theorem 4.1: If X* is uniformly convez and assumptions H(A), H(F)’, tl(k) and

H(9) are satisfied, then S =--e"(T’ X).
Proof: Let x(. ) E S. Then a: is an integral solution of

:(t) + Ax(t) = G(z)(t)- f(t), a.e. on T,

(0) = o
with f a_. LI(T,X), f(t). F(t,x(t)), a.e. Let W C_ C(T,X) be as in the proof of theorem 3.2.

Given y W and e > 0, let H: T--.2X.{}} be defined by

H(t) = {u X: II Y(t)-u II <---+d(f(t),F(t,y(t))), u F(t,y(t))}

where M > 0 is the a priori bound for elements of S obtained in the proof of theorem 3.2. We

then have

e d( F( y(t)))}GrH = {(t, u) GrF(.,y(. )): II f(t) u Ii < 2b / f(t), t,

Using condition H(F)’,(1) and (2) and [19, theorem 3.3], we infer that GrF( .,y(. )) B(T)x

B(X), where B(T) (resp. B(X)) denotes the Borel r-field of T (resp. of X). Apply Aumann’s

selection theorem (see Wagner [25, theorem 5.10]), to obtain a measurable map u:T--.X such

that u(t) H(t), a.e. on T. Thus if we define :W2LI(T’X) by

(y) = { e s(.,u<.)). II f(t)-(t)II < 2tb+d(f(t),F(t,y(t))) a.e.},

it follows that { has nonempty decomposable values. In addition by [13, proposition 2.3],
y--(y) is l.s.c. Therefore y..oep(y)is l.s.c., with nonempty, closed decomposable values. So,

we can apply Fryzkowski’s selection theorem [13] and get a continuous map u,: W--oLX(T, X)
such that ue(y a.. <b(y) for all y e W. Then we have:

II f(t)- u,(y)(t)II _< 2)-b + d(f(t),F(t,y(t)))

<- 2Mb + l(t) II (t) y(t) II .e. on T.

Now use theorem 1.1 in [21] to obtain a continuous mapping v,: W---,Lto(T,X), such

and [lu(y)-v(y)[I <efrallyeW"that ve(y eztS1F(.,u(. ))- SextF(.y(. )) to

Next let enJ,O, let un=Uen vn =yen be as above and let zn.W satisfy

zn = Oo(G-vn)(zn). (Here 0 is the solution map introduced in the proof of theorem 3.2, and

the existence of zn follows from Schauder’s fixed point theorem. Note that xn Se). Since W

is compact in C(T,X) (cf. the proof of .theorem 3.2), we may assume that xn---. in C(T,X),
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as n--,c. Invoking Benilan’s inequality [7], we also have

II :(t)- :,,(t)II u _< 2 f (J(:(s)- :,,(), 6’()(s)-- .t’(s)--c;(:,,)(s) + ,,,(:,,)(s))d
0

where (.,.) denotes the duality pairing between X* and X, and J stands for the duality map

of X. (Note that J is single-valued and uniformly continuous, since X" is uniformly convex).

It follows that

II =(t)- =.()II < f (J(=()- =.()). c()(,)- G(zn)(s))ds
0

+ 2 f (S(z(s) Zn(S)) vn(Zn)(S) un(Zn)(s))ds
0

+ 2 f (J(x(s)-- zn(s)) un(zn)(s f(s))ds.
0

Using (3__) we see that

(S(() ,(s)), a()()
0

0

t

__< f 7(s) II , (.). II zoods,
0

where 7(s) = r(0) + var(r; [O, s]) ( e L(T,R + )), and zs(r = z(s r), r E [0,s].

Also remark that by construction Vn(Zn)- un(znJl" 1 w0 and {Vn(Zn)- Un(Zn)}n >1 is

a bounded subset of LV(T,X) (cf. H(F’)(3) and the proof of theorem 3.2). Applying lemma

3.1 implies then vn(zn)- un(zn)--*O weakly in LP(T,X). Furthermore, inasmuch as Zn--*5 in

C(T,X) and J is uniformly continuous from X to X*, we infer that

t

(S((s)- zn(s)), vn(Zn)(S Un(Zn)(s))ds--*O (n---,oo).
0

Finally, we have
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(J(x(s)- xn(s)) un(xn)(s f(s))ds
0

t

0

t

0
Therefore, passage to the limit in (4=), as n--oo, yields

t

0

Apply Gronwall’s inequality to conclude that z = . Since xn 6 Se and xn---, = x in

C(T,X), it follows that S

_
(r,x). (Recall that Se (2-_ S). But from the remark following

theorem 4.1 in [2], we know that S is compact in C(T,X). This implies that S = ..(T,X)
and the proof is complete.

Q.E.D.

To illustrate the applicability of theorem 4.1, we consider a multivalued integro-partial

differential equation arising in the study of obstacle problems [23]. Let Z be a bounded

domain of IN with smooth boundary F. We consider the problem
t

x(t,z)- f (k(t-s) ( E (-1)lalDaAa(z’l(x(s’z)))+F(s’z’z(s’z))s g g(t’z)’ n TxZ
0 I(,I _< m

(=)
DTXlTxF =0 forall [3’1 _<m-1.

N
., Da 1 D and r/(x)=where k:T--R, g:T x Z--R, a = (al,. CN) let Z (i, = D1 ,’",

i=1
(N + m)!(D#x) I! <_m while Aa:zxRNm--R (Nm= N!! -’ and F:TxZxR--2R satisfy the

following conditions:

H(A)’: (i) z--.Aa(z,o) is measurable, for all r/6 RNm,
rl---,Aa(z, rl) is continuous, for a.a. z . R,

A(=, 0) < (=) + II II "- x 2 < p < , ro some a e Lq(Z) + = 1RNm’
E (A(, o)-- A(, 0’))(%-- 0,) > C II 0-- 0’ l! 2 c > 0, for allRNm’Il_<m
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r/, r/’ RNm,
and respectively

H(F)"" F(t,z,x)= {vER:fx(t,z,x)<_v<_f2(t,z,x)} where fi:TxZx[--.R, (i=1,2)

are given functions such that t, z)-,fi( t, z, x) is measurable,

fi(t,z,a:)- fi(t,z,y) <_ k(t,z) - y a.e. with k E LI(T x Z, R + and

fi(t,z,z) <_/x(t, z) + fl2(t,z) z a.e. with fix . L2(T x Z,R + ),

2 L(T x Z, [ + ).

Let b: W’P(Z)x Wn’P(Z)---,[ be the Dirichlet form

b(x,y) = I Aa(z, rl(x(z)))Day(z)dz, Vx, y e W’P(Z),
d

Z I1 < 0,

and define A: W’’ P(Z)-...,W m, q(Z) by

v) = v), w, v e

where (-,-) denote the duality brackets between W’P(Z) and W-m’q(z)). This definition

makes sense in view of H(A’)(1), (2) and (3). Now let X = L2(Z) and define the "part" of 2
in X by A(:)- (x), with D(A) = { W’P(Z):.x X}. On account of H(A’)(4), it

follows that A is maximal monotone (equivalently, m-accretive) in X. Moreover, making use

of [23] (Example 6.1 and theorem 6.3, pp. 233-234), we conclude that A generates a compact

semigroup on X.

In other words, assumption H(A) is satisfied.

Next define F: T x XPt(X by

(,a:) : {v . X: fl(f,z,x(z)) <_ v(z) <_ f2($,z,x(z)) a.e.}

Using H(F)", it is easily seen that the multifunction P satisfies condition H(F)’.
=Finally assume that g satisfies

H(g)’: g . WI’p(T, L2(Z)),

and define ?: T---X by ’(t)(. )= g(t,. ). We then rewrite problem (5__)in the abstract form

(f) + ] k(f s)(Aa:(s) + P(s,z(s)))ds (), T.

0
In conjunction with (5=), we also consider the problem
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z(t,z) + / (k(t- s)(E 1)It’ DaAa(z,(z(s,z))) +
0 Il<m

+ {fl(s,z,z(s,z)),f2(s,z,z(s,z))})ds g(t,z)on T Z

DzlTr=O, Il_<m--X

whose abstract form is

z(t) + / k(t s)(Az(s) + ezt’(s,x(s)))ds 9 if(t), e T.

0

We will say that z E C(T, L2(Z)) is a solution of (5=) (resp. (5)e) if z is an integral solution of

(5)’ (resp (5=)). A direct application of theorem 4.1 now yields:

Theorem 4.2: Let assumptions H(A)’, H(F)", H(g)’ and H(k) be satisfied. If
z C(T, L2(Z)) is a solution of (5__) and e > O, then there exists a solution y e C(T, L2(Z)) of
(5) such that sup f x(t,z)- y(t,z) Zdz)x/2 < e.

tET Z
Remark: Invoking Barbu [5, theorem 2.6, p. 140], we can deduce that the functions

z and y of theorem 4.2 are actually "strong" solutions of problems () and ()’, respectively,

satisfying z,y C(T, L2(Z)OLO(T,W’O(Z))and , Lq(T,W-m’q(Z)).

5. INFINITIE DIMENSIONAL CONTROL SYSTEMS

In this section we use theorems 3.1 and 4.1 to derive a "bang-bang" theorem for a class

of infinite dimensional nonlinear control systems. Specifically, we consider the problems

0
u() U() .e., u(.)- measurable

and
t

z(t) + / k(t s)(Az(s) + B(s,z(s))u(s))ds g(t), T,
0

u(t) eztU(t) a.e., u(. )- measurable.

where k:T-,R, g:T--X, A:D(A)C._ X-.X, while B and U satisfy the following conditions.

(We denote by Y a real separable Banach space modelling the control space).

H(B): B:TxXL(Y,X) is a map such that
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u(u):

(!) t---B( t, )u is measurable,

(2_) II B(t, )-- B(t,’)II Z -< l(t)II z-- z’ II a.e. with 1(. 6 LI(T,R + ),

() II n(t,z)II <_ (t) / (t)II z II .e. with ,/6 LP(T,R + ), 1 < p < x.

U’T--,Pwkc(Y) is a measurable multifunction such that U(t) C_ V, a.e. where V is

a fixed element of Pwkc(Y).

Let S, Se C._ C(T,X) be the sets or integral solutions of equations (6=) and (6=)’,
respectively, for any admissible control function. Also let R(t) and Re(t denote the

corresponding reachable sets at time t 6 T; i.e. R(t) = {z(t):z 6 S} and Re(t = {z(t):z 6 Se}.

Pmark: The nonemptiness of S, ’-qe, R(t) and Re(g) will be a consequence of

theorem 3.2 in [2] and theorem 3.2 in Section 3, as soon as equations (6__) and (6=)’ will be

written in the abstract form (1=) and (2=), respectively.. See the proof of theorem 5.1 below.

Theorem 5.1: If X* is uniformly convex and hypotheses H(A), H(B), H(U),
_---(T,X)H(k), H(g) are satisfied, then S = Se and for every t 6 T, R(t) = Re(t ).

Proof: Set F(t,z) = B(t,z)U(t) = U {B(t,z)u:u 6 U(t)} 6 Ptot,e(X). Let v 6 X

and let un:T--Y, n >_ 1 be measurable functions such that U(t)= {un(t)},> (in Y). Note

that the existence of u, is a consequence of hypothesis H(U) and theorem 4.2 in [25]. One has

d(v,F(t,z)) = inf II v- B(t,z)un(t II
d(v, F(t,z)) is measurable

=t--F(t,z) is measurable.

Let now z,z’6 X and v6 F(t,z).

H(B)(2) and H(U), we set

Then v = B(t,z)u, with u U(t). In view of

d(v,F(t,z’)) < il B(t,z)u-- B(t,z’)u Ii < (t) v II -- ’ II,

with IV[ = sup{ II u II r:u u(t)}. Therefore

h(F(t,x),F(t,x’)) <_ "l(t) II - ’ II, (i(t) = l(t) v LI(T,R + )).

Finally, because of H(B)(.), we have

F(t,z) = sup{ II I1" F(t,z)} <_ &(t) + [(t)II II, ..e. on T,

where &(t) = (t) lVi and (t) = fl(t)[VI, so that ., e Lr’(T,R+). It follows that

problems (6=) (resp. (6)’)can be rewritten in the form (1=) (resp. (9.__))in X. An application of
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theorem 4.1 then leads to the desired conclusions.

Q.E.D.

In theorem 5.1, we may also assume that Y is the dual of a separable Banach space

i.e. Y = *. In this case H(U) changes to

H(U)’: U(t) = U, (t E T) is a nonempty, w*-compact and convex subset of Y,

while the measurability of the admissible control functions is viewed as w*-

measurability. (Here "w*" stands for "weak star"). Minor changes in the proof

of theorem 5.1 lead us to the following result.

Theorem 5.2: If X" is uniformly convex and assumptions H(A), H(B), H(U)’,

H(k), H(g) are satisfied, then the conclusions of theorem 5.1 hold.

We will apply theorem 5.2 to obtain a "bang-bang" principle for a controlled integral

equation arising in the study of materials with memory [10]. As in Section 4, we let Z be a

bounded domain of RN with smooth boundary F. Consider the problem

(t,z)- f
0

-OX l
2

0--ff’X )l X s z u s z )d 9 g z on T x Z

IT r = O, u(t, z) < u, u(.,. )-measurable,

where 2<p<cx, /z>0, k:T-,R, g:TxZR, and c:TxZxRR. We assume that

assumptions H(k) and H(g)’ (see Section 4) hold. We also impose the following restrictions on

the function c:

(z)

(t, z)c(t, z, z) is measurable,

Ic(t,z,z)-c(t,z,z’)l <_t(t,z)lz-z’l a.e., with 1 L(TxZ, R+),
c(t,z,z) <_ (t,z) + (t,z)I z a.e., with a U’(T x Z,R + ),

e L(T x Z, a + ).

We again choose X--L2(Z), and define A to be the pseudo-Laplacian, i.e.

Ax: -,_,l-Z
N O (IOx-2Z)withD(A)-{xWlo’P(Z):Ax,} -i Itiswellknown (seee.g.

[24] Example 2.2.4 and Remark 2.2.5, pp. 59-60) that A is cyclically maximal monotone in X

and -A generates a compact semigroup on X. Therefore A satisfies H(A). Next define

"’TxXX by "(t,z)(z)=c(t,z,x(z)), and :T---,X by ’(t)(.)=g(t,.). Also, set

Y = Lc(Z) and U = {uL(Z): [u(z) _</z, a.e.}. From [15, p. 79] it follows that

eztU = {u L(Z):[z Z’lu(z) l#/] = 0}, where stands for the Lebesgue measure on
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Rewriting problem (7=) in X as

(t) + / k(t s)(A:c(s) + (s,(s))u(s))ds it(t), on T
0

u(t) E U, a.e, u = w’-measurable.

it is readily seen that all of the assumptions of theorem 5.2 are satisfied, provided that we take

S(t,a:)u =’(t,:)u. (Note that H(c) then implies H(B)). Applying theorem 5.2 we finally

obtain

Theorem 5.3: If conditions H(c), H(k), H(g) are satisfied, z is a trajectory of (7=)
and e > 0 is given, then there exists a control v U such that A[z Z: I()1 # ,] = 0,

which generates a trajectory y C(T, L2(Z)) of (7) with the property that

sup f y(t,z)- :(t,z) 12dz < .
t.T

Remark: Here the term "trajectory" designates an integral solution to (7=)’. Since A

is cyclically maximal monotone in X, it actually follows that a: and y in theorem 5.3 are

"strong" solutions of problem (_7_). See e.g. [24, p. 28 and 42].

[3]

[4]

[7]

REFERENCES

S. Aizicovici, "An integrodifferential equation with a discontinuous nonlinearity", An.
St. Univ. "Al. L Cuza’, Iasi 26, (1980), pp. 353-360.

S. Aizicovici and N.S. Papageorgiou, "Multivalued Volterra integral equations in
Banach spaces", Funkcialaj Ekvacioj- to appear.

E. Avgerinos and N.S. Papageorgiou, "Optimal control and relaxation for a class of
nonlinear distributed parameter systems", Osaka J. Math. 27, (1990), pp. 745-767.

P. Baras, "Compacit6 de l’olrateur f---,u solution d’une 6quation non-lin6aire
du f.d.-+ Au CRAS Paris, 286, (1978), pp. 1113-1116.

V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces",
Noordhoff International Publishing, Leiden, The Netherlands (1976).

M. Benamara, "Points Extrmauz, Multi-applications et Fonctionelles Inlgrales", Thse
du 3me cycle, Universit de Grenoble (1975).

Ph. B6nilan, "Equations d’Evolution dans un Espace de Banach Quelconque et



Extremal Solutions to a Class of Multivalued lmegral Equations in Banach Space 219

Applications", Thse, Universit de Paris XI, Orsay (1972).

H. Br6zis, "Oprateurs Maximaux Monotones et Semigroupes de Contractions dans les
Espaces de ttilberf’, North Holland, Amsterdam (1973).

K.C. Chang, "The obstacle problem and partial differential equations with
discontinuous nonlinearities", Comm. Pure and Appl. Math. 3, (1980), pp. 117-146.

[0] B. Coleman and M. Gurtin, "Equi-presence and constitutive equations for rigid heat
conductors", Z. Angew. Math. und Phys. 18, (1967), pp. 199-208.

[ii] M.G. Crandall and J.A. Nohel, "An abstract functional differential equation and a
related Volterra equation", Israel J. Math. 29, (1978), pp. 313-328.

[12] J. Diestel and J. Uhl,
(1977).

Vector Measures", Math. Surveys, Vol. 15, AMS, Providence, RI

[13] A. Fryszkowski, "Continuous selections for a class of nonconvex multivalued maps",
Studia Math. 78, (1983), pp. 163-174.

[14] S. Gutman, "Evolutions governed by m-accretive plus compact operators", Nonlinear
Analysis-TMA 7, (1983), pp. 707-717.

[15] "Geometric Functional Analysis and its Applications", Springer, Berlin

[16] T. Kiffe, "A perturbation of an abstract Volterra equation", SIAM J. Math. Anal.
(19S0), pp. 1036-1046.

11,

[17] E. Mitidieri and I. Vrabie, "Differential inclusions governed by nonconvex perturbations
of m-accretive operators", Differential and Integral Equations 2, (1989), pp. 523-531.

[18] N.S. Papageorgiou, "Volterra integrodifferential inclusions in reflexive Banach spaces",
Funkcialaj Ekvacioj 1, (1991), pp. 257-277.

[19] N.S. Papageorgiou, "On measurable multifunctions with applications
multivalued equations", Math. Japonica 32, (1987), pp. 437-464.

to random

[20] N.S. Papageorgiou, "Nonlinear Volterra integrodifferential evolution inclusions and
optimal control", Kodai Math. Jour. 14, (1991), pp. 254-280.

[21] A. Tolstonogov, "Extreme continuous selectors of multivalued maps and the "bang-
bang" principle for evolution inclusions", Soviet Math. Dokl. 317, (1991), pp. 1-8.

[22] I. Vrabie, "Compactness methods for an abstract nonlinear Volterra integrodifferential
equation", Nonlinear Analysis-TMA 5, (1981), pp. 355-371.

[23] I. Vrabie, "The nonlinear version of Pazy’s local existence theorem", Israel J. Math. 32,
(1979), pp. 221-235.



220 SERGIU AIZICOVICI and NIKOLAOS S. PAPAGEORGIOU

[24] I. Vrabie, "Compactness Methods for Nonlinear Evolutions", Pitman, Boston (1987).

[25] D. Wagner, "Survey of measurable selection theorems", SIAM J. Control and Optim.
15, (1977), pp. 859-903.


