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ABSTRACT

The purpose of this paper is to study the convergence rates of
sequence of empirical Bayes decision rules for the two-action problems in
which the observations are uniformly distributed over the interval
where is a value of a random variable having an unknown prior
distribution. It is shown that the proposed empirical Bayes decision rules
are asymptotically optimal and that the order of associated convergence
rates is O(n- a), for some constant a, 0 < a < 1, where n is the number
of accumulated past observations at hand.
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1. INTRODUCTION

In situations involving sequences of similar but independent statistical decision

problems, it is reasonable to formulate the component problem in the sequence as a Bayes

statistical decision problem with respect to an unknown prior distribution over the parameter

space, and then use the accumulated observations from the previous decision .problems to

improve the decision rule at each stage. This approach was first developed by Robbins [5] and

was later studied in estimation and hypothesis testing problems by many authors. For example,

Robbins [6] and Samuel [7] exhibit empirical Bayes rules for the two-action problems in which

the distributions of the observations belong to a certain exponential family of probability

distributions. Johns and Van l:tyzin [1] study the convergence rates of a sequence of empirical

Bayes rules which they propose for the two-action problems where the observations are members

of some continuous exponential families of distributions. Also, Susarla and O’Bryan [8] and

Nogami [4] consider estimation problems in which the observations are uniformly distributed

over the interval (0,a). These authors show that their empirical Bayes rules are asymptotically

1Received: September, 1991, Revised" December, 1991.

Printed in the U.S.A. (C) 1992 The Society of Applied Mathematics, Modeling and Simulation 167



168 MOHAMED TAHIR

optimal, in the sense that the associated Bayes risks of these rules converge to the minimum

Bayes risk which would have been obtained if the prior distribution were completely known and

the Bayes rule with respect to this prior distribution were used.

The objective of this paper is to investigate the convergence rate of a sequence of

empirical Bayes decision rules for the two-action problems in which the observations are

uniformly distributed over the interval (0,), where is a value of a random variable having an

unknown prior distribution.

Let X denote the random observation of interest in the component decision problem and

suppose that X has density function

f0(x) 1

where 8 is an unknown number such that 0 < 8 < b_< oo, and I(.) denotes the indicator

function. It is desired to determine a decision rule for choosing between the hypotheses

Ho: 0 _< 0o and H1" 0 > 0o,

where 00 is a given number such that 0 < 0o < b. Let a0 and a1 be the two possible actions, of

which a is appropriate when H is true, i = 0,1, and suppose that the loss function is of the

form

= +

(0) = (00 0) + (1.1)

for 0 < 0 < b, where for = O, 1, Li(O measures the loss incurred when action a is taken and 0 is

the true value of the parameter, and where (u) + = max{u, 0}.

Suppose that is a realization of a random variable O having an unknown prior

distribution function G. Thus, the formulation of the problem assumes that the random

observation X is conditionally uniformly distributed over (0,), given = , where is a

random variable having an unknown prior distribution G; that, based on X, an action

a E {a0,a1} is to be taken; and that if action a is taken, then the loss incurred is of the form

(i.i).

Let

6(x) = P{accepting HolX =

be a randomized decision rule for the above decision problem. Then the Bayes risk incurred by
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using the decision rule 8 with respect to the prior distribution G is given by

b

= fa(z)6(zldz + C(G), (1.2/
o

where
b

a(x) = f Ofo(x)dG(O Oof(x (1.3)

b

f(z) = f fo(z)dG(O)

for 0 < z < b and
b

C(G) = f L(OldG(O).
o

Note that C(G) is a constant which is independent of the decision rule 6. Hence, it

follows from (1.2) ha a Bayes decision rule, 6a, is clearly given by

The Bayes decision rule a cannot be applied the dedsion problem under sudy since

it depends on the unknown prior distribution G. In view of this remark, an empirieM Bayes

approach is used wih prir disgribugions G for which fOdG(O)< , o insure heg the Bayes
0

risk is always finite.

Section 2 provides a sequence of empirical Bayes rules for the decision problem described

above. Section 3 establishes the asymptotic optimality of the proposed rules and investigates

the convergence rates of these rules. Section 4 contains an example which illustrates the results

of this paper.

2. THE PROPOSED EMPIRICAL BAYES RULES

The construction of a sequence of empirical Bayes decision rules for the decision problem

described in the previous section is motivated by the following observations. First, a(z) in (1.3)
can be rewritten as

by using the definition of fo(z).
O = 0, is given by

a(z) ---- 1 G(z) Oof(z),

Furthermore, the conditional distribution function of X, given
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Fo(x = / fo(t)dt = xfo(x + I(o,)(x)
o

for 0 < x < b; so that, the marginal distribution function of X is given by

F(z) = f Fo(z)dG(O = zf(z) + G(z)
o

for 0 < z < b. Therefore,

a(a:) = 1 F(z) + (z- Oo)f(a:

for 0 < a: < b, by (2.1).

An empirical Bayes decision rule for the (n + 1)s decision problem may be obtained by

first estimating a(a:), for each z, using the n accumulated observations from the previous

problem, and then adopting an empirical Bayes decision rule which is similar, in a sense, to the

Bayes rule a, but which does not require the knowledge of the prior distribution G.

Specifically, let X1,...,Xn be the observations from n past experiences of the component

decision problem, where for each = 1,...,n, X is conditionally uniformly distributed over the

interval (0,9i) given i = tgi, and 1,O2,"" are independent and identically distributed (i.i.d.)
random variables with common distribution G. Hence, X,X2,... are i.i.d, with common

distribution F. Let Xn + = X denote the current observation and let

Fn(a:) = E I{xi <-
denote the natural estimator of F(). Also, since by definition of a density function,

can be estimated by

f(x) lira F(x + h)- F(x)
h--O h

fn(a:) Fn(a: + hn) Fn(a:)= h.
for n >_ 1, where hn, n >_ 1, is a sequence of positive real numbers such that hn---,O and nhn--.oo
as noo. In view of (2.2), a(x) can be estimated by

an(x = 1 Fn(z + (z- O0)fn(Z

for eachx, 0<z<b.

In view of (1.4) and the above observations, define the empirical Bayes decision rule for

the (n + 1)st decision problem by

1 if an(X <_ 0
(2.4)n(a:) =

0 if an(a: > O.
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for each z, 0 < z < b. Then clearly, 6n does not depend on the unknown prior distribution G.

3. ASYMPTOTIC OPTIMALITY

Let A denote the class of all decision rules, and let R*(G) denote the minimum Bayes

risk with respect to the prior distribution G. Then,

R’(G) = inf R(G, 5)

b

= /a(z)6G(z)dz + C(G),
o

(3.1)

as in (1.2). Also, let R(G) denote the Bayes risk incurred by using the empirical Bayes rule 8n,
defined by (2.4), with respect to the prior distribution G. Then,

b

0

where E denotes expectation with respect to the marginal joint distribution of X1,...,Xn.

Then, R(G)>_R*(G) for all n_> 1, since R*(G) is the minimum risk, and hence

R(G)- R*(G) may be used as a measure of the optimality of the empirical Bayes rule din.

Lemma 3.1: For n > 1,
b

R;(G) R’(G) < It a(z) IP(I an(X a()I > la()I}d.
o

Proof: An application of (3.1) and (3.2), followed by (1.4) and (2.4), yields

b

R:(G)- R,’(G) : /a(z)[P{an(Z <_ O}-diG(X)]dz
0

where

b

=/la(z) B(n,z)dz,
o

P{an(Z > 0} if
B(n,z) =

P{an(z) < 0} if a(z) > 0

(3.3)
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for 0 < z < b. The lemma now follows since [an(Z)- ()[ > [a(z)[ is implied by an(Z > 0 when

a(z) _< 0, and by an(z <_ 0 when a(z) > 0.

Definition 3.1: Let vn, n >_ 1 be a sequence of positive numbers such that vnO as

n--*oo. A sequence of Bayes empirical estimators 5n, n >_ 1, is said to be asymptotically optimal

at least of order v

The main result is presented next.

Theorem 3.1: Let 5n be as in (2.4) and suppose that f’, the derivative of f, ezists

and is continuous. If
b

() f oa(o) < ,
o

and if for some r, 0 < r < 2,

b

ir i1_ ‘(iv) fl:--O0 la(z) [f;(z)]"dz < ,
o

where f(x) stpo < < ef( + t) and f() stPo < < f’( + ) l, for" some e > O, then

1

choosing hn = n 2 + 1, for some , 0 < < 1, yields

R(G)- R’(G) <_ O(n- a)

r Thus, the sequence 6n, n > 1 is asymptotically optimal at least ofas ncx, where = 2[3:+:"
order n- a with respect to the prior distribution G.

Proof: Let r > 0 be given. It follows from Lemma 3.1 and Markov’s inequality

that
b

n;,(a)- n’(a) _< fl a(’)I’-ran(z)-a(x)[rdx
o

for all n _> 1. Furthermore, by (2.2), (2.3), and the cr-inequality (Love, [3])

+ 1 Oo I" (; n) f(z)i"

(3.3)

(3.4)

for each z > 0, where cr = 1 or 2r- according as 0 < r _< 1 or 1 _< r < 2 and

H(z; n)
F(z + hn)- f(z)
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for : > 0. Next, since E[Fn(a:)] = F(z) and Varn()] = 1- F(z)]F(:),

H(z; n)- f(z) = 1/2hnf’(z + .),
1

where 0 < z. < hn. Letting hn = n 2-i-:i and combining (3.3)-(3.7) yields

R(G) R*(G) K1 K2

= O(n -<’)

as n---+o, where ci = 2’ / i’ and b

K1 = cr Ii a(z)11 -r [F(z)(1 r(z))]rl2dz
o

b

=
o

b

K3 2-" 2 i r

0
are all finite by assumptions (ii)-(iv) of the theorem.

4. EXAMPLE

The following example provides a class of prior distributions G to which Theorem 3.1

can be applied.

Suppose that G is the gamma distribution with density function

s2Oe-SO if O>O
(o) = o f e <_ o,

where s > 0 is a given number. Then

] se- sx if z > 0
f(z)

0 if z_<O,
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and

if z>0

if z<_O,

J (1 + sx SOo)e
a(

o q’
if z>0

z<0.

Also, f(x) = f(x) and f(z) = sf(x). Clearly, Assumption (i) of Theorem 3.1 is satisfied. To

verify Condition (ii), let 0o > 0 be a given number and observe that
co 00

fl o()11 r [F(x)( 1 F(x))lr/2 dx <_ fl I + -Oop-d
o o

say. Moreover,

+ i (1 + sx 8/0)1 r e

o0

= I1 + 12,

-(1 -)SXdx

z, _< 0 ,Oo ’ - + %(: ,)- -0o ,
by a simple integration, where er = 1 or 2r- 1 according as 0 < r _< 1 or 1 < r < 2; and

i: <_ f (1 + sx)l-re-(1-)SXdx <
o0

when 0 < r < 1. When 1 < r < 2, (1 + sx- $00)1-r _< 1 for all x > 00 and thus,

-(i-)S:dzI:_< e <
00

Therefore, Condition (ii)of Theorem 3.1 is satisfied when 0 < r < 2.

To verify Condition (iii) of Theorem 3.1, note that

co 0

/i:-Ooi" la()l’-" [.f2,()]"/d -< +sz-SOol1-’dz
o o

+ sr12 xq l so + sx e

o0

= s/(. + g),

-(I

(4.1)

say. Furthermore, by the cr-inequality
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J1 < crO + 111 SOol1-r + Or(2- r)- lsl tO20

s _< -,Ool-"
oo

+
oo (4.2)

Finally, to verify Condition (iv) of the theorem, observe that

oo

0

where J1 is as in (4.1) and

as in (4.2).
o0
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