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ABSTRACT

In this paper we consider the question of existence of solutions
for a large class of nonlinear differential nclusons on Banach space
arising from control theory.
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1. INTRODUCTION AND MOTIVATION

We consider the system governed by a differential inclusion given by

(d/dt)z(t) + A(t,z(t)) E B(t)u(t) + G(t,z(t))
(1)

z(0) = z0’

where G(t,z) is a suitable set valued map or multi function. For example, G may be given by

G(t,z) = [y:y= f g(t,z,)p(d), e .+(E) where g is a suitable function and .2,+(E)is
/

the space of probability measures on the Borel’fields (E) of (possibly) a Souslin space E. In

the case of systems with parametric or structural uncertainties the parameter a or even its

probability law is usually unknown and in that situation the differential inclusion model (1) is

preferable to the evolution equation model obtained by replacing the set map G by any of its

selections g which are only vaguely known [3,6]. The logical control problem here would be to

minimize the maximum risk. Another motivation comes from the fact that systems governed

by evolution inequalities of the form,

((dldt)z + A(t,z(t)) B(t)u(t), z(t)- w) >_ g(t,z(t))- g(t,w) for all V
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(1’)
z(0) = 0,

can be described by a differential inclusion. For example, suppose for each t >_ 0, and each

V, the function r/-*(t,r/) from V to R has the sub differential Og(t,)=_ G(f,). Then one

can easily verify that the above evolution inequality is equivalent to the differential inclusion

(1). In case -*g(f,) is convex, G(t,) is, in general, a multivalued monotone operator from V

to V*. However if g is Gateaux differentiable, then G(,. is a single valued operator from V to

V*. If in (1’) V is replaced by a nonempty closed convex subset K C_ V then we have an

obstacle problem. Thus the differential inclusion model (1) can be considered to be an abstract

model for many physical problems.

Here we are interested in the basic question of existence and regularity properties of

solutions of the general differential inclusion (1) on a Banach space. We combine a selection

theorem in Banach space, Galerkin’s approximation, an existence result for differential inclusions

on finite dimensional spaces, and compactness arguments to prove our main result. This is in

contrast to Kakutani-Fan fixed point theorem found useful for semilinear inclusions [3].

2. BASIC NOTATIONS AND ASSUMPTIONS

Let H be a separable Hilbert space and V a subspace of H having the structure of a

reflexive Banach space with the embedding V -*H being continuous and dense. Identifying H

with its dual we have V -*H -*V* where V* is the topological dual of V. Let (y,x denote the

pairing of an element x E Y with an element y E V*. If x, y H, then (y,x) = (y,z) where (,)
denotes the scalar product in H. The norm in any Banach space X will be denoted by ]1 ]] x-
We shall use P(X) (cc(X), cbc(X)) to denote the class of all nonempty (nonempty closed

convex, nonempty closed bounded convex) subsets of X.

Let I.[0,T], 0<T<oo, and p,q>_l such that (1/p)+(1/q)=l and 2_<p<oo.

Denote Lp(V) =_ Lp(I,V), Lq(V*) =_ Lq(I,V*). For p,q satisfying the preceding conditions, it

follows from the reflexivity of V that both Lp(V) and Lq(V*) are reflexive Banach spaces. The

pairing between Lp(V) and Lq(V*)is denoted by

((u, v))= ((u,v)) is the scalar product in the Hilbert space L2(H).

following basic assumptions:

(A)

Clearly, for u,v L2(H),
Our results are based on the

A: I x V-,V* is a map so that

(1)" t-*A(t,x) is measurable,

(2)- x-*A(t,x) is monotone and hemicontinuous, that is, (A(t,x)-A(t,y),x-y)> 0

and A(t,x+(ry)A(t,x) in V* as r--,0 for all x,y V, t I; and
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(a):

(B):

(u):

((A((n)- A(),n -))--,0 as (n-’*( weakly in Lp(V).
(3): there exist positive constants Cl, c2, c3 such that

11A(t,x) [1 v* -<- c(1 + 11 x 1[ - ) and (A(t,x),x) + c3 c2 1 z [1 for all x V.

G: I x Vcc(H) satisfying the following properties:

(1) tG(t,x) is a meurable multifunction.

(2) (t,x)G(t,x) is sequentially upper hemicontinuous with respect to inclusion and

further, the multifunction &, defined by

x--&(x) = { Lq(H):(t) G(t,x(t))a.e.}, is sequentially weakly upper

semicontinuous with respect to inclusion from Lv(V to (Lq(H)) whenever it is

nonempty.

(3) there exist positive numbers a,,7 such that for all {t,x} I x V (y,x) 7, and

l[ U 11 l[ II - 1 + for each V G(t, z).
B L(I,(Y,K)) with Y being a reflexive Banaeh space where controls take their

values from.

U: Iee(Y) is a meurable multifunetion satisfying U(t) for almost all t fi I where

% is a fixed weakly compact convex subset of Y. For the admissible controls we ehse

the set

dad = {u e Loo(Y): u(t) E U(t) a.e.}.

3. MAIN RESULT

For convenience of notation we shall use Dx to denote (d/dt)x.
conditions stated above define

For p, q satisfying the

Wp, q {x e Lp(V)" Dx = (dldt)x e Lq(V*)}

where the derivative is understood in the sense of distributions. Furnished with the norm

topology [[ x [[ p,q, defined by [[ x [[ 2p, q _( [[ X [[ 2Lp(V) + [[ Dx [[ 2.t,qt..v..))’ Wp, q is a Banach

space and it follows from theorem 1.1.7 of [1], that the embedding Wp, qC(I,H) is continuous.

Definition 1: A function x C(I, H) is said to be a solution of the differential inclusion

(1) if there exists a measurable selection y so that y(t) G(t,x(t)) a.e. and x satisfies, in the

sense of V*-valued distributions, the evolution equation

Dx(t) + A(t,x(t)) = B(t)u(t)+ y(t) for almost all fi I. El

Our main existence result is given in the following theorem.

(2)
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Theorem 2: Consider the system (1) and suppose he assumptions (A), (G), (B) and

(U) hold. Then for every zoq H and u q ad the system (1) has at least one solution

zWp,q"

Proofi By using Galerkin approach, we reduce this problem to the problem of existence

of solutions of a differential inclusion on a finite dimensional space and then use weak

compactness along with limiting arguments and upper semicontinuity of G to complete the

proof. For this we first establish an a priori bound for the solutions of (1). Let x E Wp, q be

any solution of (1) and define (t)--G(t,x(t)) and y a measurable selection of . By virtue of

the growth assumption [see assumption (G)] it follows that y Lq(H).
by x and integrating over [0, t] we have

Scalar multiplying (2)

Letting

II ()II H / 2 f (A(s,x(s)),x(s))ds
0

= II 0 II H + 2 / {(S(s)u(s),x(s))+ (y(s),x(s)>}ds. (3)
0

5 denote the embedding constant V-.H, M = max{ il v I! y, v %} and using the

assumptions (A3), (G3), (U) and Cauchy inequality one can easily verify that

II (t)II
0

II (s)II ds < T(2c3 -4- 3’) -4- Ii o II + (1/qeq) II B II a((r, H))

+ ((2Me)P/P) / II x(s)[[ ds
o

for every e > 0. Choosing e-:/\(c2p)(1/p)/2SM) it follows from this expression that there exists

a constant c4 dependent only on the parameters T, 7, c2, c3, fl, M, p, q, II Zo !1 H and

II B II Lq(.L(Y,H)) so that

II (t)II / c2 / !1 (
o

) !1 ds <_ c4 for all t I = [0, T]. (4)

This proves that x L(H)glLp(V) and that the bound (4) holds for all solutions of (1).
Scalar multiplying (2) by r/ Lp(Y) one can easily verify using the assumptions (A3), (G3),

(B), (U) and (4) that there exists a constant c5 dependent only on the parameters Cl, c4, T, c,

/9, di, M, p, q and ]1B 11Lq(L(Y,H)) such that

I<<D, ))! = f (Dx(s), r(sl)ds < c5 I1 il L(V)"
This shows that Dx 6 Lq(V*) and that II Dx II LqV*,

g c5 for all x that satisfy (4). Thus, for
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c6 . Max{c4, cs} all solutions of (1) satisfy

II = II L(H) <-- C6’ II = II =6, II D II %" (6)

Clearly this shows that all the solutions of (1) lie in a bounded subset of the Banach space

Wp, q. With this a priori bound, we are now ready to prove the existence of solutions. Since V

is a separable Banach space and the injection V---H is dense there exists {el} C_ V so that

(el, ej)H 6ij which forms a basis for V, H and also V*. Since z0 H we have

Define

0 = s- lira E rliei where /i (z0, el)" (7)
l<i<n

l<i<n

and choose (n ((, 1 _< _< n) in such a way that ((0) = rh, 1 _< <_ n and

(8)

(Dzn(t),ek) + (A(t, xn(t)),ek) = (B(t)u(t),ek) + (Yn(t),ek),

and yn(t) Gn(t = G(t, Zn(t)), for t I, 1 < k _< n, (9)

where Yn is a measurable selection of the set valued map Gn(. = G(. n(" ))" The existence of

a measurable selection is justified later.

(t, ) E I x Rn define

r(t, ) =_ z nn: zk = (A(t,

First we verify the existence of n.

E (iei)’ek) + (B(t)u(t),e) +
l<i<n

For each

for tgG(t, l<i<nEiei)’ 1 <_ k <_ n}. (10)

Clearly F:I x Rn(Rn). Given that a measurable selection exists, for each n N, the system

(9) is equivalent to the differential inclusion in R" given by

D(t) F(t,(t)), t e I, (0) rl
n =_ (r/i, 1 < < n). (11)

It follows from assumption (G) that, for (t,z) 6. I xV, G(t,z)cbc(H) and hence weakly

compact. Therefore, under the assumptions (B) and (U), for a fixed uq.tad

F:I Rncbc(Rn) with measurability in and upper semicontinuity in ff following from the

measurability and upper hemicontinuity of G. Thus it follows from theorem 2.1.4 [5] that (11)
has at least one solution fi AC(I, Rn). Using this in (8) we conclude that :n is a solution of

the system (9). It follows from the a priori estimate (6) that IIz. llL <V)<_c6 and

II II Lq(V*) <- c6 and, by virtue of the growth assumption (G3) for G, there exists a constant
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c7 dependent only on a, 3, P, T, and co such that [[ Yn II Lq(H)<--c7 for all n >_ 1. Since the

spaces Lp(V), Lq(V*) and Lq(H) are all reflexive there exists a subsequence of the sequence

{xn, Dxn, Yn} relabeled as such, and x E Wp, q and yO Lq(H) such that as

w o
XnX in Lv(V

DxnLDx in Lq(V*) (12)
w o

Yn-"Y in Lq(H).

Let A(z) denote the function A(t,z(t)), I. Under the assumptions (A) it follows from

Lemma 3.3 [2] that A(z,,)A(z) in Lq(V*) whenever znLz in Lt,(V). Hence, multiplying the

first equation of (9) by a C(I) function with compact support and integrating over I and

letting noo, we obtain

(Dx el)(s)ds + / <A(s, z(s)),
I I

= /(B(s)u(s),et)(s)ds + f (y(s),et)(s)ds. (13)
I I

Since {el} is a basis for V and C(I) is arbitrary, it follows from (13) that, for y = yO, :co
satisfies the evolution equation (2) in the sense of V*-valued distributions. One can easily verify

that x(0) zo. It remains to show that y(t) G(t,z(t)) a.e. It suffices to show that

yO ((x0) given that ( is nonempty. For every E Lp(Y), it follows from assumption (G3)
that (x) is a bounded subset of Lq(H). Since G(t,) cc(H), by use of Hahn-Banach theorem,

one can easily verify that (x) is a (strongly) closed convex subset of Lq(H). Therefore by

Mazur’s theorem it is also weakly closed. Hence for every x Lp(V), (x) is a weakly closed

bounded convex subset of Lq(H), that is, ( maps Lp(Y) to cbc(Lq(g)). Let ((x) denote the

closed e-neighborhood of ((x) in iq(H). Then, by virtue Of assumption (G2), for every e > 0

there exists no =_ no(e such that (Xn) C_ e(x) for all n >_ n0. Thus Yn (Xn) C_ e(Xo) for

n >_ n0. Since yO is the weak limit of Yn in Lq(H) and e(x) is a weakly closed convex set,

again, by Hahn-Banach theorem, y0 e(xo). But > 0 is arbitrary and (x) E cbc(Lq(H))
and hence yO (xo). Thus we have proved that y(t) G(t,x(t)) for almost all t I. We

conclude the proof by justifying the existence of a measurable selection Yn for the multifunction

Gn as required by the inclusion in (9). This will also justify that ( is nonempty. Since

xn AC(I,V) it follows from the first part of assumption (G2) that t-*Gn(t is upper

semicontinuous and hence for every sequence ti-.to, we have

N clU Gn(ti)C_ Gn(to). (14)
k>l i>k
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Further, it follows from the growth assumption (G3) that, for each E I, Gn(t cbc(H) and

hence weakly compact. Therefore by the selection theorem 5.4.3 [1, p. 378], it has a measurable

selection which we have denoted by Yn" This completes the proof.

Corollary 3: For uq.Lad the set (u), denoting the family of solutions of (1)
corresponding to the control u and the inilial state Xo, is a bounded weakly closed subset of
Wp, q and hence weakly compact.

Remark 4: As far as the existence question is concerned, Theorem 2 also holds under

the relaxed conditions: B L(L(Y, V*)), G:I x V9(V*) satisfying the assumption (G) with

H replaced by V* and fl Lq(I,R). For control problems, however, we need the stronger

assumptions.

If the initial data is assumed to belong to V, the assumption (G3) may be relaxed.
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